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1. Peter Scholze: Non-abelian Galois cohomology
Definitions and ‘long’ exact cohomology sequence ([11], I, §5.1–5.7). Forms ([11], III, §1). Use also
the corresponding passages in [2] §§2, 3, and in [4], I, §7.
2. Raoul Blankertz: Cohomology of tori and class field theory
Explain Tate-Nakayama theory, cf. [4], III §2, cf. also [12], IX. Present the result also in terms of
the dual torus, as in [9], §3. Perhaps mention the generalization to groups of multiplicative type,
[11], II, §5.8.
3. Peter Scholze: p-adic fields
Prove in the case of classical groups Kneser’s vanishing theorem for simply connected groups over
a p-adic field and the surjectivity of the connecting homomorphism, cf. [4], IV., comp. also [14].
Deduce from this a classification theorem for reductive p-adic groups, cf. [9], §6.
4. Daniel Gerigk: Classification of reductive groups over R
Explain [1], II, Satz 4, Thm 6, Satz 8, and III, Thm 8 and Thm 9, and give an instructive example
from Kap. IV. Compare with the p-adic case.
5. Sean Wilson: Steinberg’s Theorem
Explain the proof of Steinberg’s theorem [13] which implies the vanishing of H1(k, G) for any
connected linear algebraic group over a field k of cohomological dimension ≤ 1.
6. Timo Richarz: The Hasse principle, the proof for type An

Here the Hasse principle should be stated over a number field, as well as the surjectivity of the
connecting homomorphism into H2(k, F ), where F is the fundamental group of the adjoint group,
cf. [4], V, §§1–3. Then the proof in the case of type An should be given, cf. [4], V, §5. See also [8]
7. Eugen Hellmann: The strong approximation theorem
The theorem should be explained and contrasted to the weak approximation theorem, comp. [5].
Then the proof should be explained in the case of the unit group of a simple algebra, cf. [6], §§3,
4. A proof in general that does not use the Hasse principle is in [10], §7.4.
8. Nicolas Vandenbergen: Landherr’s theorem
This is the Hasse principle for type 2An. It should be proved, following [3], §2.
9. t.b.a.: The Hasse principle for some other types
Here one should explain how one can treat some other types, following [3], §3.
10. Paul Hamacher: Reformulation in terms of the L-group
Here one should give Kottwitz’s formulation in [9], §4 (without using Bra(G)).

It is not to be expected that each item above can be treated in one session of the
seminar.
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