Evaluation of an integral

Dr. E. Assing

The goal of this note is to prove the integral identity contained in the following lemma.
Lemma 1. For $n \in \mathbb{N} \cup\{0\}, \Re(\nu)>-\frac{1}{2}$ and $a>0$ we have

$$
\int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} C_{n}^{(\nu)}\left(\frac{x}{a}-1\right) e^{-b x} d x=(-1)^{n} 2 \pi \frac{\Gamma(2 \nu+n)}{n!\Gamma(\nu)}\left(\frac{a}{2 b}\right)^{\nu} e^{-a b} I_{\nu+n}(a b) .
$$

Here $C_{n}^{(\nu)}(z)$ is the Gegenbauer Polynomial (see [3, 8.930]) and $I_{\lambda}(z)$ is the usual I-Bessel function (see [3, 8.406]).

Remark 1. Note that for $n=0$ we have $C_{0}^{(\nu)}(z)=1$ and

$$
2 \pi \frac{\Gamma(2 \nu)}{\Gamma(\nu)}=\sqrt{\pi} 2^{2 \nu} \Gamma\left(\nu+\frac{1}{2}\right) .
$$

The latter is a well known duplication formula for the Γ-function. Thus for $n=0$ we recover

$$
\begin{align*}
\int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} e^{-b x} d x & =2 \pi \frac{\Gamma(2 \nu)}{\Gamma(\nu)}\left(\frac{a}{2 b}\right)^{\nu} e^{-a b} I_{\nu}(a b) \tag{1}\\
& =\sqrt{\pi} \Gamma\left(\nu+\frac{1}{2}\right)\left(\frac{2 a}{b}\right)^{\nu} e^{-a b} I_{\nu}(a b) .
\end{align*}
$$

This agrees with [3, 3.388.1] (with $\nu \rightsquigarrow \nu+\frac{1}{2}, u=a$ and $\mu=b$). However, the evaluation provided in Lemma 1 differs from [3, 7.322] by a factor of 2. This is exactly the factor by which [3, 7.322] differs from [3, 3.388.1] when specialised to $n=0$.

This mistake seems to go back to [1, 4.11.(9) (p.171)]. The same issue manifests itself in [1, 5.15.(6)] after taking the Inverse Laplace Transform. Indeed, when specialising [1, 5.15.(6)] to $n=0$ it differs from [1, 5.15.(5)] by the same factor of 2 .
Corollary 1. For $n \in \mathbb{N} \cup\{0\}, \Re(\nu)>-\frac{1}{2}$ and $a>0$ we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{(c)} z^{-\nu} I_{\nu+n}(a z) e^{x z} d z \\
& \quad=\mathbb{1}_{(-a, a)}(x) \cdot(-1)^{n} \frac{n!\Gamma(\nu)}{2 \pi \Gamma(2 \nu+n)} \cdot\left(\frac{2}{a}\right)^{\nu} \cdot\left(a^{2}-x^{2}\right)^{\nu-\frac{1}{2}} \cdot C_{n}^{(\nu)}\left(\frac{x}{a}\right)
\end{aligned}
$$

Our formula is consistent with [1, 5.15(5) (p.277)] when specialised to $n=0$ but differs from [1, 5.15(6) (p.277)] by a factor of $\frac{1}{2}$.
Proof. This follows directly from Lemma 1 after taking the Inverse Laplace Transform.

Preliminaries

We will derive Lemma 1 from (1) using a recursive relation for the Gegenbauer Polynomials. It seems fair to take (1) for granted as it is a classical integral representation for $I_{\nu}(z)$ and is given in [3, 3.388.1]. (One can also verify (1) using Mathematica for example.)

For the record we state the following version of (11):

$$
\begin{equation*}
\int_{-1}^{1}\left[1-x^{2}\right]^{\nu-\frac{1}{2}} e^{-b x} d x=2 \pi \frac{\Gamma(2 \nu)}{\Gamma(\nu)}(2 b)^{\nu} I_{\nu}(b) . \tag{2}
\end{equation*}
$$

Indeed this follows from (1) when setting $a=1$ and changing variables $x \mapsto x+1$.
Finally we need the recursion

$$
\begin{equation*}
\left(1-x^{2}\right)^{\nu-\frac{1}{2}} C_{n+1}^{(\nu)}(x)=-\frac{2 \nu}{(n+1)(n+2 \nu+1)} \cdot \frac{d}{d x}\left[\left(1-x^{2}\right)^{\nu+\frac{1}{2}} C_{n}^{(\nu+1)}(x)\right] \tag{3}
\end{equation*}
$$

The latter follows directly from [2, 18.9(iii)] (see http://dlmf.nist.gov/18. 9.E20).

Note that we have already used the well known (see [3, 8.335.1]) duplication formula

$$
2 \sqrt{\pi} \frac{\Gamma(2 s)}{\Gamma(x)}=2^{2 x} \Gamma\left(x+\frac{1}{2}\right) .
$$

We will also make use of the simple formula

$$
\frac{x}{\Gamma(x+1)}=\frac{1}{\Gamma(x)}
$$

given by [3, 8.331.1].

Proof of Lemma 1

We first compute the following simpler integral.
Lemma 2. For $n \in \mathbb{N} \cup\{0\}, \Re(\nu)>-\frac{1}{2}$ and $a>0$ we have

$$
\int_{-1}^{1}\left[1-x^{2}\right]^{\nu-\frac{1}{2}} C_{n}^{(\nu)}(x) e^{-b x} d x=(-1)^{n} 2 \pi \frac{\Gamma(2 \nu+n)}{n!\Gamma(\nu)}(2 b)^{-\nu} I_{\nu+n}(b) .
$$

Proof. Note that, if $n=0$, the statement is given in (22). Thus we can proceed by induction and assume that the integral has been computed for some $n \in \mathbb{N} \cup\{0\}$ and arbitrary ν with $\Re(\nu)>-\frac{1}{2}$.

For notational sake we write

$$
\begin{aligned}
f_{n}^{\nu}(x) & =\left(1-x^{2}\right)^{\nu-\frac{1}{2}} C_{n}^{\nu}(x) \text { and } \\
a_{n+1, \nu} & =-\frac{2 \nu}{(n+1)(n+2 \nu+1)}
\end{aligned}
$$

With this notation (3) reads

$$
f_{n+1}^{\nu}=a_{n+1, \nu} \cdot \frac{d}{d x} f_{n}^{\nu+1}(x)
$$

and we rewrite our integral as

$$
\int_{-1}^{1}\left[1-x^{2}\right]^{\nu-\frac{1}{2}} C_{n+1}^{(\nu)}(x) e^{-b x} d x=a_{n+1, \nu} \cdot \int_{-1}^{1} e^{-b x} \frac{d}{d x} f_{n}^{\nu+1}(x) d x
$$

Notice that $f_{n}^{\nu+1}(\pm 1)=0$, so that integration by parts yields

$$
\begin{aligned}
\int_{-1}^{1}\left[1-x^{2}\right]^{\nu-\frac{1}{2}} C_{n+1}^{(\nu)}(x) e^{-b x} d x & =u \cdot a_{n+1, \nu} \cdot \int_{-1}^{1} e^{-b x} f_{n}^{\nu+1}(x) d x \\
& =b \cdot a_{n+1, \nu} \cdot \int_{-1}^{1}\left[1-x^{2}\right]^{\nu+\frac{1}{2}} C_{n}^{(\nu+1)}(x) e^{-b x} d x \\
& =b \cdot a_{n+1, \nu} \cdot(-1)^{n} 2 \pi \frac{\Gamma(2 \nu+n+2)}{n!\Gamma(\nu+1)}(2 b)^{-\nu-1} I_{\nu+n+1}(b) \\
& =(-1)^{n+1} 2 \pi \frac{\Gamma(2 \nu+n+1)}{(n+1)!\Gamma(\nu)}(2 b)^{-\nu} I_{\nu+n+1}(b)
\end{aligned}
$$

This concludes the induction step and we are done.
Proof of Lemma 1: The remaining task is to reduce the statement of Lemma 1 to Lemma 2 by suitable changes of variables. Indeed we compute

$$
\begin{aligned}
\int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} C_{n}^{(\nu)}\left(\frac{x}{a}-1\right) e^{-b x} d x & =a^{2 \nu} \int_{0}^{2}[x(2-x)]^{\nu-\frac{1}{2}} C_{n}^{(\nu)}(x-1) e^{-a b x} d x \\
& =a^{2 \nu} e^{-a b} \int_{-1}^{1}\left[1-x^{2}\right]^{\nu-\frac{1}{2}} C_{n}^{(\nu)}(x) e^{-a b x} d x .
\end{aligned}
$$

Now we apply Lemma 2 and get

$$
\begin{aligned}
\int_{0}^{2 a}[x(2 a-x)]^{\nu-\frac{1}{2}} C_{n}^{(\nu)}\left(\frac{x}{a}-1\right) e^{-b x} d x & =a^{2 \nu} e^{-a b} \cdot(-1)^{n} 2 \pi \frac{\Gamma(2 \nu+n)}{n!\Gamma(\nu)}(2 a b)^{-\nu} I_{\nu+n}(a b) \\
& =(-1)^{n} 2 \pi \frac{\Gamma(2 \nu+n)}{n!\Gamma(\nu)}\left(\frac{a}{2 b}\right)^{\nu} e^{-a b} I_{\nu+n}(a b) .
\end{aligned}
$$

This is the desired formula and we are done.

References

[1] Harry Bateman, Tables of integral transforms [volumes i \& ii], vol. 1, McGraw-Hill Book Company, 1954.
[2] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.1 of 2021-03-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
[3] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, seventh ed., Elsevier/Academic Press, Amsterdam, 2007, Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010

