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DECOUPLINGS AND APPLICATIONS

Ciprian Demeter

Abstract

We describe a Fourier analytic tool that has found a large number of applications
in Number Theory, Harmonic Analysis and PDEs.

1 Introduction

The circle of ideas described in this note have grown inside the framework of restriction
theory. This area of harmonic analysis was born in the late 60s, when Elias Stein has
considered the problem of restricting the Fourier transform of anLp functionF : Rn ! C
to the sphere Sn�1. When p = 1, the Fourier transform is always a continuous function,
its value is well defined at each point. At the other extreme, when p = 2, bF is merely
measurable, so restricting it to a set of Lebesguemeasure zero such asSn�1 is meaningless.
It turns out that the range 1 < p < 2 hosts a completely new phenomenon. A plethora
of restriction-type estimates exist in this range, for a wide variety of curved manifolds
other than the sphere. These are quantified by various operator bounds on the so-called
extension operator, to be introduced momentarily.

A major breakthrough in the analysis of the extension operator came with the discovery
of its relation to the quantitative forms of the Kakeya set conjecture. In one of its simplest
forms, this conjecture asserts that each subset of Rn containing a unit line segment in ev-
ery direction must have full Hausdorff dimension n. This is trivial when n = 1, relatively
easy to prove when n = 2, and wide open for n � 3. The quantitative formulations of
the conjecture involve estimating the overlap of collections of congruent tubes of arbi-
trary orientations. The afore-mentioned extension operator has an oscillatory nature, but
it can be decomposed into pieces which have roughly constant magnitude on appropriate
tubes. Then one can gain valuable information by understanding the worst conspiracies
that tubes can use to maximize their overlap. Using the intuition from the case when tubes
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are replaced with lines can sometimes be helpful, though it has been well documented that
the thickness of the tubes creates significant additional complications.

It turns out that the overlap question is easier to understand if one intersects families of
tubes with very separated directions. This property will be called transversality. A critical
role in the arguments presented in the following is played by the multilinear Kakeya esti-
mate of Bennett, Carbery, and Tao [2006], which proves a sharp bound on the intersection
of n transverse families of tubes. The way to harness the power of multilinear estimates in
order to prove linear ones was explained by Bourgain and Guth in the fundamental paper
Bourgain and Guth [2011].

A built-in feature of any restriction estimate is that of scale. Scales arise by localizing
the operator to spatial balls of finite radius. The operator norms at various scales are
typically compared using a process called induction on scales. A bootstrapping argument
forces these operator norms to only grow mildly with the scale. Sometimes an � removal
argument is available to completely eliminate this dependence. In other cases, such as with
decouplings, finding an � removal mechanism continues to remain a challenge. Parabolic
rescaling and its variants is a key tool that allows moving back and forth between different
scales. This exploits the invariance of the manifold under certain affine transformations
which interact well with the Fourier transform.

We will start by analyzing a few classical exponential sum estimates and will continue
by showing how decouplings lead to new ones. We close by presenting the proof of the
simplest decoupling at critical exponent, an L6 result for the parabola.

2 Stein–Tomas–Strichartz and exponential sum estimates on small
balls

We will denote by e(z) the quantity e2�iz , z 2 R. For F 2 L1(Rn) we recall its Fourier
transform bF (�) =

Z
Rn

F (x)e(�x � �)dx; � 2 Rn:

LetD be an open cube, ball or annulus inRm, 1 � m � n�1. Given a smooth function
 : D ! Rn�m we define the manifold

(1) M = M = f(�;  (�)) : � 2 Dg

and its associated extension operator for f : D ! C

Ef (x) = EMf (x) =

Z
D

f (�)e(x̄ � � + x�
�  (�))d�; x = (x̄; x�) 2 Rm � Rn�m:
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For a subset S � D we will denote E(f 1S ) by ESf . The defining formula shows
that ESf is the Fourier transform of the pullback of the measure fd� from Rm to the
manifold.

Examples of interesting manifolds arising this way include the truncated paraboloid

Pn�1 = f(�1; : : : ; �n�1; �
2
1 + : : :+ �2n�1) : j�i j < 1g;

the hemispheres
Sn�1

˙ = f(�;˙
p
1 � j�j2); j�j < 1g;

the truncated cone
Con�1 = f(�; j�j) : 1 < j�j < 2g

and the moment curve

Γn = f(�; �2; : : : ; �n) : � 2 (0; 1)g:

To provide the reader with some motivation for considering the extension operator, let
Ψ(x̄; t) be the solution of the free Schrödinger equation with initial data g(

2�iΨt = ∆x̄Ψ; (x̄; t) 2 Rn�1 � R

Ψ(x̄; 0) = g(x̄)
:

A simple computation reveals that Ψ(x̄; t) = EPn�1
f (x̄; t), where f = bg. A similar

relation exists between the cone and the wave equation and also between the sphere and
the Helmholtz equation.

The following theorem provides the first wave of restriction estimates that were ever ob-
tained. They are due to Stein and Tomas in the case of the (hemi)sphere, and to Strichartz
in the case of the paraboloid. What makes them special is the fact that the function f is
estimated in L2. The core of the argument relies on the T T � method.

Theorem 2.1 (Stein [1993], Strichartz [1977], Tomas [1975]). Let E be the extension
operator associated with either Sn�1

˙
or Pn�1. Then for each p �

2(n+1)
n�1

and f 2 L2(D)

we have
kEf kLp(Rn) . kf k2:

There is an equivalent way to rephrase this theorem, using a rather standard local to
global mechanism. The resulting inequality is an example of discrete restriction estimate.
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Corollary 2.2. Let M be either Sn�1 or Pn�1. For each R � 1, each collection Λ � M
consisting of 1

R
-separated points, each sequence a� 2 C and each ball BR of radius R in

Rn we have

(2) k
X
�2Λ

a�e(� � x)k
L

2(n+1)
n�1 (BR)

. R
n�1
2 ka�kl2 :

If we introduce the normalized Lp norms

kF kLp

]
(B) := (

1

jBj

Z
B

jF j
p)1/p;

then (2) says that

(3) k
X
�2Λ

a�e(� � x)k
L

2(n+1)
n�1

]
(BR)

. R
n�1

2(n+1) ka�kl2 :

The exponent ofR is sharp, as can be seen by taking a� � 1 andΛ a maximal 1
R
-separated

set.
We will call the scale R of the spatial balls BR the uncertainty principle scale, as it

is the reciprocal of the scale that separates the frequency points �. Since averages over
large balls are controlled by averages over smaller balls, inequality (3) persists if BR is
replaced with BR0 for R0 � R. However, we will see that averaging the exponential sums
over larger spatial balls will lead to improved estimates. This will be a direct consequence
of the new decoupling phenomenon. In short, the waves e(� � x) oscillate in different
directions, and annihilate each other better if they are given more room to interact.

3 A first look at decouplings

Let (fj )Nj=1 be N elements of a Banach space X . The triangle inequality

k

NX
j=1

fj kX �

NX
j=1

kfj kX

is universal, it does not incorporate any possible cancelations between the fj . When
combined with the Cauchy–Schwarz inequality it leads to

k

NX
j=1

fj kX � N
1
2 (

NX
j=1

kfj k
2
X )

1/2:



DECOUPLINGS AND APPLICATIONS 1539

But if X is a Hilbert space (e.g. X = L2(T )) and if fj are pairwise orthogonal (e.g.
fj (x) = e(xj )) then we have a stronger inequality (in fact an equality)

k

NX
j=1

fj kX � (

NX
j=1

kfj k
2
X )

1/2:

We will call such an inequality l2(X) decoupling. It is natural to ask if there is some-
thing analogous in Lp(Rn) when p 6= 2, in the absence of Hilbert space orthogonality.

The answer is yes. Our first example (X = L4[0; 1]) is due to the ”bi-orthogonality”
of the squares. Note that we loseN � (and some loss inN is in fact necessary in this case),
but this will be acceptable in our definition of decoupling.

Theorem 3.1 (Discrete l2(L4) decoupling for squares). For each � > 0, the following
decoupling holds

k

NX
j=1

aj e(j
2x)kL4[0;1] .� N �(

NX
j=1

kaj e(j
2x)k2L4[0;1])

1/2 = N �
kaj kl2 :

Proof. We present the argument in the case aj = 1, the general case requires only minor
modifications. By raising to the fourth power, the left hand side equalsZ 1

0

X
1�ji �N

e((j 2
1 + j 2

2 � j 2
3 � j 2

4 )x)dx =
X

1�j1;j2�N

jf(j3; j4) : j
2
3 + j 2

4 = j 2
1 + j 2

2 gj

.� N 2+�:

The last inequality follows since the equation

j 2
3 + j 2

4 = A

has .� A� solutions, Grosswald [1985].

The second well known example relies on the “multi-orthogonality” of the sequence
2j .

Theorem 3.2 (Discrete Lp decoupling for lacunary exponential sums). For 1 � p < 1

and aj 2 C

k

NX
j=1

aj e(2
jx)kLp [0;1] ∼p (

NX
j=1

kaj e(2
jx)k2Lp [0;1])

1/2 = kaj kl2 :



1540 CIPRIAN DEMETER

These easy examples are of arithmetic structure. We will develop tools that do not
depend on this restriction. The reader will notice that what lies behind both examples is
the fact that there is increasing level of separation between higher frequencies (squares,
powers of 2). We will see that in higher dimensions quasi-uniform separation will suffice,
as long as the frequencies lie on a curved manifold.

We close this section with one of the most important results in classical harmonic analy-
sis, perhaps in the entire mathematics. It is a consequence and a continuous reformulation
of Theorem 3.2.

Theorem 3.3 (Littlewood–Paley theorem). Given f : R ! C, let

Pjf (x) =

Z
Ij

bf (�)e(x�)d�
be its Fourier projection on Ij = [2j ; 2j+1] [ [�2j+1;�2j ], for j 2 Z. Then for each
1 < p < 1

kf kLp(R) ∼p k(
X
j

jPjf j
2)

1
2 kLp(R):

For our purposes, it suffices to note that, when combined with Minkowski’s inequality,
the Littlewood–Paley theorem leads to the following l2(Lp) decoupling on the real line,
for p � 2

kf kLp(R) . (
X
j

kPjf k
2
Lp(R))

1
2 :

4 Fourier analytic decouplings

For a ball (or cube) BR in Rn with center c and radius (side length) R, we will denote by
wBR

(x) a weight of the form (1 + jx�cj

R
)�C , for some large unspecified C . This can be

thought of as being a smooth approximation of 1BR
.

Fix a manifold M = M as in (1) and let f : D ! C. If we partition D into sets �
then we may write

EMf =
X
�

EM
� f:

Roughly speaking, EM
� f (x) has the oscillatory phase e(x � (�� ;  (�� ))), where �� is a

point in � . If M has some curvature, which is the same as saying that  is “far” from
being affine, then there will be lots of cancellations between the components EM

� f (x).
This will be formalized by a Fourier decoupling, which (for now) takes the following
rather vague conjectural form.
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Conjecture 4.1 (Fourier decoupling). Let M be sufficiently curved. Then there is a crit-
ical index pc > 2 and some q � 1 so that for each partition Pı of the domain D into N
“caps” � of “size” ı we have

kEMf kLp(BR) .� ı��(
X
�2Pı

kEM
� f k

2
Lp(wBR

))
1/2 (l2(Lp) decoupling)

or (alternatively)

kEMf kLp(BR) .� ı��N
1
2 � 1

p (
X
�2Pı

kEM
� f k

p

Lp(wBR
))

1/p (lp(Lp) decoupling)

for each ball BR with radius R � ı�q and each 2 � p � pc .

The presence of wBR
on the right hand side is probably necessary, but completely

harmless for applications.
Note that an l2 decoupling always implies an lp decoupling, due to the Cauchy-Schwarz

inequality. However, sometimes the former is false and the latter is true. In most applica-
tions, an lp decoupling is as good as an l2 decoupling.

The shape of the “caps”, the precise meaning of “size” as well as the values of q and of
the critical exponent pc depend on the manifold M. Due to orthogonality considerations,
there is always a decoupling for p = 2, even for flat manifolds (hyperplanes). In this
latter case however, considering f � 1 shows that there is no decoupling outside L2, so
pc = 2.

The formulation of Conjecture 4.1 is vague in many ways. There are interesting exam-
ples of manifolds that are known to simultaneously host different decoupling phenomena,
corresponding to different values of pc , q and for different types of caps. While, as ob-
served in Section 2, restriction inequalities are associated with the uncertainty principle
scale (q = 1), the most genuine decouplings will happen at spatial scales of magnitude
q � 2.

The first to consider a Fourier decoupling was Wolff [2000]. He proved an lp(Lp)
decoupling for the cone Co2 when p > 74, by masterfully combining Fourier analytic
and incidence geometric arguments. In his theorem the caps are thin annular sectors of
dimensions ∼ ı and 1. Wolff also showed that his decoupling has consequences for the
local smoothing of the solutions to the wave equation. Subsequent developments for the
higher dimensional cone and other manifolds, prior to the work we are about the describe
here, have appeared in Łaba and Wolff [2002], Laba and Pramanik [2005], Garrigós and
Seeger [2009], Garrigós and Seeger [2010], Pramanik and Seeger [2007], Bourgain [2013]
and Demeter [n.d.].

The first full range results for any manifold came in our joint work Bourgain and Deme-
ter [2015] with Jean Bourgain.
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Theorem 4.2. Assume M has positive definite second fundamental form (e.g. Sn�1,
Pn�1). For any partition of the domain D into square-like caps � with diameter ı we
have

kEMf kLp(BR) .� ı��(
X
�

kEM
� f k

2
Lp(wBR

))
1/2

as long as R � ı�2 and 2 � p �
2(n+1)
n�1

.

The proof of this for P 1 will be presented in Section 6. Quite surprisingly, we were
able to use this result for Pn�1 as a black box, in order to derive the sharp result for the
cone in all dimensions, thus closing the program initiated by Wolff. Let us get a glimpse
into our argument for Co2. After a rotation, the equation of Co2 can be rewritten as
z = x2

y
. The y-slices are parabolas with roughly the same curvature. This forces small

pieces of the cone to be close to parabolic cylinders. One may combine the decoupling for
the parabola with Fubini in the zero curvature direction to gradually separate the cone into
smaller pieces. This argument is very different from Wolff’s, in that it does not require
any incidence geometry.

Theorem 4.3 (Bourgain and Demeter [2015]). Let M = Con�1 be the cone. For any
partition of the domainD = fj�j ∼ 1g into sectors � with angular width ı we have

kECon�1

f kLp(BR) .� ı��(
X
�

kECon�1

� f k
2
Lp(wBR

))
1/2

as long as R � ı�2 and 2 � p �
2n
n�2

. The range for p is sharp.

Another milestone of decoupling theory was the resolution of curves with torsion, in
collaboration with Bourgain and Guth. More precisely, consider Φ : [0; 1] ! Rn,

Φ(�) = (�1(�); : : : ; �n(�))

with �i 2 C n([0; 1]) and such that the Wronskian W (�0
1; : : : ; �

0
n)(�) is nonzero on [0; 1].

One example is the moment curve Γn. Let EΦ be the associated extension operator.

Theorem 4.4 (Bourgain, Demeter, and Guth [2016]). Partition [0; 1] into intervals � of
length ∼ ı. Then

kEΦf kLp(BR) .� ı��(
X
�

kEΦ
� f k

2
Lp(wBR

))
1/2

as long as R � ı�n and 2 � p � n(n+ 1). The range for p is sharp.
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The proof for Γ2 = P 1 appeared in Bourgain and Demeter [2015], while for n � 3

in Bourgain, Demeter, and Guth [2016]. The extension to the arbitrary Φ with torsion is
explained in Section 4 of Bourgain and Demeter [2017].

Decouplings for a wide variety of other manifolds have been proved in Bourgain and
Demeter [ibid.], Bourgain andDemeter [2016a], Bourgain andDemeter [2016b], Bourgain
[2017], Bourgain, Demeter, and Guo [2017], Demeter, Guo, and Shi [n.d.], Bourgain and
Watt [2017], Bourgain and Watt [n.d.], Guo and Oh [n.d.], and the list is rapidly growing.

5 Applications: Exponential sums on large balls

It turns out that there is a very simple mechanism that allows decouplings to imply expo-
nential sum estimates that are often sharp. Essentially, one applies the decoupling to a
weighted combination of (approximations of) Dirac deltas. In this regard each decoupling
seems to be stronger than the exponential sum estimate it implies, the author is not aware
of any argument that reverses the implication.

Theorem 5.1. Let M = M . Consider a partition Pı as in Conjecture 4.1, with N =

jPı j. Let �� 2 � for each � 2 Pı and let �� = (�� ;  (�� )) be the corresponding point on
M. Then for each 2 � p � pc , a� 2 C and each R � ı�q we have

k
X
�2Pı

a�e(�� � x)kLp

]
(BR) .� ı��

ka�kl2 ;

if the l2 version of the decoupling in Conjecture 4.1 holds true, and

k
X
�2Pı

a�e(�� � x)kLp

]
(BR) .� ı��N

1
2 � 1

p ka�klp ;

if the lp version of the conjecture holds instead.

Proof. Apply the conjecture to functions of the form f (�) =
P
�2Pı

a�1B(�� ;r)(�) and
let r ! 0. The computation is straightforward.

One notable feature of this estimate is that it does not assume anything else about ��
other than the separation guaranteed by the pairwise disjointness of the caps. In particular,
the points need not belong to a rescaled lattice. This is indicative of the fact that our
methods do not involve number theory, and that in fact sometimes they transcend the
barrier that is currently accessible using number theoretic methods.

Let us now consider a few particular cases of interest.
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5.1 Stricharz estimates. An application of Theorem 5.1 to Sn�1 and Pn�1 leads to the
following corollary.

Corollary 5.2. For each R � 1, each collection Λ consisting of 1
R
-separated points on

either Sn�1 or Pn�1 and each ball BR0 of radius R0 � R2 in Rn we have

(4) k
X
�2Λ

a�e(� � x)k
L

2(n+1)
n�1

]
(BR0 )

.� R�ka�kl2 :

Comparing this with (3) shows that large ball averages get smaller.
This corollary leads to sharp Strichartz estimates in the periodic and quasi-periodic case.

More precisely, fix 1
2
< �1; : : : ; �n�1 < 2 either rational or irrational. For � 2 L2(Tn�1)

consider its Laplacian
∆�(x1; : : : ; xn�1) =X

(�1;:::;�n�1)2Zn�1

(�21�1 + : : :+ �
2
n�1�n�1)�̂(�1; : : : ; �n�1)e(�1x1 + : : :+ �n�1xn�1)

on the torus
Qn�1
i=1 R/(�iZ). Let also

ei t∆�(x1; : : : ; xn�1; t) =X
(�1;:::;�n�1)2Zn�1

�̂(�1; : : : ; �n�1)e(x1�1 + : : :+ xn�1�n�1 + t(�
2
1�1 + : : :+ �

2
n�1�n�1))

be the solution of the Schrödinger equation in this context. We have the following result.
When p > 2(n+1)

n�1
, the N � loss can be removed, see Bourgain and Demeter [2015] and

Killip and Vişan [2016].

Theorem 5.3 (Strichartz estimates for rational and irrational tori, Bourgain and Demeter
[2015]). Let � 2 L2(Tn�1) with supp(�̂) � [�N;N ]n�1. Then for each � > 0 and
p �

2(n+1)
n�1

we have

(5) kei t∆�kLp(Tn�1�[0;1]) .� N
n�1
2 �

n+1
p +�

k�k2;

and the implicit constant does not depend on N .

Proof. It suffices to consider the case p = 2(n+1)
n�1

. For �N � �1; : : : ; �n�1 � N define

�i =
�
1/2

i
�i

4N
and a� = �̂(�). A simple change of variables shows thatZ

Tn�1�[0;1]

jei t∆�j
p .
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1

N n+1

Z
jy1j;:::;jyn�1j�8N

yn2I
N2

j
X

�1;:::;�n�1

a�e(y1�1+: : :+yn�1�n�1+yn(�
2
1+: : : �

2
n�1))j

pdy1 : : : dyn;

where IN 2 is an interval of length ∼ N 2. By periodicity in the y1; : : : ; yn�1 variables we
bound the above by

1

N n+1N n�1

Z
BN2

j
X

�1;:::;�n�1

a�e(y1�1+: : :+yn�1�n�1+yn(�
2
1+: : : �

2
n�1))j

pdy1 : : : dyn;

for some ball BN 2 of radius ∼ N 2. Our result will follow once we note that the points

(�1; : : : ; �n�1; �
2
1 + : : : �

2
n�1)

are ∼ 1
N

separated on Pn�1 and then apply Corollary 5.2 with R0 ∼ N 2.

5.2 Diophantine inequalities and the Vinogradov Mean Value Theorem. An appli-
cation of Theorem 5.1 to the moment curve gives the following exponential sum estimate.

Corollary 5.4. For each 1 � i � N , let ti be a point in ( i�1
N
; i
N
]. Then for eachR & N n

and each p � 2 we have

(
1

jBRj

Z
j

NX
i=1

aie(x1ti + x2t
2
i + : : :+ xnt

n
i )j

pwBR
(x)dx1 : : : dxn)

1
p .

(6) .� (N � +N
1
2 (1�

n(n+1)
p )+�)kaikl2(f1;:::;N g);

and the implicit constant does not depend on N , R and ai .

For each 1 � i � N consider some real numbers i � 1 < Xi � i . We do not insist
that Xi are integers. Let SX = fX1; : : : ; XN g. For each s � 1, denote by Js;n(SX ) the
number of solutions of the following system of inequalities

(7) jX i1 + : : :+X
i
s � (X is+1 + : : :+X

i
2s)j � N i�n; 1 � i � n

with Xi 2 SX .

Corollary 5.5. For each integer s � 1 and each SX as above we have that

Js;n(SX ) .� N s+� +N 2s�
n(n+1)

2 +�;

where the implicit constant does not depend on SX .
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Proof. Let � : Rn ! [0;1) be a positive Schwartz function with positive Fourier trans-
form satisfyingb�(�) � 1 for j�j . 1. Define �N (x) = �( x

N
). Using the Schwartz decay,

(6) with ai = 1 implies that for each s � 1

(
1

jBNn j

Z
Rn

�Nn(x)j

NX
i=1

e(x1ti + : : :+ xnt
n
i )j

2sdx1 : : : dxn)
1
2s

(8) .� N
1
2+� +N 1�

n(n+1)
4s +�;

whenever ti 2 [ i�1
N
; i
N
). Apply (8) to ti = Xi

N
. Let now

�N;1(x1; x2; : : : ; xn) = �(
x1

N n�1
;
x2

N n�2
; : : : ; xn):

It suffices to consider the case s = n(n+1)
2

. After making a change of variables and
expanding the product, the termZ

Rn

�Nn(x)j

NX
i=1

e(x1ti + : : :+ xnt
n
i )j

2sdx1 : : : dxn

can be written as the sum over all Xi 2 SX of

N
n(n+1)

2

Z
Rn

�N;1(x)e(x1Z1 + : : :+ xnZn)dx1 : : : dxn;

where
Zi = X i1 + : : :+X

i
s � (X is+1 + : : :+X

i
2s):

Each such term is equal to

N n2b�(N n�1Z1; N
n�2Z2; : : : ; Zn):

Recall that this is always positive, and in fact greater than N n2 at least Js;n(SX ) times. It
now suffices to use (8).

The special case of Corollary 5.5 when Xi = i and the inequalities (7) are replaced
with equalities

X i1 + : : :+X
i
s = X is+1 + : : :+X

i
2s; 1 � i � n

was known as the Main Conjecture in the Vinogradov Mean Value Theorem. The case
n = 2 is very easy, while the case n = 3 was only recently proved by Wooley using the
efficient congruencing method, Wooley [2016]. The case n � 4 was proved for the first
time in Bourgain, Demeter, and Guth [2016].
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6 The proof of the decoupling theorem for the parabola

In this section we prove Theorem 4.2 for the parabola P 1. The argument in higher dimen-
sions is very similar, though technically slightly more complicated. We will denote by E
the extension operator associated with P 1.

It will be more convenient to think of BR as being an arbitrary square (rather than ball)
with side length R in R2. We will often partition big squares into smaller ones.

Form � 0 let Im be the collection of the 2m dyadic subintervals of [0; 1] of length 2�m.
Thus I0 consists of only [0; 1]. Note that each I 2 Im+1 is inside some I 0 2 Im and each
I 0 2 Im has two “children” in Im+1, adjacent to each other.

Define Dec(n; p) to be the smallest constant such that the inequality

kEf kLp(wB4n ) � Dec(n; p)(
X
I2In

kEIf k
2
Lp(wB4n ))

1/2

holds true for each f : [0; 1] ! C. Minkowski’s inequality shows that Dec(n; p) controls
the decoupling on larger squares, too. By that we mean that the inequality

kEf kLp(wBR
) . Dec(n; p)(

X
I2In

kEIf k
2
Lp(wBR

))
1/2

holds for each R � 4n; with the implicit constant in . independent of R.
It will suffice to prove that

(9) Dec(n; p) .�;p 2n�; 2 � p � 6:

The inequality Dec(n; 2) . 1 follows from simple orthogonality reasons. We start by
explaining why the proof of (9) is not quite as immediate as one would wish, when p > 2.
Let Ap be the smallest constant that governs the decoupling into two intervals. In precise
terms, assume

kEf kLp(B) � Ap(kEJ1f k
2
Lp(wB ) + kEJ2f k

2
Lp(wB ))

1/2

holds for each disjoint intervals J1; J2 � R of arbitrary length L � 1 that are adjacent to
each other, each f : J1 [ J2 ! C and for each square B � R2 with side length at least
L�2. One can check that Ap > 1 for p > 2.

Since each I 0 2 Im has two children in Im+1, it is easy to see that

Dec(m+ 1; p) � ApDec(m;p):
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Iterating this, we get the very unfavorable estimate Dec(n; p) � An�1
p Dec(1; p). Indeed,

note that Ap > 1 forces An�1
p � 2n�0 , for some �0 > 0. This shows that we can not

afford to lose Ap each time we go one level up (call this a step). Instead, we are going
to make huge leaps, and rather than going from level m to level m+ 1 at a time, we will
instead go from m to 2m. The choice for the size of this leap is motivated by the fact
that intervals in I2m have length equal to those in Im squared. We have a very efficient
mechanism to decouple from scale ı to ı2, namely the bilinear Kakeya inequality.

Each leap will combine two inequalities. One is a consequence of the bilinear Kakeya,
the other one is a form of L2 orthogonality. The loss for each application of the bilinear
Kakeya is rather tiny, at most nC (compare this with the loss Amp accumulated if instead
we went from level m to 2m in m steps). From I0 to In, we need logn such leaps, so
the overall loss from the repeated use of bilinear Kakeya amounts to nO(logn). This is
easily seen to be O(2n�) for each � > 0, as desired. There is however a price we pay
in our approach: in each leap we only decouple a 1 � �p fraction of the operator. See
Proposition 6.5 for a precise statement.

Here is a sketch of how we put things together, and we will limit attention to the hardest
case p = 6. First, we will do a trivial decoupling (Cauchy-Schwarz) to get from I0 to I n

2s

by loosing only 2O( n
2s ). We will be able to choose s as large as we wish, so this loss will

end up being controlled by 2n� . The transition from I n
2s

to In will then be done in s leaps,
by each time applying Proposition 6.5. Collecting all contributions, an a priori bound of
the form

Dec(n; 6) . 2nA; for some A > 0

will get upgraded to a stronger (assuming s is large enough) bound

Dec(n; 6) . 2n(A(1�
s+1

2s+1 )+ 1
2s�1 ):

Applying this bootstrapping argument will force A to get smaller and smaller, arbitrarily
close to 0.

The leaps are performed using bilinear decouplings, in order to take advantage of the
bilinear Kakeya phenomenon. The fact that there is no serious loss in bilinearization is
proved in Proposition 6.2.

6.1 Parabolic rescaling and linear vs. bilinear decoupling. One of our main tools
will be the following parabolic rescaling, that takes advantage of the affine invariance of
the parabola.

Proposition 6.1. Let I = [t; t + 2�l ] � R be an interval of length 2�l and for n > l let
the collection In(I ) consist of all subintervals of I of the form [t +j 2�n; t +(j +1)2�n],
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with j 2 N. Then for each f supported on I

kEf kLp(wB4n ) . Dec(n � l; p)(
X

J2In(I )

kEJf k
2
Lp(wB4n ))

1/2

Note that the upper bound Dec(n�l; p) is morally stronger than the trivial upper bound
Dec(n; p).

Proof. The proof is a simple applications of affine change of variables. Indeed LI (�) =
2l(� � t) maps In(I ) to In�l and the square B4n to a parallelepiped that can be covered
efficiently with squares B4n�l .

For the rest of the argument let I1 = [0; 1
4
], I2 = [ 1

2
; 1]. Define BilDec(n; p) to be the

smallest constant such that the inequality

kjEf1Ef2j
1/2

kLp(wB4n ) � BilDec(n; p)(
X

I2In(I1)

kEIf1k
2
Lp(wB4n )

X
I2In(I2)

kEIf2k
2
Lp(wB4n ))

1/4

holds true for all f1, f2 supported on I1 and I2, respectively.
It is immediate that

BilDec(n; p) � Dec(n; p):

The next result is some sort of a converse.

Proposition 6.2. For each � > 0

Dec(n; p) .� 2n�(1 +max
m�n

BilDec(m;p)):

Proof. It will suffice to prove that for each k < n

Dec(n; p) . C
n
k (1 + Cknmax

m�n
BilDec(m;p)):

This will instead follow by iterating the inequality

(10) Dec(n; p) � CDec(n � k; p) + Ck max
m�n

BilDec(m;p);

with C independent of n; k. Let us next prove this inequality.
Fix k and let f be supported on [0; 1]. Since

Ef (x) =
X
I2Ik

EIf (x);
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it is not difficult to see that

(11) jEf (x)j � 4max
I2Ik

jEIf (x)j + 2O(k)
X

J1;J22Ik
2J1\2J2=¿

jEJ1f (x)EJ2f (x)j
1/2;

where the sum on the right is taken over all pairs of intervals J1; J2 2 Ik which are not
neighbors. Fix such a pair J1 = [a; a + 2�k ], J2 = [b; b + 2�k ], and let m be a positive
integer satisfying 2�m � b � a < 2�m+1. Since J1; J2 are not adjacent to each other,
we must have m � k � 1. It follows that the affine function T (�) = ��a

2�m+1 maps J1
to a dyadic subinterval of [0; 1

4
] and J2 to a dyadic subinterval of [ 12 ; 1]. Thus, parabolic

rescaling shows that
kjEJ1fEJ2f j

1/2
kLp(wB4n )

. BilDec(n �m+ 1; p)(
X

I2In(J1)

kEIf k
2
Lp(wB4n )

X
I2In(J2)

kEIf k
2
Lp(wB4n ))

1/4

(12) � BilDec(n �m+ 1; p)(
X
I2In

kEIf k
2
Lp(wB4n ))

1/2:

Finally, invoking again Proposition 6.1 we get

kmax
I2Ik

jEIf jkLp(wB4n ) � (
X
I2Ik

kEIf k
2
Lp(wB4n ))

1
2

. Dec(n � k; p)(
X
I2Ik

X
I 02In(I )

kEI 0f k
2
Lp(wB4n ))

1
2

(13) = Dec(n � k; p)(
X
I 02In

kEI 0f k
2
Lp(wB4n ))

1
2 :

Now (10) follows by combining (11), (12) and (13).

6.2 A consequence of bilinear Kakeya. We start by recalling the following bilinear
Kakeya inequality. While this inequality is rather trivial in two dimensions, its higher
dimensional analogs that are needed in order to prove decouplings for the paraboloidPn�1,
n � 3, are more complicated. The multilinear Kakeya inequality was first proved in
Bennett, Carbery, and Tao [2006], and an easier proof appeared in Guth [2015].
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Theorem 6.3. Consider two families T1;T2 consisting of rectangles T in R2 having the
following properties

(i) each T has the short side of length R1/2 and the long side of length equal to R
pointing in the direction of the unit vector vT

(ii) vT1
^ vT2

�
1

100
for each Ti 2 Ti .

We have the following inequality

(14)
Z

R2

2Y
i=1

Fi .
1

R2

2Y
i=1

Z
R2

Fi

for all functions Fi of the form

Fi =
X
T2Ti

cT 1T ; cT 2 [0;1):

The implicit constant will not depend on R; cT ;Ti .

Proof. The verification is immediate using the fact that jT1 \T2j . R whenever Ti 2 Ti .

If I � R is an interval of length 2�l and ı = 2�k with k � l , wewill denote by Partı(I )
the partition of I into intervals of length ı. Recall also that I1 = [0; 1

4
], I2 = [ 1

2
; 1] and

that Lq
]
denotes the average integral in Lq .

The following result is part of a two-stage process. Note that, strictly speaking, this
inequality is not a decoupling, since the size of the frequency intervals Ii;1 remains un-
changed. However, the side length of the spatial squares increases from ı�1 to ı�2. This
will facilitate a subsequent decoupling, as we shall later see in Proposition 6.5.

Proposition 6.4. Let q � 2 and ı < 1. Let B be an arbitrary square in R2 with side
length ı�2, and let B be the unique partition of B into squares∆ of side length ı�1. Then
for each g : [0; 1] ! C we have

(15)
1

jBj

X
∆2B

24 2Y
i=1

(
X

Ii;12Partı(Ii )

kEIi;1
gk

2
L

q

]
(w∆)

)
1
2

35q

(16) . (log(
1

ı
))O(1)

24 2Y
i=1

(
X

Ii;12Partı(Ii )

kEIi;1
gk

2
L

q

]
(wB )

)
1
2

35q :
Moreover, the implicit constant is independent of g; ı; B .
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Proof. Wewill reduce the proof to an application of Theorem 6.3. Indeed, for each interval
J of length ı, the Fourier transform ofEJg is supported inside a 2ı�2ı2-rectangle. This
in turn suggests that jEJgj is essentially constant on ı�1 � ı�2-rectangles dual to this
rectangle. Note that due to the separation of I1 and I2, the rectangles corresponding to
intervals I1;1 � I1, I2;1 � I2 satisfy the requirements in Theorem 6.3 with R = ı�2.

Since we can afford logarithmic losses in ı, it suffices to prove the inequality with
the summation on both sides restricted to families of Ii;1 for which kEIi;1

gkLq

]
(wB ) have

comparable size (within a multiplicative factor of 2), for each i . Indeed, the intervals I 0
i;1

satisfying (for some large enough C = O(1))

kEI 0
i;1
gkLq

]
(wB ) � ıC max

Ii;12Partı(Ii )
kEIi;1

gkLq

]
(wB )

can be easily dealt with by using the triangle inequality, since we automatically have

max
∆2B

kEI 0
i;1
gkLq

]
(w∆) � ıC max

Ii;12Partı(Ii )
kEIi;1

gkLq

]
(wB ):

This leaves only log2(ı�O(1)) sizes to consider.

Let us now assume that we haveNi intervals Ii;1, with kEIi;1
gkLq

]
(wB ) of comparable

size. Since q � 2, by Hölder’s inequality (15) is at most

(17) (

2Y
i=1

N
1
2 � 1

q

i )q
1

jBj

X
∆2B

(

2Y
i=1

(
X
Ii;1

kEIi;1
gk
q

L
q

]
(w∆)

)):

For each I = Ii;1 centered at cI , consider the family FI of pairwise disjoint, mutually
parallel rectangles TI . They have the short side of length ı�1 and the longer side of length
ı�2, pointing in the direction of the normal N (cI ) to the paraboloid P 1 at cI .

The function
FI (x) := kEIgk

q

L
q

]
(wB(x;ı�1))

can be thought of as being essentially constant on rectangles in FI . This can be made
precise, but we will sacrifice a bit of the rigor for the sake of keeping the argument simple
enough. Thus we may write

1

jBj

X
∆2B

Y
i

(
X
Ii;1

kEIi;1
gk
q

L
q

]
(w∆)

) �
1

jBj

Z 2Y
i=1

Fi ;

with Fi (x) =
P
Ii;1

FIi;1
(x).



DECOUPLINGS AND APPLICATIONS 1553

Applying Theorem 6.3 we can dominate the term on the right by

1

jBj2

Y
i

Z
Fi :

Note also that
1

jBj

Z
Fi �

X
Ii;1

kEIi;1
gk
q

L
q

]
(wB )

:

It follows that (17) is dominated by

(18) (

2Y
i=1

N
1
2 � 1

q

i )q
2Y
i=1

(
X
Ii;1

kEIi;1
gk
q

L
q

]
(wB )

):

Recalling the restriction we have made on Ii;1, (18) is comparable to24 2Y
i=1

(
X
Ii;1

kEIi;1
gk

2
L

q

]
(wB )

)1/2

35q ;
as desired.

6.3 The leap: decoupling from scale ı to ı2. To simplify notation, we denote by Br

an arbitrary square in R2 with side length 2r . Given q; r 2 N, t � 2 and g supported in
I1 [ I2 write

Dt (q;B
r ; g) =

�
(

X
I2Iq(I1)

kEIgk
2
Lt

]
(wBr )

)(
X

I2Iq(I2)

kEIgk
2
Lt

]
(wBr )

)
� 1

4 :

For s � r we will denote by Bs(Br) the partition of Br into squares Bs . Define

Ap(q; B
r ; s; g) =

� 1

jBs(Br)j

X
Bs2Bs(Br )

D2(q;B
s; g)p

� 1
p :

Note that when r = s,
Ap(q; B

r ; r; g) = D2(q;B
r ; g):

For p � 4, let 0 � �p � 1 satisfy

2

p
=

1 � �p

2
+
�p

p
;
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that is
�p =

p � 4

p � 2
:

The following result shows how to decouple from scale ı = 2�q to scale ı2. Note also
that only a 1 � �p fraction gets decoupled.

Proposition 6.5. We have for each p � 4, r � q and each g supported in I1 [ I2

Ap(q; B
2r ; q; g) .� ı��Ap(2q;B

2r ; 2q; g)1��pDp(q; B
2r)�p

Proof. By using elementary inequalities, it suffices to prove the proposition for r = q.
By Hölder’s inequality,

kEIgkL2
]
(wBq ) . kEIgk

L
p
2

]
(wBq )

:

Using this and Proposition 6.4 with ı = 2�q we can write
(19)
Ap(q;B

2q; q; g) .� ı��[(
X

I2Iq(I1)

kEIgk
2

L
p
2

]
(wB2q )

)(
X

I2Iq(I2)

kEIgk
2

L
p
2

]
(wB2q )

)]
1
4 :

Using Hölder’s inequality again, we can dominate this by

ı��[(
X

I2Iq(I1)

kEIgk
2
L2

]
(wB2q )

)(
X

I2Iq(I2)

kEIgk
2
L2

]
(wB2q )

)]
1��p

4

�[(
X

I2Iq(I1)

kEIgk
2
L

p

]
(wB2q )

)(
X

I2Iq(I2)

kEIgk
2
L

p

]
(wB2q )

)]
�p
4 :

To further process the first term we invoke L2 orthogonality for each I 2 Iq

kEIgk
2
L2

]
(wB2q )

.
X

J2I2q(I )

kEJgk
2
L2

]
(wB2q )

:

6.4 Putting everything together. We will now prove inequality (9). It will suffice to
work with n = 2u, u 2 N.

Iterating Proposition 6.5 s times leads to the following multi-scale inequality, for each
p � 4.

Proposition 6.6. For each g supported on I1 [ I2 and s � u we have

Ap(
n

2s
; B2n;

n

2s
; g) .s;� 2�snAp(n;B2n; n; g)(1��p)s

sY
l=1

Dp(
n

2l
; B2n; g)�p(1��p)s�l

:
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Via one application of Cauchy–Schwarz we see that

kjEf1Ef2j
1/2

kLp

]
(B2n) = (

1

jB n
2s
(B2n)j

X
B2B n

2s
(B2n)

kjEf1Ef2j
1/2

k
p

L
p

]
(B)

)1/p

� 2
n

2s+1 [
1

jB n
2s
(B2n)j

X
B2B n

2s
(B2n)

(
X

I2I n
2s

(I1)

kEIf1k
2
L

p

]
(B)

X
I2I n

2s
(I2)

kEIf2k
2
L

p

]
(B)

)p/4]1/p

holds true for all f1, f2 supported on I1 and I2, respectively.
At this point we need to invoke the following reverse Hölder’s inequality

(20) kEIfikLp

]
(B) . kEIfikL2

]
(B);

for each square B with side length 2
n
2s and each I of length 2� n

2s . This is a consequence
of the fact that jEIfi j is essentially constant on B .

We conclude as follows.

Proposition 6.7. The inequality

kjEf1Ef2j
1/2

kLp

]
(B2n) � 2

n
2s+1 Ap(

n

2s
; B2n;

n

2s
; g)

holds true when f1, f2 are the restrictions of g to I1, I2, respectively.

To combine the last two propositions, we need one more inequality, a consequence of
Proposition 6.1.

Proposition 6.8. For each l � u

Dp(
n

2l
; B2n; g) . Dec(n �

n

2l
; p)Dp(n;B

2n; g):

The following result is now rather immediate.

Theorem 6.9. Assume f1, f2 are the restrictions of g to I1 and I2, respectively. Then for
each s � u

kjEf1Ef2j
1/2

kLp

]
(B2n) .s;� 2�sn2

n
2s+1Dp(n;B

2n; g)

sY
l=1

Dec(n �
n

2l
; p)�p(1��p)s�l

Proof. Using Hölder and Minkowski’s inequality in l
p
2 we find that

Ap(n;B
2n; n; g) . Dp(n;B

2n; g):

Combine this with the previous three propositions.
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Since this inequality holds for arbitrary gwe can take the supremum to get the following
inequality.

Corollary 6.10. For each s � u

BilDec(n; p) .s;� 2�sn2
n

2s+1

sY
l=1

Dec(n �
n

2l
; p)�p(1��p)s�l

:

We are now ready to finalize the proof of inequality (9). Take p = 6, and note that
�6 = 1

2
. The case p < 6 would follow very similarly since �p < 1

2
.

We will use a bootstrapping argument. Assume Dec(n; 6) . 2nA holds for someA and
all n. For example, it is easy to see that A = 1

2
works. We will show that a smaller value

of A always works, too. Corollary 6.10 implies that for each s and each n

BilDec(n; 6) .s 2n(Acs+
1
2s );

where

cs =

sX
l=1

(1 �
1

2l
)

1

2s�l+1
= 1 �

s + 1

2s+1
:

Combining this with Proposition 6.2 we may write

(21) Dec(n; 6) .s 2n(Acs+
1

2s�1 ):

Define
A := fA > 0 : Dec(n; 6) . 2nAg

and let A0 = infA. Note that A is either (A0;1) or [A0;1). We claim that A0 must be
zero, which will finish the proof of our theorem. Indeed, if A0 > 0 then

Acs +
1

2s�1
< A0

for some A 2 A sufficiently close to A0 and s sufficiently large. This combined with (21)
contradicts the definition of A0.
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