Prof. Dr. H. Koch & Dr. F. Gmeineder EPDE 18.06.2019 Sommersemester 2019

Wiederholungsblatt

Z11

Einführung in die partiellen Differentialgleichungen

Aufgabe 1: Checklist

Wahr oder falsch? Begründen Sie Ihre Antworten.

- (a) Eine harmonische Funktion $u \in C^2(\mathbb{R}^d)$ ist genau dann konstant, wenn sie beschränkt ist.
- (b) Ist $u_0 \in \mathrm{C}_c^\infty(\mathbb{R}^d)$ und löst $u \in \mathrm{C}^2((0,\infty) \times \mathbb{R}^d)$ die Wärmeleitungsgleichung $\partial_t u \Delta u = 0$ auf $(0,\infty) \times \mathbb{R}^d$ mit diesem Anfangsdatum, so gilt $u(t,\cdot) \in \mathrm{C}_c^\infty(\mathbb{R}^d)$ für alle t > 0.

Geben Sie eine (weitere?) Differentialgleichung in Zeit und Ort an, für welche diese Eigenschaft gültig bleibt.

- (c) Sei $f : \mathbb{R}^d \supset \mathrm{B}_1(0) \to \mathbb{R}$ harmonisch. Dann gibt es ein C > 0, sodass für alle 0 < r < 1 gilt: $\|f\|_{\mathrm{L}^\infty(\mathrm{B}_r(0))} \le C \|f\|_{\mathrm{L}^1(\mathrm{B}_1(0))}$.
- (d) Sei $f: \mathbb{R}^d \supset B_1(0) \to \mathbb{R}$ harmonisch. Dann gibt es ein C > 0, sodass für alle 0 < r < 1 gilt: $||f||_{L^{\infty}(B_r(0))} \le C||f||_{L^1(B_{\frac{1+r}{2}}(0))}$.
- (e) Ist $u \in C^2((0,\infty) \times \mathbb{R}^d)$ eine Lösung der homogenen Wärmeleitungsgleichung mit Anfangsdatum $u_0 \in (C^\infty \cap L^p)(\mathbb{R}^d)$ für ein $1 \leq p \leq \infty$, so folgt $||u(t,\cdot)||_{L^p(\mathbb{R}^d)} \leq ||u_0||_{L^p(\mathbb{R}^d)}$ für alle t > 0.
- (f) In der Situation von (e) ist u notwendigerweise eindeutig durch u_0 bestimmt.

Aufgabe 2:

Sei $\Omega\subset\mathbb{R}^d$ offen und beschränkt sowie $u\in {\rm C}^2(\Omega)\cap {\rm C}(\overline{\Omega})$ eine Lösung von

$$\begin{cases} \Delta u = u^3 & \text{in } \Omega, \\ u = 0 & \text{auf } \partial \Omega. \end{cases}$$

Zeigen Sie, dass $u \equiv 0$ in Ω .

Aufgabe 3:

Sei $\Omega \subset \mathbb{R}^d$ ein beschränktes Gebiet (d.h., insbesondere offen und zusammenhängend) mit $\Omega \subset \{x \in \mathbb{R}^d : -s < x_1 < s\}$ für ein $0 < s < \infty$. Sei weiters $u \in C^2(\Omega) \cap C(\overline{\Omega})$ eine Lösung von

$$\begin{cases} -\Delta u = 1 & \text{in } \Omega, \\ u = 0 & \text{auf } \partial \Omega. \end{cases}$$

Zeigen Sie, dass

$$0 \le u(x) \le \frac{s^2 - x_1^2}{2} \qquad \text{für alle } x \in \overline{\Omega}.$$

Aufgabe 4:

Zeigen oder widerlegen Sie: Ist $u \in C^3(\mathbb{R}^d)$ Lösung von $-\Delta u = c$, c = const., so gilt

$$\lim_{R \to \infty} \|\nabla u\|_{\mathcal{L}^{\infty}(\mathcal{B}_R(0))} = +\infty.$$

Aufgabe 5:

Sei $u_0 \in (\mathbf{C}^2 \cap \mathbf{L}^2)(\mathbb{R}^d)$ und sei $u \colon (0, \infty) \times \mathbb{R}^d \to \mathbb{R}$ die Lösung der Wärmeleitungsgleichung

$$\begin{cases} \partial_t u - \Delta u = 0 & \text{in } (0, \infty) \times \mathbb{R}^d, \\ u(0, \cdot) = u_0 & \text{auf } \{t = 0\} \times \mathbb{R}^d. \end{cases}$$

Zeigen Sie: Es gibt ein $C = C(\|u_0\|_{L^2(\mathbb{R}^d)}, d) > 0$, so dass für alle $(t, x) \in (0, \infty) \times \mathbb{R}^d$ gilt

$$|u(t,x)| \le \frac{C}{t^{\frac{d}{4}}}.$$

Aufgabe 6:

Sei a>0 und $u\colon (0,\infty)\times\mathbb{R}\to\mathbb{R}$ eine beschränkte Lösung des Anfangswertproblems

$$\begin{cases} \partial_t u = a^2 \partial_{xx}^2 u & \text{auf } (0, \infty) \times \mathbb{R}, \\ u(0, x) = \varphi(x) & \text{für } t = 0, \end{cases}$$

wobei $\varphi \in \mathcal{C}(\mathbb{R})$ für $b, c \in \mathbb{R}$ erfülle:

$$\lim_{x \to -\infty} \varphi(x) = b, \quad \lim_{x \to \infty} \varphi(x) = c.$$

Sei nun $x \in \mathbb{R}$ gegeben. Bestimmen Sie $\lim_{t\to\infty} u(t,x)$ in Abhängigkeit von a,b und c.

Aufgabe 7:

Berechnen Sie mittels eines Fourierreihenansatzes (!) eine Lösung $u \in C^2(\overline{\mathbb{R} \times (0,1)})$ des Problems

$$\begin{cases} \partial_t u(t,x) = \partial_x^2 u(t,x) & \text{in } \mathbb{R} \times (0,1), \\ u(t,0) = u(t,1) & \text{für alle } t \in \mathbb{R}, \\ u(0,x) = 3\sin(\pi x) - 4\sin(5\pi x) & \text{für alle } x \in [0,1]. \end{cases}$$

Aufgabe 8:

Sei k>0 und $g\colon\mathbb{R}^3\ni x\mapsto -\frac{1}{4\pi}\frac{\cos(k|x|)}{|x|}$. Zeigen Sie, dass g eine Fundamentallösung des Operators $\Delta+k^2$ id in \mathbb{R}^3 ist, also für jedes $f\in \mathrm{C}^\infty_c(\mathbb{R}^3)$ gilt:

$$u(x) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\cos(k|x-y|)}{|x-y|} f(y) \,\mathrm{d}y$$

löst $(\Delta + k^2)u = f$ (in $\mathcal{S}^*(\mathbb{R}^d)$). Was können Sie über die Regularität von u aussagen?

Aufgabe 9:

Bestimmen Sie ein $\Phi \in \mathcal{S}^*(\mathbb{R}^d)$ mit $\Delta^2 \Phi := \Delta(\Delta \Phi) = \delta_0$ in $\mathcal{S}^*(\mathbb{R}^d)$.

Aufgabe 10:

Sei $d \geq 1$.

- Zeigen Sie, dass $C_c^{\infty}(\mathbb{R}^d)$ in $\mathcal{S}(\mathbb{R}^d)$ dicht liegt (bzgl. der Konvergenz in $\mathcal{S}(\mathbb{R}^d)$).
- In welchem Sinne kann eine Funktion $v \in C_c^{\infty}(\mathbb{R}^d)$ als Element in $\mathcal{S}^*(\mathbb{R}^d)$ aufgefasst werden? Wir sagen, dass $C_c^{\infty}(\mathbb{R}^d)$ in $\mathcal{S}^*(\mathbb{R}^d)$ einbettet. Zeigen Sie, dass diese Einbettung von $C_c^{\infty}(\mathbb{R}^d)$ in $\mathcal{S}^*(\mathbb{R}^d)$ (bzgl. der Konvergenz in $\mathcal{S}^*(\mathbb{R}^d)$) dicht liegt.

Aufgabe 11:

Sei $T \in \mathcal{S}^*(\mathbb{R}^d)$ mit $\Delta T \equiv 0$ in $\mathcal{S}^*(\mathbb{R}^d)$. Zeigen Sie: $T = T_u$ für ein $u \in C^{\infty}(\mathbb{R}^d)$.

Aufgabe 12:

Sei $d \geq 2$. Wir betrachten die Gleichung

$$\begin{cases} \Delta u + \frac{\partial u}{\partial x_d} + u = 0 & \text{auf } \{(x', x_d) \colon x_d > 0\}, \\ u(x', 0) = f(x') & \text{für } x' \in \mathbb{R}^{d-1}, \end{cases}$$

wobei $f \in L^2(\mathbb{R}^{d-1})$. Zeigen Sie, dass es eine Lösung $u \in (C^2 \cap L^2)(\{x_d > 0\})$ dieser Gleichung gibt.

Tipp: Fouriertransformation in x' – fassen Sie x_d als Zeit auf. Nutzen Sie an geeigneter Stelle Ansatzfunktionen $(x', x_d) \mapsto ce^{sx_d}$.

Wir besprechen diese Aufgaben voraussichtlich Ende der ersten Juliwoche.