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Abstract

In this work, we study topological properties of surface bundles, with an emphasis
on surface bundles with a spin structure.
We develop a criterion to decide whether a given manifold bundle has a spin structure
and specialize it to surface bundles.
We study examples of surface bundles, in particular sphere and torus bundles and
surface bundles induced by actions of finite groups on Riemann surfaces. The exam-
ples are used to show that the obstruction cohomology class against the existence of
a spin structure is nonzero.
We develop a connection between the Atiyah-Singer index theorem for families of
elliptic operators and the modern homotopy theory of moduli spaces of Riemann
surfaces due to Tillmann, Madsen and Weiss.
This theory and the index theorem is applied to prove that the tautological classes
of spin surface bundles satisfy certain divisibility relations. The result is that the
divisibility improves, compared with the non-spin-case, by a certain power of 2. The
explicit computations for sphere bundles are used in the proof of the divisibility re-
sult.
In the last chapter, we use actions of certain finite groups to construct explicit tor-
sion elements in the homotopy groups of the mapping class and compute their order,
which relies on methods from algebraic K-theory and on the Madsen-Weiss theorem.



Contents

1 Introduction 6

2 Generalities on surface bundles 15

2.1 Complex structures on surfaces and the diffeomorphism group . . . . . . . 15
2.2 Surface bundles and bundles of Riemann surfaces . . . . . . . . . . . . . . 17
2.3 Characteristic classes of surface bundles . . . . . . . . . . . . . . . . . . . . 18
2.4 The Hodge bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Comparison with algebraic geometry . . . . . . . . . . . . . . . . . . . . . 24

3 Spin structures on manifold bundles 27

3.1 Spin structures on vector bundles . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Spin structures on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Spaces of Spin structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Spin structures on fiber bundles . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 When does a smooth fiber bundle have a spin structure? . . . . . . . . . . 36

4 Spin structures on surface bundles 38

4.1 Spin structures on surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 The spin mapping class group . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Some examples 45

5.1 Finite group actions and the nontriviality of the obstruction class . . . . . 45
5.2 Sphere bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Torus bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 The stable homotopy theory of Riemann surfaces 55

6.1 The Becker-Gottlieb-Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 The pushforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 The universal Becker-Gottlieb transfer . . . . . . . . . . . . . . . . . . . . 58
6.4 Relation to bordism theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 The theorems of Tillmann, Madsen and Weiss . . . . . . . . . . . . . . . . 62
6.6 Miscellaneous calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.7 The Atiyah-Singer index theorem . . . . . . . . . . . . . . . . . . . . . . . 66
6.8 Examples for the index theorem . . . . . . . . . . . . . . . . . . . . . . . . 67
6.9 From the Mumford conjecture to the Madsen-Tillmann map . . . . . . . . 69
6.10 The Madsen-Tillmann-diagram . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Divisibility of MMM-classes for spin surface bundles 73

7.1 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 The even classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 The odd classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4



8 The icosahedral group and π3(BΓ+
∞) 77

8.1 The icosahedral group and the Poincaré sphere . . . . . . . . . . . . . . . . 77
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1 Introduction

In the last decades, the theory of Riemann surfaces and their moduli spaces has seen a
rapid development. In particular, there is now an elaborate homotopy theory of moduli
spaces of Riemann surfaces.
This homotopy theory of moduli spaces is based on Teichmüller theory. Teichmüller theory
tells us that the moduli space Mg of conformal equivalence classes of Riemann surfaces of
genus g is the quotient of a space Tg homeomorphic to C3g−3 by the action of the map-
ping class group Γg. This is the group of connected components of Diff(Mg), the group
of orientation-preserving diffeomorphisms of a surface of genus g. The action is properly
discontinuous and has finite isotropy groups. As a consequence, Mg and the classifying
space BΓg are rationally homology equivalent.
But the connection between the object Mg from complex analysis and the diffeomorphism
group Diff(Mg) from differential topology is much stronger. It comes from a very special
property of 2-dimensional manifolds. Any oriented surface M has a complex structure,
but there is a more global statement. The space S(M) of all complex structures on M is
actually contractible. As a consequence, Earle and Eells proved in 1969 that the unit com-
ponent of the diffeomorphism group is contractible. Thus, Diff(M) and Γg are the same
thing for the eyes of a topologist. Another, simpler, consequence of the contractibility of
S(M) is the following. The topological group Diff(M) appears as the structural group of
oriented smooth surface bundles ; and the contractibility of S(M) shows that on any sur-
face bundle E → B, we can find complex structures on the fibers which vary continuously.
Moreover, all these complex structures are concordant.
The next important and much deeper step towards the homotopical theory of moduli spaces
was Harer’s stability theorem. For this, one needs to introduce mapping class groups Γg,n

for surfaces of genus g with n boundary components. There are stabilization maps between
these mapping class groups given by boundary connected sum (for more details, see 6.5).
Then the homology groups Hk(BΓg,n) and thus Hk(BDiff(Mg)) do not depend on g and
n, as long as g is large enough compared to k.
Based on Harer stability, Ulrike Tillmann proved a very strong theorem. The mapping
class groups Γg and Γg,n are perfect; and one can form the infinite mapping class group
Γ∞,n, as the colimit over all stabilization maps. One can apply Quillen’s plus construc-
tion to BΓ∞,n. The result is a simply connected space BΓ+

∞,n and a homology equivalence
BΓ∞,n → BΓ+

∞,n. Because of Harer stability, the homotopy type of BΓ+
∞,n does not depend

on n and will be abbreviated by BΓ+
∞.

Tillmann’s theorem states that Z × BΓ+
∞ is an infinite loop space. In other words, there

exists a connective spectrum and whose infinite loop space is homotopy equivalent to
Z ×BΓ+

∞.
Later, Madsen and Weiss identified this spectrum. There exists a certain Thom spectrum
GSO

−2 and a homotopy equivalence α : Z × BΓ+
∞ → Ω∞GSO

−2 , which is a Pontryagin-Thom
type construction.
The most important ingredient for the proof of the Madsen-Weiss Theorem is Harer’s sta-
bility theorem.
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Harer, Bauer and Galatius have proven analogous results for surfaces with spin structures,
which are one of the main topics of the present work. Now I turn to the results of this
dissertation.

Chapter 2: Chapter 1 is this introduction and chapter 2 provides the necessary back-
ground from the theory of moduli spaces and mapping class groups, except for the modern
homotopy theory of moduli spaces, which is described in chapter 6. I describe in detail
the connection between the differential topology of surface bundles and the moduli spaces,
which are objects of complex geometry (2.1, 2.2, 2.5). I give a proof of the folklore state-
ment that the classifying space BΓg of the mapping class group and the moduli space Mg

of Riemann surfaces are rationally homology equivalent (Theorem 2.5.2).
In section 2.3, I give the definition of the most important characteristic cohomology
classes of surface bundles. There are the Morita-Miller-Mumford classes (or MMM-classes
for shortness) κn ∈ H2n(BDiff(M); Z) (see Definition 2.3.1) and the symplectic classes
γn ∈ H2n(BDiff(M); Z) (see Definition 2.3.8) for any oriented closed surface M .
In section 2.4, I describe an important series of vector bundles on the moduli spaces of
Riemann surfaces, or rather on BDiff(M), the so-called Hodge bundles Vn, n ∈ N. They
can be viewed as the vector bundles of holomorphic n-differentials when one chooses a
complex structure on the fibers of the universal surface bundle.

Chapter 3: We carry out the preparations for the discussion of spin structures on surface
bundles. We study more generally spin structures on arbitrary manifold bundles. After a
brief discussion of spin structures on vector bundles (section 3.1) and manifolds (section
3.2), we discuss two important questions:

Questions 1.0.1. 1. What should the space of all spin structures on M be?

2. What is the ”correct” space of automorphisms of a manifold with spin structure?

We address both questions in section 3.3, and we do it in a uniform way. Namely, we
construct both spaces as classifying spaces of a groupoid. The first groupoid is SPIN(M)
and its classifying space is the space of all spin structures. The second groupoid is Sdiff(M),
which has the same objects as SPIN(M), but there are much more morphisms, namely, all
spin diffeomorphisms of M . One should think that B Sdiff(M) is the space of all spin mani-
folds diffeomorphic to M and that BDiff(M) is the space of all manifolds diffeomorphic
to M . Thus one expects a fiber sequence

3.3.9.

BSPIN(M) → B Sdiff(M) → BDiff(M);

which is indeed true. In order to answer the question whether a manifold bundle classified
by a map B → BDiff(M) admits a spin structure, the fiber sequence 3.3.9 is not suitable.
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One cannot apply obstruction theory in a reasonable way, because the situation is too
non-Abelian. We need an auxiliary fiber sequence, which is related to the first one by the
diagram

3.3.9. RP∞ //

²²

BSPIN(M)

²²
B Sdiff(M,σ)

²²

// B Sdiff(M)

²²
BDiff(M,σ) // BDiff(M),

where Diff(M,σ) is the group of all diffeomorphisms of M which fix the given spin structure
σ. We stress that this group and its classifying space play a purely auxiliary role. The
bottom horizontal map is a finite covering, and the question whether a lift exists is group-
theoretical and cannot be addressed by cohomological methods. But the left-hand side
fibration is simple and the obstruction theory behaves nicely. The fibration is classified by
a cohomology class c ∈ h2(BDiff(M,σ); F2) and we will prove:

Corollary 3.5.5. Let E → B be a smooth M-bundle, classified by a map λ : B →
BDiff(M) such that its monodromy ρ = π1(Bλ) : π1(B) → π0(Diff(M)) fixes σ. Then the
following statement holds.
There exists a spin structure on the fiber bundle E extending φ∗σ if and only if the mono-
dromy homomorphism takes values in π0(Diff(M,σ) and λ∗c = 0 ∈ H2(B; F2).

The two obvious questions which arise from this statement are:

Questions 1.0.2. 1. Is the cohomology class c nontrivial, i.e. is the group extension
Z/2 → Sdiff(M,σ) → Diff(M,σ) nontrivial?

2. Can one express the cohomology class c in terms of more familiar classes?

Chapter 4: The whole theory in chapter 3 is valid for manifolds of arbitrary dimension,
but in chapter 4, we turn to surfaces. I will review the results of Atiyah and Johnson on
spin structures on surfaces in section 4.1. The most important thing about spin structures
on surfaces is the existence of the Atiyah-invariant (see Definition 4.1.2) of a spin structure.
It takes values in F2 and divides the spin structures into the even ones and the odd ones.
There are two definitions, one using index theory and the other one using elementary
differential topology and linear algebra over F2. We give an easy new proof of Atiyah’s
theorem that any diffeomorphism of a surface fixes a spin structure (Corollary 4.1.21). In
the section 4.2, we apply the general theory of chapter 3 to surfaces. The main result of
this short section is

Proposition 4.2.2. Let M be an oriented surface of genus g ≥ 2.

1. B Sdiff(M) has two connected components B Sdiff(M)+ and B Sdiff(M)− belonging
to the different values of the Atiyah invariant.
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2. Both components are aspherical if g ≥ 2.

3. The fundamental group Γ̂ε
g := π1(B Sdiff(M)ε) is a central Z/2-extension of Γ(M,σ),

where σ is a spin structure with Atiyah invariant ε ∈ {±1}.

The groups Γ̂ε
g are the spin mapping class groups. We do not study spin mapping class

groups of surfaces with boundary. They are studied for example in [8] and are extremely
important for the development of the homotopy theory of spin surface bundles. On the
other hand, we shall only use the results and for this use, we do not need the mapping
class groups with boundary explicitly.

Chapter 5: The purpose of this chapter is twofold. I will introduce another theme of
this work, the application of finite group actions on surfaces to the topological theory of
moduli spaces. Finite group actions on surfaces were employed by several authors, who
achieved some progress: Glover and Mislin detected torsion classes in the cohomology
of BΓg; Kawazumi, Akita, Uemura gave a new and elementary proof of the algebraic
independence of the Morita-Mumford classes. Even more recently, Galatius, Madsen and
Tillmann used finite group actions to prove that some divisibility properties of the Morita-
Mumford classes are optimal (see below).
If G is a finite group M a Riemann surface G y M a group action, we can study the
surface bundle E(G;M) := EG ×G M → BG and can ask whether there exists a spin
structure on E(G;M). The answer is simple and general:

Theorem 5.1.1. Let G be a finite group which acts faithfully on a closed surface M .
Then the induced surface bundle E(G;M) is spin if and only if all 2-Sylow-subgroups act
freely on M .

We use Theorem 5.1.1 to show that c is nonzero.

The remaining sections 5.2 and 5.3 of chapter 5.1 are devoted to the study of the ex-
ceptional genera g = 0 and g = 1. It is well-known that any S2-bundle is the sphere bundle
of a 3-dimensional oriented vector bundle, which is unique up to isomorphism. In other
words, Diff(S2) ' SO(3). We study the extension 3.3.9 for M = S2:

Proposition 5.2.2. In the diagram below, all horizontal maps are homotopy equivalences.

Z/2

²²

Z/2

²²

Z/2

²²
SU(2) //

²²

SL2(C) //

²²

Sdiff(S2, σ0)

²²
SO(3) // P SL2(C) // Diff(S2),

9



where σ0 is the unique spin structure on S2. Using this, we can express the spin condition
for S2-bundles in more familiar terms.

Proposition 5.2.3. Let π : E → B be an S2-bundle and let V → B be a 3-dimensional
vector bundle whose sphere bundle is E. Then the following conditions are equivalent.

1. E has a spin structure.

2. V is a spin vector bundle.

3. There exists a 2-dimensional complex vector bundle U → B, such that E is isomor-
phic to the projective bundle PU → B and such that c1(U) = 0.

Because of 1 and 2, the class c ∈ H2(BDiff(S2),F2) ∼= H2(B SO(3); F2) ∼= F2 agrees with
w2.

Then we calculate the characteristic classes of S2-bundles in terms of the characteristic
classes of related vector bundles (Propositions 5.2.4, 5.2.5 and 5.2.6).
We also do calculations for torus bundles. Besides the calculation of the characteristic
classes for torus bundles, the main result of section 5.3 is

Corollary 5.3.12. A torus bundle has an odd spin structure if and only if γ1 = 0 (mod 2).

Chapter 6: This chapter introduces the modern homotopy theory of moduli spaces af-
ter Tillmann, Madsen and Weiss. This theory is centered around the Madsen-Tillmann
spectrum GSO

−2 and a map α from the classifying space of the stable mapping class group
Z ×BΓ∞ to the infinite loop space Ω∞GSO

−2 . The map α is a homology equivalence by the
Madsen-Weiss theorem.
Our focus is on a close connection of the map α with the index theory of families of Cauchy-
Riemann operators.
In the first four sections of chapter 6, we develop the general theory. Section 6.1 explains
the Becker-Gottlieb transfer and section 6.2 the relation with pushforward (alias umkehr
maps) in cohomology. Both things are classical and the only purpose of these sections
is to have the definitions and important properties at hand. Section 6.3 introduces the
Madsen-Tillmann spectra GF

−d in a general context. In section 6.4, we explain the con-
nection between the Madsen-Tillmann spectra and the classical Thom spectra, which is
employed for many computations. Section 6.5 is a short survey on the results of Harer,
Madsen, Tillmann and Weiss and a few other people. We also consider the case of spin
surfaces. In section 6.6, we give a few computations which are used at several places in
this dissertation.
In section 6.7, we show how the Atiyah-Singer index theorem for families of elliptic diffe-
rential operators fits into this context. In fact, we concentrate on Dolbeault operators on
bundles of Riemann surfaces. Section 6.8 shows a few examples and in the final section
6.9, we show how the Madsen-Tillmann map naturally arises from Mumfords conjecture
and index theory.

10



Chapter 7 It is a classical topic in the theory of characteristic classes that the presence of
spin structures improves the divisibility of characteristic numbers. Let us discuss a simple
example. Consider an oriented closed 4-manifold M . By Hirzebruch’s signature theorem,
the signature of M equals 1

3
〈p1(TM), [M ]〉. Since the signature is an integer, it follows that

p1(TM) is divisible by 3. On the other hand, the signature of CP2 is 1 and the divisibility
is optimal for oriented 4-manifolds. Rochlin’s theorem ([31], p. 288) gives an improvement
of this for spin manifolds. More specifically, if M has a spin structure, then the signature
is divisible by 16 or the first Pontryagin class is divisible by 48. A proof can be given using
the Atiyah-Singer theorem. If M is spin, then there exists the Dirac operator 6D, an elliptic
differential operator whose index is 1

24
〈p1(TM); [M ]〉. Thus the signature is divisible by 8.

The last power of 2 is encoded in the algebraic symmetries of the Dirac operator. Namely,
there exists a parallel quaternionic structure on the spinor bundles, whence the index is
an even number (compare [31], p. 288). This divisibility of the signature of 4-dimensional
spin manifolds is optimal: a K3-surface has signature 16.
In the chapter 7, we prove divisibility theorems for the characteristic classes κn of surface
bundles of a similar spirit.

Proposition 7.2.2. For a spin surface bundle, κn is divisible by 2n+1. This holds even
integrally.

For the rest of the discussion, we have to distinguish between even and odd values of n.
Let us first consider the even classes κ2n.

Theorem 7.2.3. For spin surface bundles, the class κ2n is not divisible by any nontrivial
multiple of 22n+1. This holds in the stable range for spin mapping class groups.

The condition on the stable range has the following reason. If the genus is not large enough,
then all Morita-Mumford classes vanish, and they are divisible by any number. Thus the
genus must be large enough to make sense out of this statement.
Our proof consists of two steps. First, we use the calculations of section 5.2 to prove that
κ2n of the universal sphere bundle with spin structure is not divisible by 22n+2. This is
not in the stable range, but can be used to prove results in the stable range. The second
step uses the Madsen-Weiss theorem to reduce the statement about the cohomology of
Ω∞GSpin

−2 . Theorem 7.2.3 means that the reduction of κ2n modulo 22n+2 is nonzero and this

can be proven using the classifying map HP∞ → Ω∞GSpin
−2 of the universal S2-bundle with

spin structure.
For the odd Morita-Mumford classes, there is an old divisibility theorem by Morita ([38]).
It says that the denominator of the Bernoulli numbers den(Bn

2n
) divides κ2n−1 for any

oriented surface bundle. Recently, Galatius, Madsen and Tillmann ([18]) proved that this
is optimal. Here we prove

Theorem 7.3.1. For spin surface bundles, the class κ2n−1 is divisible by 22n den(Bn

2n
).

The proof of Theorem 7.3.1 follows the pattern of the proof of Rochlin’s theorem. The
existence of a spin structure implies the existence of a holomorphic square-root S of the
vertical cotangent bundle and a differential operator ∂̄S. The Grothendieck-Riemann-Roch
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formula is used to prove that 22n−1 den(Bn

2n
) divides κ2n−1, and the last power of 2 is grasped

by a look on internal symmetries of the index bundle of ∂̄S. We do not know whether this
divisibility relation is optimal. The construction of surface bundles is difficult and the proof
in [18] does not generalize, because it relies essentially on the consideration of cyclic group
actions on surfaces. The problem is a 2-primary problem and due to Theorem 5.1.1, there
are not enough spin surface bundles given by finite group actions to prove the optimality.

Chapter 8 This last chapter is not immediately related to the other chapters of this
dissertation in the sense that spin structures do not play any role there. The topic is the
following. It is known that π3(BΓ+

∞) ∼= Z/24 and we look for geometric representatives of
elements in this group. Usually it is difficult to give a geometric description of maps from
a space Y into the plus construction of a space X, in particular, if Y is simply-connected
(like S3) and X is aspherical (like BΓ∞), then any map Y → X is nullhomotopic. There
is a better chance for constructing a nontrivial map Sn → BΓ+

∞ if one starts with a map
X → BΓg when X is an n-dimensional homology sphere. Plus construction gives a map
X+ → BΓ+

∞ and X+ ' Sn. How do we construct a map X → BΓ∞? It is given by
a homomorphism π1X → Γ∞ which in turn is given by any action π1(X) y Mg if the
fundamental group of X is finite. The most popular 3-dimensional homology sphere is the
Poincaré sphere, whose fundamental group Ĝ is the binary icosahedral group. Using the
connection between the fundamental group of the Poincaré sphere and Euclidean geometry,
it is not difficult to construct nontrivial actions of Ĝ on Riemann surfaces (8.2).
How can we detect whether the element in π3(BΓ+

∞) is nontrivial? The method is the use
of the Jones-Westbury formula (see [29]). We make use out of the map Bρ+ : BΓ+

∞ →
BGL∞(Z)+ into algebraic K-theory, which yields a map π3(BΓ+

∞) → K3(Z). There exists
a homomorphism e : K3(Z) → Q/Z, which is injective and maps onto ( 1

48
Z)/Z ⊂ Q/Z. It

turns out that e ◦ (Bρ+)∗ : π3(BΓ+
∞) → Q/Z is injective (subsection 8.6). The element in

K3(Z) given by this procedure agrees with the element given by the representation of Ĝ
on the first homology of the surface. The computation of the e-invariant of these elements
is the subject of the paper [29]. To carry out the calculation, one needs information about
the fixed points of the actions. In our case, this information is available and the computa-
tions yield that we have constructed an element in π3(BΓ+

∞) of order 12 (see Proposition
8.4.2). Strictly speaking, we only have constructed an element in the stable homotopy of
a mapping class group of a fixed genus which does not need to lie in the stable range,
but this problem can be overcome by a stabilization (alias connected sum) operation (see
section 8.5).

I have included an appendix A which contains the proof of two results needed in sec-
tion 3.3 and are abstract and technical in nature.

Remark on the notations: This work is divided into chapters (numbered like chapter
2), sections (section 1 of chapter 1 is numbered as 2.1). Equations, theorems etc occurring
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in section 2.1 are numbered like Theorem 2.1.1). I hope this makes my system of cross-
references transparent.
Between the appendix A and the bibliography I have included a list of the notations used
in this work. I tried to use a constant notation throughout the text. The advantage is that
I could save a lot of phrases like ”Let π : E → B be a surface bundle”. The disadvantage
of this method is that the reader may sometimes wonder what the meaning of a symbol is.
To help in these situations, there is appendix B.
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2 Generalities on surface bundles

This chapter is a survey on the theory of surface bundles and the mapping class groups.

2.1 Complex structures on surfaces and the diffeomorphism group

Here, we clarify the relation between the classifying space of the mapping class groups and
the moduli space of Riemann surfaces.
Let M be a smooth, closed, oriented and connected 2-manifold. It is well-known ([25])
that M is determined up to diffeomorphism by a single invariant, the genus of M ;

g :=
1

2
dimH1(M ; Q) ∈ N.

If we want to stress that the genus of M is g, we also use the notation Mg. Let Diff(M)
be the group of orientation-preserving diffeomorphisms of M . The space of all smooth
maps M → M carries the C∞-Whitney topology (a sequence of maps converges if and
only if all its derivatives converge uniformly). The diffeomorphism group Diff(M) is an
open subspace. With the subspace topology, it becomes a topological group.
Let a complex structure on M be given, let φ : M ⊃ U → C be a holomorphic chart, p ∈ U
and let Tφ be the derivative of φ. Then v 7→ Tφ−1(iTφ(v)) does not depend on the choice
of φ and defines a smooth bundle endomorphism J : TM → TM , such that J 2 = − id and
such that for all nonzero tangent vectors v ∈ TpM , p ∈ M , the basis (v, Jv) of TpM is
positively oriented.
A bundle endomorphism with these properties is called an almost complex structure on M .
There is a converse to this construction. Let J be an almost complex structure on M and
let p ∈M . For any p ∈M , there exists a neighborhood U ⊂M of p and a map φ : U → C,
such that φ is a diffeomorphism U → φ(U) and such that Tφ ◦ J = iTφ. The collection
of all these maps φ is a holomorphic atlas on M . Both constructions are mutually inverse.
The statement that this holomorphic atlas exists is called the Newlander-Nirenberg theo-
rem.
To prove the existence of φ, one can use the existence of quasiconformal mapping with
given complex dilatation (see, for example, [26]). In higher dimensions, there is a similar
statement, with an additional integrability condition on J , but the proof is much more
difficult.
Thus complex structures and almost complex structures on oriented surfaces are equiva-
lent notions. Also, there is a close connection with Riemannian metrics. We say that a
Riemannian metric h on a surface with an almost-complex structure J is conformal if J
is orthogonal with respect to h. It is easy to see that conformal metrics exist, that two
differ by a multiplication with a positive function and that any multiple of a conformal
metric with a positive function is again conformal. Conversely, any Riemannian metric
on an oriented surface determines an almost-complex structure: a Riemannian metric plus
an orientation determines the Hodge ∗-operator, which satisfies ∗2 = − id when acting on
1-forms. Set J := −∗′ (the dual of the Hodge star operator). This is a complex structure.
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Both constructions are mutually inverse.
We denote the set of all almost complex structures by

S(M) ⊂ C∞(M,End(TM)).

The vector space C∞(M,End(TM)) of all smooth sections of End(TM) carries the C∞-
Whitney topology, which turns it into a Fréchet space.
There is a slightly different description of S(M). Let GL(M) → M be the GL+

2 (R)-
principal bundle of oriented frames of M . It is easy to see that S(M) can be identified
with the space of smooth sections in the fiber bundle GL(M) ×GL+

2 (R) GL+
2 (R)/GL1(C).

But GL+
2 (R)/GL1(C) is contractible (as a GL+

2 (R)-space, it is diffeomorphic to the upper
half plane). Thus S(M) is contractible.
There is an obvious right-action of Diff(M) on S(M). Let f ∈ Diff(M) and J ∈ S(M). Set
J · f := Tf−1 ◦ J ◦Tf . This action is continuous. As a set, the quotient S(M)/Diff(M) is
the same as the set of conformal equivalence classes of Riemann surfaces of genus g. Let us
formulate this more precisely. Let Diff0(M) be the subgroup of all diffeomorphisms which
are homotopic to the identity.

Theorem 2.1.1. ([15]) Let g ≥ 2.

1. The action of Diff(M) on S(M) is proper; the action of Diff0(M) is free. The
projection map S(M) → S(M)/Diff0(M) is a principal Diff0(M)-bundle.

2. There is a natural homeomorphism S(M)/Diff0(M) → Tg (the classical Teichmüller
space).

A new, surprisingly simple proof of the first assertion in this theorem, as well as a simp-
le proof of the next theorem can be found in the paper [45]. Theorem 2.1.1 has many
consequences. Because Tg

∼= R6g−6 by Teichmüller’s theorem, in the fibration Diff0(M) →
S(M) → Tg both, basis and total space are contractible. Therefore, Diff0(M) is also
contractible. In particular, diffeomorphisms which are homotopic are also isotopic.
For lower genera, Theorem 2.1.1 needs to be modified, because the action of Diff0(M) is
no longer free if g = 0, 1. The result which is needed in this work is

Theorem 2.1.2. ([15], see also [45])

1. If g = 0, then the inclusion SO(3) → Diff0(S2) = Diff(S2) given by the rotations of
S2, is a homotopy equivalence (This was already proved by Smale, [51]).

2. If g = 1, then the inclusion T → Diff0(T ) given by the Lie group structure of the
torus T , is a homotopy equivalence.

The (discrete) group of components of Diff(M) is the mapping class group

Γg := π0(Diff(M)).
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There is a proper action Γg y Tg and the quotient is the moduli space of Riemann surfaces
of genus g; Mg := Tg/Γg. There is a complex structure on the Teichmüller space such that
the mapping class group acts by biholomorphic maps. It follows that Mg is a complex
analytic space.
The action of Γg on Tg is not free, because the stabilizer subgroup of a point consists of
all complex automorphisms of the Riemann surface represented by this point. This group
is always finite (if g ≥ 2), but in general not trivial. We will say more about the relation
between Mg and BΓg in section 2.5.

2.2 Surface bundles and bundles of Riemann surfaces

Definition 2.2.1. Let M be a smooth oriented manifold. An oriented smooth M-bundle
on a base space B is a fiber bundle π : E → B with fiber M and structural group Diff+(M).

In this work, we will only consider oriented and smooth M -bundles with compact fibers.
If not stated otherwise, any M -bundle is smooth and oriented. Also, in most cases the
dimension of M will be 2. Then we say that E is a surface bundle. The genus of a surface
bundle is the genus of the fiber - we do not consider bundles whose fibers change from one
component of the base space to another one.
If π : E → B is a smooth M -bundle, then there is an associated Diff(M)-principal bundle
Q → B. Its fiber over b ∈ B consists of all orientation-preserving diffeomorphisms from
M to π−1(b). By construction, there is a natural isomorphism Q×Diff(M) M ∼= E.

Definition 2.2.2. Under the present assumption, the vertical tangent bundle of E → B
is the d-dimensional oriented vector bundle

TvE := Q×Diff(M) TM → Q×Diff(M) M = E.

The restriction of TvE to the fiber Eb := π−1(b) of E is canonically isomorphic to the
tangent bundle of π−1(b). It should be remarked that if E and B are smooth manifolds
and π is a smooth submersion, then the vertical tangent bundle is canonically isomorphic
to kerTπ and there is a short exact sequence

0 → TvE → TE → π∗TB → 0

of vector bundles on E. If the surface bundle E is clear from the context, we sometimes
write Tv := TvE.
If E → B is a surface bundle and b ∈ B a point, then we write Eb := π−1(b) for the fiber.

Definition 2.2.3. Let π : E → B be a surface bundle and Q→ B the associated Diff(M)-
principal bundle. Then a complex structure J on E is a continuous section of the fiber
bundle

Q×Diff(M) S(M) → B.

17



Strictly speaking, we just defined almost-complex structures, and we know that any indivi-
dual fiber has a holomorphic atlas with respect to Jb := J |Eb

. But the Newlander-
Nirenberg-Theorem can be improved to a parameterized version, which guarantees the ex-
istence of holomorphic charts depending continuously on the base variable. More precisely,
for any e ∈ E, we can find a neighborhood V ⊂ E and a homeomorphism φ : V → π(V )×D
which commutes with the projections to B and whose restriction to any fiber of π is biholo-
morphic. This is a consequence of the theory of quasiconformal mappings, in particular of
the continuous dependence of the solutions of the Beltrami-equation on the coefficients.
Because S(M) is contractible, all complex structures on E → B are essentially equivalent.

Proposition 2.2.4. Any surface bundle admits the structure of a bundle of Riemann
surfaces. Further, this structure is unique up to concordance, i.e. if J0, J1 are two complex
structures on π, then there exists a complex structure J on the surface bundle π × [0, 1],
such that J |π×{i} = Ji for i = 0, 1.

Proof: Because the fiber S(M) of Q ×Diff(M) S(M) → B is contractible, the space of all
sections is contractible (in particular, nonempty).

For g ≥ 2, the classifying space BΓg of the mapping class group classifies isomorphism
classes of surface bundles of genus g and also concordance classes of bundles of Riemann
surfaces of genus g - this follows from the discussion above. The universal surface bundle
E(Diff(M);M) := E Diff(M) ×Diff(M) M → BDiff(M) can be viewed as a surface bundle
on BΓg, which by abuse of language1 is denoted by E(Γg,Mg). This bundle has a complex
structure, unique up to concordance.

2.3 Characteristic classes of surface bundles

To define the Morita-Miller-Mumford classes of a surface bundle, we need the notion of
the cohomological push-forward or umkehr map. Let π : E → B be an oriented surface
bundle. Then there is a map π! : Hn(E; Z) → Hn−2(B; Z). We will discuss the definition
and some of the properties of π! in section 6.2. If E and B are oriented manifolds, then
there is an easy definition of π! in terms of Poincaré duality (see [12]).

Definition 2.3.1. ([38], [35]) The Morita-Miller-Mumford classes of π : E → B are by
definition

κn(π) := π!((e(TvE))n+1 ∈ H2n(B,Z).

Remark 2.3.2. Sometimes, the Morita-Miller-Mumford classes are called only ”Mumford
classes” or ”Morita-Mumford classes”. We will prefer the short term MMM-classes. Origi-
nally, Mumford ([41]) defined rational cohomology classes in H∗(Mg; Q), using techniques
from algebraic geometry. We will say more about these rational MMM-classes in section
2.5. It is not difficult to see that the Morita-Miller-Mumford classes are natural in B.

1The group Γg does not act on the surface.
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Therefore they define cohomology classes in H2n(BDiff(M); Z) for any closed Riemann
surface M . The 0-th Morita-Miller-Mumford class is just the element 2 − 2g ∈ H 0(B; Z),
by the Gauß-Bonnet theorem.

Remark 2.3.3. There is a slight problem in Definition 2.3.1. We only can define the
MMM-classes for surface bundles over base spaces which are ”not too large” (see 6.1
for a more precise condition). In order to know that this defines a cohomology class
in H2n(BDiff(M); Z), we need to know that Diff(M) is ”not too large”, which is not
immediate, since it is infinite dimensional. This is a lim1-problem, which is implicitly
solved in [18] and [19]. The way in which this problem is solved is not important in the
present work, see also section 6.1.

The Mumford Conjecture 2.3.4. In [41], Mumford conjectured that the homomorphism
of graded algebras Q[κ1, κ2, . . .] → H∗(BΓg,Q) is an isomorphism in degrees ∗ < g/2. This
was quite recently proven by Madsen and Weiss ([33]). We will say more about this in
chapter 6.

There is another series of characteristic classes. To define them, we need the symplectic
group SP. Let R be a commutative ring with unit 1, let

�
n be the unit matrix of size n×n

and let

I :=

(

0 −
�

n
�

n 0

)

.

The symplectic group is

SP2n(R) := {A ∈ Mat(2n× 2n;R)|AtIA = I}. (2.3.5)

It is a fact that SP2n(R) ⊂ SL2n(R). Furthermore, SP2n(R) contains U(n) as a maximal
compact subgroup. In particular, U(n) ⊂ SP2n(R) is a homotopy equivalence.
The mapping class group Γg acts on H1(Mg; Z) ∼= Z2g and that action preserves the inter-
section form on H1(M ; Z). If one chooses a symplectic basis of H1(M ; Z), one obtains a
homomorphism

ρ : Γg → SP2g(Z), (2.3.6)

which can be composed with the inclusion SP2g(Z) → SP2g(R). After passage to classifying
spaces, we obtain

Bρ : BDiff(M) → B SP2g(R) ' U(g). (2.3.7)

There are the integral Chern character classes sn ∈ H2n(BU(g); Z), which are as usual
defined by sn :=

∑

i x
n
i , where xi is the i-th Chern root.

Definition 2.3.8. The symplectic classes are defined by

γn := Bρ∗(sn) ∈ H2n(BDiff(M); Z).
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There is another description, which is sometimes more useful. If the surface bundle π :
E → B is classified by a map f : B → BDiff(M), then γn(π) := f ∗γn is the integral Chern
character class of the symplectic vector bundle

Hv
1 (π; R) :=

⋃

b∈B

H1(π
−1(b); R),

which also can be described as the bundle induced by the maps B → BDiff(M) →
B SP2g(R). The choice of a complex structure on E determines a complex structure on
the vector bundle Hv

1 (π; R) via the Hodge decomposition: any element in the cohomology
group H1(π−1(b); R) is represented by a harmonic 1-form by the Hodge Theorem, and the
Hodge ∗-operator defines a complex structure on H1(π−1(b); R). Note that Hv

1 (π; R) is flat
as a real vector bundle and as a symplectic vector bundle, but not as a complex vector
bundle.

2.4 The Hodge bundles

Let π : E → B be a bundle of Riemann surfaces. Then we can define a series of complex
vector bundles Vn = Vn(π) on B, n ∈ Z, associated to and natural in π.
Our definition starts with the notion of a holomorphic vector bundle on a bundle of Rie-
mann surfaces, which is not necessarily assumed to be a holomorphic map. Before, we need
to make precise the notion of a smooth vector bundle on a general manifold bundle. Let
π : E → B be a smooth M -bundle and let W → E be a vector bundle. A smooth bundle at-
las is a bundle atlas for W , such that all transition functions are smooth in fiber-direction,
with an additional condition: all fiber-direction-derivatives of the transition functions are
assumed to be continuous. An example of this is the vertical tangent bundle, since we
assume that the structural group is Diff(M) with the Whitney topology. As usual, we
say that two smooth bundle atlases are equivalent if their union is a smooth atlas, and
a smooth vector bundle on E is a vector bundle,together with an equivalence class of atlases.

Now we can define the notion of a holomorphic vector bundle on a bundle of Riemann
surfaces.

Definition 2.4.1. Let π : E → B be a bundle of Riemann surfaces and W → E a smooth
vector bundle. Then a holomorphic atlas on W is a bundle atlas, consisting of fiberwise
smooth trivializations, such that all transition function are fiberwise holomorphic2. Two
holomorphic atlases are equivalent if their union is again a holomorphic bundle atlas. A
holomorphic vector bundle on E is a complex vector bundle, together with an equivalence
class of holomorphic atlases.

The prime example of a holomorphic vector bundle on a bundle of Riemann surfaces is the
vertical tangent bundle. The almost-complex structure J turns TvE into a complex line

2Then all derivatives of the transition functions are automatically continuous, and a holomorphic bundle
atlas is in particular a smooth bundle atlas
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bundle; and the complexification TvE ⊗ C decomposes into the ±i-eigenspaces of J . The
same is true for the vertical cotangent bundle.

Definition 2.4.2. The vertical holomorphic cotangent bundle ΛvE is the eigenspace of J
to the eigenvalue i.

The notion of a smooth section in a smooth vector bundle W → E on a manifold bundle
E → B also needs some explanation. Let s : E → W be a continuous section. We say that
s is smooth if the restriction of s to any fiber Eb is smooth and if all fiberwise derivatives
are continuous on the whole of E. We denote the space of all fiberwise smooth sections by
the symbol

C∞
v (E;W ).

We should interpret the space C∞
v (E;W ) as the space of continuous sections in a bundle

C∞(W ) of Fréchet spaces on B. More precisely, let Eb := π−1(b) and Wb := W |Eb
and set

C∞(W ) :=
⋃

b∈B

C∞(Eb;Wb)

with the obvious projection map to B and the obvious linear structure. We say that a sec-
tion s : B → C∞(W ) is continuous if the adjoint map E → W , e 7→ s(π(e))(e) is a smooth
section of W → E. The result is a bundle of Fréchet spaces. The space of continuous
sections in C∞(W ) is isomorphic to the space C∞

v (E;W ).

If W → E is a fiberwise holomorphic vector bundle, then the Cauchy-Riemann-operator

∂̄W : C∞(W ) → C∞(W ⊗ ΛvE)

is defined. It takes a point s ∈ C∞(W ) alias a smooth section in Wb → Eb to ∂̄Wb
s, which

is a smooth section in Wb ⊗ ΛEb
over Eb. The topologies are designed to achieve that ∂̄W

is a continuous bundle map.
If the fibers of π are compact and closed, then the regularity theory of elliptic differential
operators implies that Cauchy-Riemann operators are Fredholm operators, i.e. their kernels
and cokernels are finite-dimensional (see [31] for details). Moreover, the Fredholm index
b 7→ ind(∂̄Wb

) = dim ker(∂̄Wb
) − dim ker(∂̄Wb

) is locally constant and the index spaces

ind(∂̄Wb
) := ker(∂̄Wb

) − coker(∂̄Wb
)

fit together to form a virtual vector bundle ind∂̄W
∈ K0(B) on B, at least if B is compact.

Actually, it is sufficient to assume that the dimension of the kernel spaces are bounded.

Lemma 2.4.3. If π : E → B is a bundle of Riemann surfaces and if W → E is a holo-
morphic line bundle which has degree l when restricted to any fiber of π, then dim ker(∂̄Wb

)
is bounded.
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Proof: We need Clifford’s theorem ([20], p.251). It states that if W0,W1 are two holomor-
phic line bundles on a compact Riemann surface and if both have nonzero holomorphic
sections, then

dim ker ∂̄W0 + dim ker ∂̄W1 ≤ 1 + dim ker ∂̄W0⊗W1 .

If W is a line bundle on a surface, then there exists a q ∈ N, which only depends on l, such
that Λ⊗qW−1 has nonvanishing holomorphic sections, and we apply Cliffords theorem to
the pair W,Λ⊗qW⊗(−1) to obtain a bound on the dimension.

We have seen that families of holomorphic vector bundles on the total space give rise to a
virtual vector bundle.
The Serre duality theorem ([20], p. 102) has a parametrized version. Fix a conformal metric
on the bundle of Riemann surfaces (this is a contractible choice) and fix a hermitian metric
on the vector bundle W (this is also a contractible choice). Then we have a bilinear form
of vector bundles

C∞(W ⊗ ΛvE) × C∞(W ⊗ ΛvE) → B × C,

which sends a pair of points (s, t) ∈ C∞(W ⊗ ΛvE)b × C∞(W ⊗ ΛvE)b to

∫

Eb

β(s, t) vol,

where vol is the volume form on the Riemannian manifold Eb and β is the bilinear vector
bundle map C∞(Eb;Wb ⊗ ΛEb

) × C∞(Eb;Wb ⊗ ΛEb
) → C∞(Eb; C). The Serre duality

theorem for a single Riemann surface asserts that this bilinear map descends to a perfect
pairing of finite dimensional vector spaces

coker(∂̄Wb
) × ker(∂̄Wb⊗ΛEb

) → C.

This statement extends to families of Riemann surfaces and we obtain

Proposition 2.4.4. There is a natural (up to contractible choices) perfect pairing

coker(∂̄W ) × ker(∂̄W⊗ΛvE) → B × C

of finite dimensional families of vector spaces over B and thus an C-linear isomorphism

coker(∂̄W ) ∼= (ker(∂̄W⊗ΛvE))′

of families of vector spaces (or of vector bundles, if the dimensions are locally constant).

If we want to define a natural vector bundle depending on a surface bundle, then we need
natural holomorphic vector bundles on Riemann surfaces.
Examples for these are the integral tensor powers of the vertical cotangent bundle. These
are essentially the only examples of natural holomorphic line bundles. This uniqueness
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statement can be justified rigorously in the framework of algebraic geometry, see [24], p.62.
These examples have an additional feature, namely: the dimensions of the kernel and of
the cokernel only depend on the genus of the Riemann surface, not on the choice of a
complex structure. More precisely, if M is a Riemann surface of genus g and Λ = ΛM the
canonical line bundle, then

dim ker(∂̄Λ⊗m
M

) =



















































1, m = 0, g ∈ N,

g, m = 1, g ∈ N,

1 −m, g = 0,m ≤ 0,

0, g = 0,m > 0,

1, g = 1,m ∈ Z,

0, g ≥ 2,m < 0,

(2m− 1)(g − 1), g ≥ 2,m ≥ 2.

(2.4.5)

and dim coker(∂̄Λ⊗m
M

) = dim ker(∂̄
Λ
⊗(1−m)
M

) by Serre duality. The proof can be found in many

books on compact Riemann surfaces, for example [16], p. 80.

Definition 2.4.6. Let π : E → B be a bundle of Riemann surfaces. Then the n-th Hodge
bundle is the vector bundle

Vn(π) := ker ∂̄(ΛvE)⊗n .

Sometimes we also write Vn(E) for Vn(π). The bundle Hv
1 (π; R) defined in the preceding

section can be viewed as a Hodge bundle. It is V ′
1 = V1.

The Grothendieck-Riemann-Roch theorem computes the rational characteristic classes of
the index bundle ind ∂̄V when V → E is a family of holomorphic vector bundles on E. The
Grothendieck-Riemann-Roch theorem is the cohomological version of the Atiyah-Singer
index theorem for families of elliptic operators (see [6]), when applied to the Cauchy-
Riemann operators. The latter is much stronger and will be discussed in section 6.7. Let
td(x) = x

1−e−x ∈ Q[[x]] be the Todd power series. We now state the Grothendieck-Riemann-
Roch theorem.

Theorem 2.4.7. ([6]) Let π : E → B be a bundle of Riemann surfaces and let V → E be
a family of holomorphic vector bundles on E. Let c ∈ H2(E) be the first Chern class of
the vertical tangent bundle. Then the Chern character of the index bundle is given by the
formula

ch(ind ∂̄V ) = π!(td(c) ch(V )) ∈ H∗(B; Q).

However, it is important to note that we missed out an important point. The Atiyah-
Singer family index theorem ([6]) is formulated only for bundles E → B with a compact
base space B. There are several problems if one tries to generalize it to arbitrary (at least,
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paracompact) spaces B. One of the problems is resolved by Lemma 2.4.3, but there are
other difficulties. The author of this dissertation does not know whether this difficulties
can be overcome, they are not even easy to isolate. The only possibility is to check the
proof in [6] step by step, which can be expected to be cumbersome and is not done in this
work.

2.5 Comparison with algebraic geometry

We now construct a comparison map µ : Diff(M) → Mg if M is a differentiable surface of
genus g. For g ≥ 2, the source space is homotopy equivalent to BΓg. We begin by choosing
a complex structure on the universal surface bundle

π : E(Diff(M);M) := E Diff(M) ×Diff(M) M → BDiff(M),

which is possible by the discussion following Definition 2.2.3. If b ∈ BDiff(M), then
π−1(b) is a Riemann surface and we set µ : b 7→ [π−1(b)] ∈ Mg. This map turns out to
be continuous. That is one of the reasons for the continuity condition in the definition
2.2.3. However, µ would certainly be continuous with a weaker notion of continuity, as a
consequence of Teichmüller theory.

Corollary 2.5.1. to Prop 2.2.4. The homotopy class of the moduli map

µ : BDiff(M) → Mg

does not depend on the choice of the complex structure on E(Diff(M);M).

The main theorem of this section is

Theorem 2.5.2. If g ≥ 2, then µ induces an isomorphism in (co)homology with rational
coefficients.

This theorem is a folklore statement. However, I was not able to find a proof in the
published literature. Thus I present a proof here. For smaller genera, there is a similar
statement. The mapping class group Γ1 of a torus is isomorphic to SL2(Z), whose rational
homology is trivial. On the other hand, the Teichmüller space of tori is the upper half
plane and the action of the mapping class group is given by Möbius transformations.
The quotient H/ SL2(Z) is biholomorphic equivalent to the complex plane C. Thus the
rational homology of the moduli space M1 is also trivial. Note that, however, the space
B SL2(Z) is not the classifying space of torus bundles, but rather the space of torus bundles
with a section (Any two points on a complex torus can be translated by a holomorphic
automorphism). Morita showed ([39]) that the space BDiff(T ) is not rationally acycylic.
If g = 0, then the moduli space is a point by Riemann’s uniformization theorem and the
mapping class group is trivial. Again, the mapping class group is not quite the correct
object to consider, because Diff(S2) ' SO(3), and B SO(3) is certainly not rationally
acyclic.
The main ingredient for the proof of Theorem 2.5.2 is the following lemma.
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Lemma 2.5.3. The mapping class group has a normal torsionfree subgroup of finite index.

Proof: We make use of the homomorphism ρ : Γg → GL2g(Z) from 2.3.6. For n ∈ N,
the the kernel of the homomorphism GL2g(Z) → GL2g(Z/nZ) is the congruence subgroup
Γ(n) ⊂ GL2g(Z). If 3 ≤ n, then Γ(n) is torsionfree (see [13], p. 40 f.). Then ∆ :=
ρ−1(Γ(n)) ⊂ Γg is a normal subgroup of finite index. I claim that ∆ is torsionfree.
Let γ ∈ ∆ be a torsion element, γr = id. Without loss of generality, we can assume that r
is a prime number. Since Γ(n) is torsionfree, ρ(γ) = id. Thus, we need to argue that the
kernel of ρ, the Torelli group, is torsionfree.
To this end, let us show that γ (it is a component of the diffeomorphism group) contains
a diffeomorphism f of the same order as γ. Consider the bundle

π : Vg := S(M) ×Diff0(M) M → Tg.

It has an action of the mapping class group Γg = Diff(M)/Diff0(M) which covers the ac-
tion of Γg on Tg. If γ had no fixed point on Tg, then the action of the group Z/r generated
by γ on Tg would be free. Then we would have a finite-dimensional model for BZ/r, which
is absurd. Thus γ has a fixed point x ∈ Tg. But then γ yields an orientation-preserving
diffeomorphism f of finite order of the fiber π−1(x). By construction, [f ] = γ. and f
is a diffeomorphism of a surface of genus g ≥ 2, which acts trivially on H1(M,Z). It is
well-known, that f itself must be the identity.

Let ∆ ⊂ Γg be a torsionfree normal subgroup of finite index, set G := Γg/∆. Then we
have a commutative diagram

B∆
m
∼=

//

q

²²

Tg/∆

p

²²
BΓg

µ // Mg

(2.5.4)

In this diagram, B∆ and Tg/∆ are G-spaces and the upper horizontal map m is an equiv-
ariant homotopy equivalence (because ∆ is torsionfree, it must act freely on the finite-
dimensional contractible manifold Tg). The map q is a finite G-covering and p is also a
quotient map by G, but with singularities.

Lemma 2.5.5. Let X be a CW-complex and let G a finite group, which acts cellularly
on X. Assume that a group element which leaves a cell invariant fixes the cell pointwise.
Then there is a natural isomorphism H∗(X; Q) ⊗GQ Q ∼= H∗(X/G; Q).

Proof: Under the assumptions on the action, there is a natural isomorphism

C∗(X; Q) ⊗GQ Q ∼= C∗(X/G; Q).

Because G is finite, ⊗GQQ is an exact functor. Hence

H∗(X/G; Q) ∼= H∗(C∗(X; Q)) ⊗GQ Q) ∼= H∗(X; Q) ⊗GQ Q.
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Proof of Theorem 2.5.2: The assumpions on the action are very mild and can be easily
satisfied in our case. An application of Lemma 2.5.5 to the vertical maps in the diagram
2.5.4 finishes the proof of the theorem.

Now I give a construction of the MMM-classes in H∗(Mg,Q). Recall the diagram 2.5.4

B∆
m
∼=

//

q

²²

Tg/∆

p

²²
BΓg

µ // Mg

where m is a homotopy equivalence. Tg/∆ is a smooth manifold and Mg is not a manifold,
but is still an oriented rational homology manifold of dimension 6g−6, i.e., for all x ∈ Mg,
H∗(Mg,Mg \ {x}; Q) ∼= H∗(R6g−6,R6g−6 \ {0}; Q). Then the proof of Poincaré duality in
[12] applies without any change, but only for rational coefficients. Hence we can define
the push-forward for proper maps in rational cohomology in the same way as for smooth
manifolds. Now we define κ′n := 1

[Γg :∆]
p!(m

−1)∗q∗(κn) ∈ H2n(Mg; Q). This does not depend

on the choice of the torsionfree normal subgroup G ⊂ Γg. One can see that µ∗(κ′n) = κn ∈
H2n(BΓg; Q). However, the integral MMM-classes do not lie in the image of H2n(Mg; Z) →
H2n(BΓg; Z).
The reason is that there exist Riemann surfaces M and cyclic groups G acting on M , such
that κn(EG×G M → BG) 6= 0. Moreover, such actions exist for many values of the genus
and n. This is shown in the work by Akita, Kawazumi and Uemura [3].
The moduli map µ : BG → Mg of such a surface bundle is constant, because all fibers
are conformally equivalent by construction. If there would be a class c ∈ H2n(Mg; Z) with
µ∗(c) = κn, then we would have a contradiction.
Thus we see that the integral cohomology of the moduli space is a quite irregular object.
It is usually not studied, because it does not seem to be accessible.
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3 Spin structures on manifold bundles

3.1 Spin structures on vector bundles

Definition 3.1.1. Let 1 ≤ d ∈ N. The group Spin(d) is defined to be the unique connected
twofold covering group of SO(d). For d = 0, we say that Spin(0) = Z/2.

A more explicit definition can be given in terms of Clifford algebras ([31]). Via the covering
map Spin(d) → SO(d), Spin(d) acts on Rd. The group GL+

d (R) also has a unique connected

two-fold covering group G̃L+
d (R). It is well-known that in the commutative diagram

Spin(d) //

²²

G̃L+
d (R)

²²
SO(d) // GL+

d (R)

the horizontal maps are inclusions and homotopy equivalences.

Definition 3.1.2. Let E → X be an oriented d-dimensional real vector bundle. A Spin

structure σ on E is a pair σ = (P, α), where P is a G̃L+
d (R)-principal bundle on X and α

is an isomorphism P ×
G̃L+

d (R)
Rd ∼= E of oriented vector bundles on X. An isomorphism

of two spin structures σ0 = (P0, α0) and σ1 = (P1, α1) is an isomorphism β : P0 → P1 of

G̃L+
d (R)-principal bundles over idX , such that α1 ◦ (β ×

G̃L+
d (R)

idRd) = α0. We also say

that σ0 and σ1 are equivalent.

If f : Y → X is a continuous map and (P, α) a spin structure on E as above, then
(f ∗P, f ∗α) is a spin structure on f ∗E.
The notion of equivalence can be stated in a slightly different way.

Lemma 3.1.3. Two spin structures (P0, α0) and (P1, α1) are equivalent, written (P0, α0) ∼=
(P1, α1) if and only if they are concordant, i.e. there exists a spin structure (P, α) on
E × [0, 1] → X × [0, 1], such that j∗i (P, α) = (Pi, αi) for i = 0, 1, where ji : X → X × [0, 1]
is the inclusion x 7→ (x, i).

Proof: If the two spin structures are equivalent, then we can use the isomorphism β :
P0 → P1 to glue the bundles P0 × [0, 1

2
] and P1 × [1

2
, 1] together. The result is a concor-

dance between the two spin structures.
Conversely, if a concordance is given, then an isomorphism is constructed using the cover-
ing homotopy theorem.

The usual definition of a spin structure assumes the existence of a Riemannian metric on
the vector bundle E. Then a spin structure is a Spin(d)-principal bundle with analogous
properties as in our definition. Of course, a vector bundle has a spin structure in our sense
if and only if, after choosing a Riemannian metric, the resulting SO(d)-vector bundle has

27



a spin structure in the usual sense. For most topological problems, one can always assume
that a vector bundle comes with a metric, because the space of scalar products on Rd is
contractible. In our applications, this assumption would be too restrictive, see 3.2 and 3.3.
In differential geometry, there is a more serious reason why one defines spin structures
only for Riemannian vector bundles. It is a fact from basic Lie group theory that any

homomorphism G̃L+
d (R) → GLn(C) factors through GLd(R). In contrast, there are impor-

tant representations of Spin(d) which do not factor through SO(d) and they are used to
construct the spinor bundles. It follows that the spinor bundles cannot be defined without
specifying a metric - this is the main psychological difficulty in spinor geometry.
There is another description of spin structures, which is sometimes convenient. If Q→ X
is the bundle of oriented frames in E, then we can also say that a spin structure is a

G̃L+
d (R)-principal bundle, together with a G̃L+

d (R)-equivariant map P → Q over X. Yet
another way of saying this is that P is a twofold covering of Q, whose restriction to any
fiber of Q is nontrivial.
The next theorem is a well-known standard result ([31], p.78-85). Its proof is an easy
application of obstruction theory.

Theorem 3.1.4. An oriented vector bundle E has a spin structure if and only if w2(E) = 0.
If a vector bundle has a spin structure, then the set of equivalence classes of spin structures
is in bijection with H1(X; Z/2). More precisely, it is a H1(X; Z/2)-torsor (i.e. a principal
homogeneous space).
Furthermore, if E2 = E0⊕E1 as oriented vector bundles, then the choice of spin structures
on any of the three bundles determines a spin structure on the third.

Because H1(X,F2) is in bijection with the set of equivalence classes of real line bundles,
there is an implicit simply-transitive action of the set of real line bundles on the set of spin
structures. It is worth to make this explicit. I do this in two ways, one algebro-topological
and one geometrical. Let E → X be an oriented vector bundle and let Q → X be the
associated frame bundle. For simplicity of notation, we choose a Riemannian metric and
talk about SO(d)- and Spin(d)-principal bundles.
Recall that H1(SO(d); F2) ∼= F2 (in the sequel, all cohomology groups are with F2-coeffi-
cients) and that H1(B SO(d)) = 0; H2(B SO(d)) = F2〈w2〉. Consider the Leray-Serre
spectral sequence for F2-cohomology of the universal bundle SO(d) → E SO(d) → B SO(d).
The differential d2 : H1(SO(d)) = E0,1

2 → E2,0
2 = H2(B SO(d)) is an isomorphism and

sends the nontrivial element to the universal Stiefel-Whitney class. By naturality of the
spectral sequence it follows that for an arbitrary SO(d)-bundle Q→ X, X connected, the
differential

d2 : H1(SO(d)) = E0,1
2 → E0,1

2 = H2(X)

sends the nontrivial element in H1(SO(d)) to w2(Q). From the Leray-Serre spectral se-
quence, one deduces the Serre exact sequence

0 → H1(X) → H1(Q) → H1(SO(d)) → H2(X),
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where the last map is d2 and d2 = 0 if Q is spin. From the description of spin structures as
coverings of Q, we see that the set of equivalence classes of spin structures can be identified
with the nontrivial coset in H1(Q). The H1(X)-action is via addition.
Now I turn to the geometrical description. If σi = (Pi, αi), i = 0, 1 are two spin structures
on E, then we can construct a real line bundle (or rather a Z/2-principal bundle) L =

LP1,P−1
0

on X as follows. Let x ∈ X. Then the fiber Lx is the set of all G̃L+
d (R)-equivariant

maps a : (P0)x → (P1)x which give the identity on Ex in the sense that the induced map

(α1) ◦ (a×
G̃L+

d (R)
Rd) ◦ (α0)

−1 : Ex → (P0)x ×
G̃L+

d (R)
Rd → (P1)x ×

G̃L+
d (R)

Rd → Ex

is the identity. It is easy to check that L is a Z/2-principal bundle; the notation is self-
explanatory.
Conversely, let σ = (P, α) be a spin structure and let L → X be a Z/2-principal bundle.
To define the spin structure Lσ, we consider the spin structure as a twofold covering of
Q. This determines a real line bundle on Q, which is nontrivial when restricted to any
fiber. If L → X is a line bundle and q : Q → X is the bundle projection, then we can
tensorize the spin structure with the line bundle q∗L. One can check that this defines an
action of the set of line bundles on the set of equivalence classes of spin structures and that
LP1P−1

0
P0 = P1.

For complex line bundles, there is yet another description of spin structures. If L is a
complex line bundle, then a spin structure can be viewed as another complex line bundle
S, together with a complex isomorphism S ⊗C S → L. This is easy to see; one uses that
Spin(2) ∼= SO(2) and that the covering map is the squaring map.

3.2 Spin structures on manifolds

Now we let M be a smooth oriented d-dimensional manifold. If not stated otherwise, all
diffeomorphisms are assumed to be orientation-preserving. We say that a spin structure
on M is a spin structure on the tangent bundle TM of M . A spin manifold is an oriented
manifold, equipped with a spin structure.
Usually, one defines a spin structure on a manifold to be spin structure of the cotangent
bundle. This is very convenient in differential and algebraic geometry. Of course, spin
structures on the tangent and on the cotangent bundle are closely related. If (P, α) is a
spin structure for the tangent bundle, then (P, (α−1)′) is a spin structure for the cotangent
bundle, where (α−1)′ is the dual of the inverse of α.
Orientation-preserving diffeomorphism or, more generally, orientation-preserving local dif-
feomorphisms can be used to pull-back spin structures on manifolds. Let f : N → M be
an orientation-preserving local diffeomorphism. Since f is regular, its differential defines
an orientation-preserving isomorphism df : TN → f ∗TM of bundles on N . If σ := (P, α)
is a spin structure on M , then we define f ∗σ := (f ∗P, (df)−1 ◦ f ∗α). It is a spin structure
on N .
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If f0 and f1 are regularly homotopic, i.e. they are homotopic through local diffeomor-
phisms, then the spin structures f ∗

0σ and f ∗
1σ are equivalent. This follows immediately

from Lemma 3.1.3 and from the definitions.
Thus we see that the group Γ(M) := π0(Diff(M)) of isotopy classes of diffeomorphisms
acts from the right on the set of equivalence classes of spin structures. Although the set
of equivalence classes of spin structures is in bijection with H1(M ; F2), there is no Γ(M)-
equivariant identification in general, compare the remarks after 3.1.4.
We call two spin structures σ1 and σ2 conjugate if there exists a diffeomorphism f such
that σ1

∼= f ∗σ2.
If σ is a spin-structure on M , then we denote

Diff(M,σ) := {f ∈ Diff(M)|f ∗σ ∼= σ}. (3.2.1)

Here the symbol ∼= denotes equivalence of spin structures (and not conjugacy). More
generally, if (M,σ) and (N, τ) are spin manifolds, then Diff((M,σ), (N, τ)) denotes the
set of all (orientation-preserving) diffeomorphisms f : M → N such that f ∗τ ∼= σ. The
preceding discussion, together with the fact that regular homotopy is an open equivalence
relation on Diff(M) shows

Lemma 3.2.2. Diff(M,σ) ⊂ Diff(M) is an open subgroup.

At the first glance, it might seem that the group Diff(M,σ) is the correct automorphism
group of the spin structure σ. This is not the case, as I will explain now with an easy
example.
Consider the 2-sphere with the standard metric. As an oriented surface, S2 is a spin
manifold. The spin structure is unique up to equivalence, because H1(S2,F2) = 0. Thus,
we certainly have Diff(S2, σ) = Diff(S2). A concrete description of the spin structure is as
follows. Consider the Hopf fibration S3 → S2 which is a SO(2) = Spin(2)-principal bundle.
Then there is an isomorphism S3 ×SO(2) R2 ∼= TS2, where SO(2) acts on R2 = C by the
square of the standard representation. Thus the Hopf fibration is a spin structure for S2.
But the group SO(3) ⊂ Diff(S2) does not act on the total space of this spin structure.
Thus Diff(M,σ) is not the correct thing to consider, especially if we attempt to study
families of spin manifolds. This requires that we do not merely consider the discrete set
of all equivalence classes of spin structures, but a space of all spin structures on M , which
has a nontrivial topology. This will be done in the next section.

3.3 Spaces of Spin structures

Definition 3.3.1. Let M be an oriented manifold. Then the category SPIN(M) is de-
fined as follows. Its objects are all spin structures on M . A morphism between two spin
structures σ0 and σ1 is an isomorphism in the sense of Definition 3.1.2.

Because we will consider the classifying space of this category, one should take a small
skeleton of this category instead. Such a small skeleton certainly exists. The classifying
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spaces of any two skeleta of a category are homotopy equivalent through an equivalence
which is canonical up to homotopy. The question whether the space of all these canonical
homotopy equivalences is contractible is irrelevant in this work. As usual, a (topological)
group is identified with a (topological) groupoid with one object.

Proposition 3.3.2. If M is connected, the classifying space BSPIN(M) of the category
SPIN(M) is homotopy equivalent to H1(F ; F2) × RP∞.

Proof: We have seen that the set of equivalence classes of spin structures on M is in
bijection with H1(M ; F2). We choose one spin structure in each equivalence class. This
gives a set R of representatives for the equivalence classes of spin structures. It was re-
marked above that the automorphism group of a spin structure is isomorphic to Z/2. An
application of Lemma A.0.1 from the appendix A finishes the proof.

There is another category of spin structures which also involves the action of diffeomor-
phisms on spin structures. The definition needs some preparation.
Let M and N be smooth oriented d-manifolds, let σ = (P, α) be a spin structure on

TM and τ = (Q, β) be a spin structure on N . If f̂ : P → Q is a map of G̃L+
d (R)-

principal bundles over a base map f : M → N , then f̂ induces a vector bundle map
f̂ ′ : P ×

G̃L+
d (R)

Rd → Q×
G̃L+

d (R)
Rd over f , which can be compared to the differential of f .

The vector bundle map f̂ ′ has a chance to agree with the differential only if f is a local
diffeomorphism.

Definition 3.3.3. A local spin diffeomorphism from (M,σ) → (N, τ) is a pair (f, f̂), where
f is an orientation-preserving local diffeomorphism (alias codimension zero immersion) and

f̂ : P → Q is an isomorphism of G̃L+
d (R)-principal bundles over f , such that the diagram

P ×
G̃L+

d (R)
Rd f̂ ′

//

α

²²

Q×
G̃L+

d (R)
Rd

β

²²
TM

Tf // TN

of vector bundle maps commutes. Local spin diffeomorphisms can be composed in the
obvious way: (g, ĝ) ◦ (f, f̂) := (g ◦ f, ĝ ◦ f̂).
A local spin diffeomorphism (f, f̂) is called a spin diffeomorphism if the underlying map
f is a diffeomorphism.

We can say shortly that a spin diffeomorphism is a diffeomorphism f which preserves the
spin structure σ, together with a choice of an isomorphism of spin-structures σ ∼= f ∗σ. It is
easy to see that the set of spin diffeomorphisms of a spin structure σ on M forms a group.

Definition 3.3.4. The group of spin diffeomorphism of (M,σ) is denoted by Sdiff(M,σ).
More generally, let M be an oriented manifold. Then Sdiff(M) is the following groupoid:
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• The objects are the spin structures σ on M .

• The morphisms σ0 → σ1 are the spin diffeomorphisms (M,σ0) → (M,σ1).

The morphism sets between different spin structures are denoted by Sdiff((M,σ0), (M,σ1)).

If M does not admit a spin structure, then Sdiff(M) is the empty groupoid, but we will
not consider this case. Note that the group Sdiff(M,σ) is the automorphism group of
σ ∈ Ob(Sdiff(M)). There is an obvious forgetful map

ψ : Sdiff(M,σ) → Diff(M,σ);ψ : (F, f̂) 7→ f (3.3.5)

which is surjective. I will define a topology on the morphism sets of Sdiff(M) and thus on
Sdiff(M,σ) below.
By definition, the group Sdiff(M,σ) acts on the principal bundle P ; and the action covers
the action of the diffeomorphism group. More precisely, we have:

Lemma 3.3.6. If M is a connected manifold, then the kernel of ψ : Sdiff(M,σ) →
Diff(M,σ) has two elements.

Proof: If (f, f̂) ∈ kerψ, then f = id. Let (idM , f̂) be a spin diffeomorphism, and let c be

the nontrivial element in the kernel of G̃L+
d (R) → GL+

d (R). Then f̂ is an automorphism

of P over idM , and the condition that (idM f̂) is a spin diffeomorphism means that either
f̂(p) = p or f̂(p) = p · c for all p ∈ P (M is connected). In the first case f̂ = idP , in the
second case, f̂ is right-multiplication with c.

Now I will explain the topology on Sdiff(M,σ). Any space of the type C∞(X;Y ) of smooth
mappings between smooth manifolds X and Y is endowed with the weak Whitney-topology
([25], p. 34 ff.). This is the topology of uniform convergence of all derivatives on all com-
pact subsets of X.
If σ = (P, α) and τ = (Q, β) are spin structures on M , N , respectively, then there is
an injection Sdiff((M,σ), (N, τ)) ⊂ C∞(P ;Q). We let Sdiff((M,σ), (N, τ) carry the sub-
space topology. With this definition, the composition and inversion maps in the groupoid
Sdiff(M) become continuous and the forgetful maps

Sdiff((M,σ), (N, τ)) → Diff((M,σ), (N, τ)

become covering maps. There is a forgetful functor of topological groupoids

Ψ : Sdiff(M) → Diff(M). (3.3.7)

Theorem 3.3.8. The homotopy fiber of BΨ : B Sdiff(M) → BDiff(M) is homotopy
equivalent to BSPIN(M) ' H1(M ; F2) × RP∞.
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Proof: We apply Proposition A.0.2 from the appendix A to the groupoid homomorphism
Ψ : Sdiff(M) → Diff(M). Note that SPIN(M) is the kernel (in the sense of groupoids, see
appendix A) of Ψ by definition. Furthermore, Φ is surjective (in the sense of groupoids): If
f ∈ Diff(M) and σ ∈ Ob(Sdiff(M)), then there is a spin diffeomorphism h : σ → (f−1)∗σ
with Ψ(h) = f . The map on morphism spaces is a Serre fibration, because it is even a
covering. Apply Proposition A.0.2.

Fix a spin structure σ on M . We can compare the two fibrations

RP∞ //

²²

BSPIN(M)

²²
B Sdiff(M,σ)

²²

// B Sdiff(M)

²²
BDiff(M,σ) // BDiff(M).

(3.3.9)

Their difference is not as much as it seems at the first glance. The spin structure σ
can be viewed as a point in the zero-skeleton of both classifying spaces, BSPIN(M) and
B Sdiff(M). If σ is taken as a base-point, then all maps in the diagram 3.3.9 are pointed.
We write for short Γ(M) := π0(Diff(M)) and Γ(M,σ) := π0(Diff(M,σ)). Note that
Γ(M,σ) is a subgroup of Γ(M) because of 3.2.2.
Also because of 3.2.2, πr(BDiff(M,σ)) → πr(BDiff(M)) is an isomorphism if r ≥ 2.
Thus, for r ≥ 3, the diagram 3.3.9 gives rise to a commutative square of isomorphisms (the
base-point is omitted from the notation)

πr(B Sdiff(M,σ))

²²

// πr(B Sdiff(M))

²²
πr(BDiff(M,σ)) // πr(BDiff(M)).

It remains to analyze the low-dimensional terms. They are
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0 //

²²

0

²²
π2(B Sdiff(M,σ))

²²

// π2(B Sdiff(M))

²²
π2(BDiff(M,σ)) //

²²

π2(BDiff(M))

²²
Z/2 //

²²

Z/2

²²
π1(B Sdiff(M,σ))

²²

// π1(B Sdiff(M))

²²
Γ(M,σ) //

²²

Γ(M)

²²
∗ //

²²

π0(BSPIN(M))

²²
∗

²²

// π0(B Sdiff(M)) = π0(BSPIN(M))/Γ(M)

²²
∗ // ∗.

(3.3.10)

3.4 Spin structures on fiber bundles

Next, we study the question: What does the classifying space of the groupoid Sdiff(M)
classify?
We consider smooth M -bundles (E,B, π), where the oriented manifold M admits a spin
structure. To a smooth M -bundle, there is an associated Diff(M)-principal bundle Q→ B
and a natural isomorphism Q ×Diff(M) M → E of fiber bundles. The base space B is not
assumed to be a manifold, but a ”reasonable” space. With this term, I mean that B is
paracompact (such that G-principal bundles on it are classified by maps into BG), locally
arcwise connected and locally relatively simple connected (such that there is a well-behaved
theory of covering spaces, [12], p.155).

Definition 3.4.1. A spin structure on an oriented smooth M -bundle π : E → B is a
spin structure on the vertical tangent bundle TvE. A smooth M -spin bundle is a smooth
M -bundle endowed with a spin structure.

Note that any fiber of a smooth M -spin bundle becomes a spin manifold.
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Definition 3.4.2. Let M be a manifold with w2(TM) = 0 and let σ be a spin structure
on M . For a topological space B, let BunM,Spin[B] be the set of all concordance classes of
smooth M -bundles with spin structure. Let BunM,σ[B] be the set of all concordance classes
of smooth M -bundles with spin structure such that the restriction of the spin structure to
any fiber is conjugate to σ.

Theorem 3.4.3. For any reasonable space B, there are bijections, natural in B:

1. [B;B Sdiff(M,σ)] ∼= BunM,σ[B] and

2. [B;B Sdiff(M)] ∼= BunM,Spin[B].

Proof: Let us prove the first claim. Because Sdiff(M,σ) is a group, we only need to relate
Sdiff(M,σ)-principal bundles on B with BunM,σ[B]. If σ = (P, α), then Sdiff(M,σ) acts
on P , as well as on GL+(M) and the map P → GL+(M) is equivariant. Let Q → B be a
Sdiff(M,σ)-principal bundle. Then

E := Q×Sdiff(M,σ) M → B

is a smooth M -bundle and

Q×Sdiff(M,σ) P,

together with the isomorphism

Q×Sdiff(M,σ) P ×
G̃L+

d (R)
Rd → Q×Sdiff(M,σ) TM = TvE

is a spin structure on E. Conversely, if E → B is a smooth M -bundle with spin structure
such that for all b ∈ B, Eb is spin diffeomorphic to (M,σ), then we define a Sdiff(M,σ)-
principal bundle Q→ B as follows. The fiber Qb over b ∈ B consists of all spin diffeomor-
phisms (M,σ) → Eb. Both constructions are mutually inverse. This shows the first claim.
For the proof of the second claim, we assume without loss of generality that B is connected.
We choose a system of representatives R for the set of conjugacy classes of spin structures
on M and define a functorial map [B;B Sdiff(M)] → BunM,Spin[B] by the commutativity
of the diagram

∐

σ∈R[B;B Sdiff(M,σ)]
∼= //

²²

[B;B Sdiff(M)]

²²
∐

σ∈R BunM,σ[B] // BunM,Spin[B].

The upper horizontal arrow is bijective because of Lemma A.0.1. The right-hand side
vertical arrow is provided by the first claim and bijective by part 1 of this proof. The
lower horizontal arrow is bijective because R is a system of representatives for the set of
conjugacy classes of spin structures.
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This shows the existence of the functorial bijection. Using the fact that the map BG→ BG
induced by an inner automorphism of the topological group G is homotopic to the identity,
one can show that the map [B;B Sdiff(M)] → BunM,Spin[B] defined above does not depend
on the choice of the system of representatives R.

3.5 When does a smooth fiber bundle have a spin structure?

Now, let us consider a smooth M -bundle π : E → B on a reasonable space. We try to find
necessary and sufficient conditions for the existence of a spin structure on E → B. First
of all, M needs to satisfy w2(TM) = 0, and we assume that this is the case.
One is tempted to apply obstruction theory to the fibration

BSPIN(M) → B Sdiff(M) → BDiff(M)

from the last section. Unfortunately, this does not work, because the situation is highly
non-abelian. There is no group structure on π0(BSPIN(M)) which has a relation to spin
structures (even if BSPIN(M) is abstractly homotopy-equivalent to an abelian topological
group).
The situation is more tractable if we consider the fibration sequence

RP∞ → B Sdiff(M,σ) → BDiff(M,σ). (3.5.1)

To start the discussion, we assume (without loss of generality) that B is path-connected
and that we have a base point b0 ∈ B. Further, we fix an orientation-preserving diffeo-
morphism φ : M → π−1(b0). Such a triple (E, π, φ) should be called a pointed smooth
M-bundle.
Concordance classes of pointed M -bundles are in bijection with pointed homotopy classes
of pointed maps (B, b0) → (BDiff(M), ∗).
On fundamental groups, the classifying map of a pointed M -bundle induces a homomor-
phism

ρ(E,π,φ) : π1(B, b0) → π0 Diff(M),

the monodromy of the manifold bundle. There is the following explicit description of the
monodromy homomorphism. Let γ : S1 → B be a pointed loop. Then γ∗E =: E ′ is
a bundle of manifolds on S1 = [0, 1]/(0 ∼ 1) and the fiber at the base point 0 ∈ S1 is
canonically diffeomorphic to M . Let q : [0, 1] → S1 be the identification map. Then choose
a trivialization a : q∗E ′ ∼= [0, 1] ×M , extending the identity over 0. At the point 1, a
defines a diffeomorphism f : M → M . Its isotopy class does not depend on the choice of
γ within its homotopy class and on the choice of q. The isotopy class of f is ρ([γ]). Note
that the monodromy does not lift to a homomorphism π1(B) → Diff(M) in general; this
only happens for flat fiber bundles.
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Lemma 3.5.2. If there is a spin structure on E which extends the spin structure φ∗σ on
π−1(b0), then ρ takes values in the subgroup π0(Diff(M,σ)).

Proof: Restrict the bundle E and the spin structure on E to a circle representing a ∈
π1(B, b0). Then the spin structures σ and ρ(a)∗σ are concordant. By Lemma 3.1.3, they
are equivalent.

Consider the fibration sequence 3.5.1. It is necessarily a principal fibration in the sense of
homotopy theory: the action of π1(BDiff(M,σ)) on the homotopy type of RP∞ is trivial.
Thus the next definition is meaningful.

Definition 3.5.3. Let c ∈ H2(BDiff(M,σ); F2) be the primary obstruction class to the
existence of a section of the fibration 3.5.1.

The class c also can be described as the cohomology class of the (topological) group ex-
tension Z/2 → Sdiff(M,σ) → Diff(M,σ).
Now we can reformulate the question of the existence of a spin structure as a lifting prob-
lem.

Proposition 3.5.4. Let π : E → B be a smooth M-bundle, let φ : π−1(b0) → M be a
fixed diffeomorphism and let λ : B → BDiff(M) be a classifying map. Assume that there
exists a spin structure σ on M such that the monodromy homomorphism takes values in
the subgroup π0(Diff(M,σ)). Then there exists a spin structure on E which extends φ∗σ if
and only if there exists a lift

B Sdiff(M,σ)

²²

B

99
r

r
r

r
r

r
r

r
r

r
r

λ
// BDiff(M,σ).

Homotopy classes of lifts (as lifts) are in 1 − 1 correspondence with equivalence classes of
spin structures.

The proof is clear.

Corollary 3.5.5. With the notation as above, the following statement holds.
There exists a spin structure on the fiber bundle E extending φ∗σ if and only if the mono-
dromy homomorphism takes values in π0(Diff(M,σ) and λ∗c = 0 ∈ H2(B; F2).

Proof: This follows from Theorem 3.5.4 and Lemma 3.3.6 by an easy application of ob-
struction theory.

In the section 5.1, we will show that the cohomology class c is nonzero if M is an oriented
surface and σ an arbitrary spin structure on M .

37



4 Spin structures on surface bundles

4.1 Spin structures on surfaces

In this section, we recollect the facts about spin structures on oriented closed surfaces.
They are mostly taken from the articles by Atiyah ([5]) and Johnson ([28]). An oriented
closed surface M of genus g has even Euler number 2 − 2g. Thus, the second Stiefel-
Whitney class of the tangent bundle is trivial, and the tangent bundle has a spin structure.
Thus an oriented surface is spin. The number of inequivalent spin structures on a closed
surface of genus g is 22g = ]H1(M ; F2).
Spin structures on surfaces have different descriptions. If M has a Riemannian metric,
hence a complex structure with a hermitian metric, then TM is a hermitian line bundle
in a canonical way. It was said in section 3.1 that a spin structure on a hermitian line
bundle L → X is nothing else than another hermitian line bundle S → X, together with
an isomorphism S ⊗C S → L.
Now, if we choose a complex structure on M , then TM is even a holomorphic line bundle.
Then a spin structure is also a holomorphic line bundle, in a natural way: call a local section
s of S holomorphic if its square s ⊗ s is a holomorphic section of TM . By the existence
of holomorphic square-roots, local holomorphic sections of S without zeroes always exist.
Thus S can be considered as a holomorphic line bundle, and the reference isomorphism
S ⊗ S → TM is holomorphic. The same discussion applies also to the cotangent bundle,
and for the purposes of complex analysis it is more common to consider the holomorphic
cotangent bundle ΛM of M as the basic object.
Furthermore, if M is compact, then a holomorphic isomorphisms between two isomorphic
holomorphic line bundles is unique up to multiplication with a constant in C×. Thus
the space of possible reference isomorphisms is connected. It follows that, as long as we
consider spin structures on a single surface, we can forget about the reference isomorphism.
Hence we can say:

Proposition 4.1.1. A spin structure on a compact Riemann surface M is nothing else than
a square-root S of the element ΛM ∈ Pic(M) (the holomorphic Picard group of the Riemann
surface M , see [20], p. 133) representing the canonical line bundle (alias cotangent bundle).

However, if we attempt to study families of Riemann surfaces, the nontriviality of the
topology of the space of these reference maps becomes important. But we already set up
the machine to handle this situation in the last sections.
There is an important topological invariant of spin structures on surfaces, its parity,
which we will call Atiyah-invariant, because it was studied by Atiyah in [5]. Let M
be a Riemann surface and let S be a spin structure in the sense above, i.e. a square
root of the canonical line bundle ΛM of M . Then we have the Cauchy-Riemann operator
∂̄S : C∞(M ;S) → C∞(M ;S⊗ΛM). By the Riemann-Roch-theorem, its Fredholm index is
zero.
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Definition 4.1.2. The Atiyah-invariant of the spin structure S is

At(M ;S) := dim ker ∂̄S (mod 2) ∈ Z/2.

A spin structure is called even (odd) if its Atiyah-invariant is even (odd).

It is not at all obvious that At(M ;S) is a topological invariant, i.e. invariant under defor-
mations of the spin structure. However, Atiyah proved an even stronger assertion:

Proposition 4.1.3. ([5]) At(M ;S) is invariant under spin-bordism.

I will sketch the proof. First, one needs to identify the quantity dim ker ∂̄S (mod 2) as a
mod 2 index of the Dirac operator associated to the spin structure (see [31]). This index
lies in the group KO−dimR M = KO−2(∗) ∼= Z/2. The Atiyah-Singer index theorem for
families of real elliptic operators ([7]) expresses this index as a KO-characteristic number
of the spin manifold M (Recall that a spin vector bundle is KO-oriented). As such a
characteristic number, it is an invariant under spin bordism.

Example 4.1.4. Let us consider the spin structures on a holomorphic torus. The holomor-
phic cotangent bundle of a torus is the trivial holomorphic line bundle. Thus the trivial
holomorphic line bundle can also be considered as a spin structure S0. It has Atiyah-
invariant 1.
There are three other spin structures. All of them have Atiyah-invariant zero, because a
holomorphic line bundle of degree zero cannot have nonzero holomorphic sections unless it
is trivial.

There is another description of the Atiyah-invariant which does not involve the choice of a
complex structure. Also, the treatment of the properties does not need index theory, but
only elementary homotopy constructions. We start with the following observation:

Proposition 4.1.5. The spin bordism group ΩSpin
1 of 1-manifolds has two elements. The

nontrivial element is represented by the circle, together with the trivial O(1)-bundle on it,
which is a spin structure.

For bordism-theoretical constructions, it is much more convenient to consider a spin struc-
ture of a manifold to be a spin-structure on its stable normal bundle. Both concepts are
equivalent. A normal spin structure on a manifold M can be restricted to any submanifold
N ⊂M , as long as the normal bundle of N in M is trivialized (or, at least, endowed with
a spin structure).
Now let M be a surface with a spin structure σ. For any embedded oriented 1-dimensional
submanifold N ⊂ M , the normal bundle has a preferred homotopy class of trivializations
and so we can restrict the spin structure of M to N . The bordism class of this spin
structure does not depend on the orientation of N . We define a map

Q = Qσ : H1(M ; F2) → F2
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by the following procedure. Let x ∈ H1(M ; F2). Choose a 1-dimensional submanifold
N ⊂M representing x and an orientation of N . Then set

Q(x) :=

{

0 if the spin manifold N is nullbordant,

1 otherwise.

The main theorem in the article [28] by Johnson is

Theorem 4.1.6. ([28])

1. The map Q is well-defined, i.e. it does not depend on the choices involved.

2. Q is a quadratic form, i.e. Q(a+ b) = Q(a)+Q(b)+a · b, where (a, b) 7→ a · b denotes
the intersection form on the homology group.

The next property is obvious from the definitions. If f is a diffeomorphism, then it acts
on the spin structures as well as on the first cohomology group.

Proposition 4.1.7. If f ∈ Diff(M) and σ is a spin structure on M , then f ∗Qσ = Qf∗σ.

For quadratic forms on a symplectic F2-vector space, the Arf-invariant is defined. A
symplectic form on an F2-vector space V is a nondegenerate symmetric bilinear form
(x, y) 7→ x · y ∈ F2 such that x · x = 0 for all x ∈ V . The vector space V , together
with the symplectic form, is called a symplectic vector space. A symplectic basis of V is
a basis (a1, . . . ag, b1, . . . bg) such that ai · aj = bi · bj = 0 for all i, j and ai · bj = δij. Any
symplectic vector space V has a symplectic basis and it has even dimension.

Definition 4.1.8. Let V be a symplectic F2-vector space and q : V → F2 be a quadratic
form (i.e. q(a+b) = q(a)+q(b)+a ·b). Let a1, . . . , ag, b1, . . . , bg be a symplectic basis for V .
Then the Arf-invariant is defined to be Arf(q) :=

∑g
i=1 q(ai)q(bi) ∈ F2. In multiplicative

notation, we set arf(q) := (−1)Arf(q) ∈ {±1}.

Proposition 4.1.9. If V = V1 ⊕ V2 is an orthogonal decomposition of a symplectic vector
space and if symplectic bases of both subspaces are chosen, then Arf(q|V1) + Arf(q|V2) =
Arf(q).

The proof is trivial.

Corollary 4.1.10. 1. arf(q) = 2dim V/2
∑

x∈V (−1)q(x).

2. Arf(q) does not depend on the basis used to define it.

Proof: The second statement is an immediate consequence of the first one, because it does
not involve the basis.
The first formula is proven by induction on the dimension of V , using Proposition 4.1.9
and an explicit consideration for dimV = 2.
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Examples 4.1.11. It is worth to give the examples of quadratic forms on a 2-dimensional
vector space. Let x, y be a symplectic basis. Then a form Q0 with Arf(Q0) = 0 is given by

Q0(x) = Q0(y) = Q(0) = 0;Q0(x+ y) = 1,

while another form Q1 with Arf(Q1) = 1 is given by

Q1(x) = Q1(y) = Q1(x+ y) = 1;Q1(0) = 0.

There are two other forms on a two-dimensional space with Arf-invariant 0, which are both
isomorphic to Q0.
One can check that the quadratic form Q0 is the quadratic form of the spin structure S0

from 4.1.4. The other three quadratic forms belong to the three even spin structures on
the torus.

Corollary 4.1.12. The Arf-invariant does not change under symplectic isomorphisms. In
particular, if σ is a spin structure and f ∈ Diff(M), then Arf(Qf∗σ) = Arf(Qσ).

Corollary 4.1.13. Let n > 0. The numbers of zeroes of a quadratic form q on a 2n-
dimensional symplectic vector space equals 2n−1(2n − 1) if arf(q) = 1 and 2n−1(2n + 1) if
arf(q) = −1. In particular, any quadratic form has a nontrivial zero (x 6= 0) except in the
case that n = 1 and arf(q) = −1.

Proof: Immediate from the first statement of Corollary 4.1.10.

Proposition 4.1.14. Let (V0, q0) and (V1, q1) be symplectic vector spaces with quadratic
forms. Then (V0, q0) ∼= (V1, q1) if and only if the dimensions and the Arf-invariants agree.

The proof is also very easy. First, the proof for dimV = 2 is clear by inspection. For higher
dimensions, decompose V into the direct sum of 2-dimensional spaces. The proposition
then follows from the fact that (F2

2, Q1) ⊕ (F2
2, Q1) ∼= (F2

2, Q0) ⊕ (F2
2, Q0), which can be

checked directly, and from Proposition 4.1.9.

Proposition 4.1.15. Let V be a symplectic vector space of dimension 2g and V ′ its dual
space. Denote by n−

g the number of quadratic forms on V with Arf-invariant −1 and by
n+

g the number of quadratic forms with Arf-invariant +1. Then n−
g = 2g−1(2g − 1) and

n+
g = 2g−1(2g + 1).

Proof: Since the difference of two quadratic forms is a linear form, the set of all quadratic
forms is a V ′-torsor, hence n+

g + n−
g = 22g. The statement is true for g = 1 by inspection.

Proceed by induction, using the addition formula 4.1.9.

The algebraic theory of the Arf-invariant can be applied to surfaces. Another result from
Johnson’s paper [28] is
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Proposition 4.1.16. The assignment of the quadratic form Qσ to a spin structure σ on
a surface is a bijection.

Proof: Because the number of spin structures and the number of quadratic forms are both
equal to 22g, it is sufficient to show that any quadratic form is the quadratic form of a spin
structure. First, we show this on the torus. There are two different spin structures on S1.
Taking cartesian products yields four spin structures on S1 × S1. It is straightforward to
check that these four spin structures realize the four different quadratic forms.
If g ≥ 2, then we decompose the surface M as the connected sum of g tori. This gives a
direct sum decomposition of H1(M ; F2) into 2-dimensional summands. Each summand has
a quadratic form, which can be realized by a spin structure. They can be glued together
to give the desired spin structure.

Corollary 4.1.17. Two spin structures σ0, σ1 on a surface M are conjugate under the
action of the mapping class group if and only if Arf(Qσ0) = Arf(Qσ0).

Proof: The ”only if” direction is trivial after all we have said above.
For the ”if” direction, note that by 4.1.14, there exists a symplectic isomorphism φ of
H1(M ; F2) with φ∗Qσ1 = Qσ0 . We use the fact that Γg → SP2g(Z) is surjective. This
can be seen by studying an explicit system of generators of SP2g(Z), which turn out to
realizable by mapping classes. Thus Γg → SP2g(F2) is also surjective.
Hence there exists an f ∈ Diff(M) whose action on cohomology is φ. It follows that
Qσ0 = f ∗Qσ1 = Qf∗σ1 . By Proposition 4.1.16, it follows that σ0 = f ∗σ1, as desired.

Proposition 4.1.18. Let M be a Riemann surface and let σ be a spin-structure. Then
At(M,σ) = Arf(Qσ).

Proof: First one proves that Arf(Qσ) is spin-bordism invariant. The method is the fol-
lowing. If (M0, σ0) and (M1, σ1) are spin-bordant, then M1 is obtained from M0 by a
sequence of surgeries which respect the spin structures. Using the algebraic properties of
the Arf-invariant, it follows that the Arf-invariant is preserved under all spin-surgeries.
Next, one proves that a spin surface with Arf-invariant zero is null-bordant. Using 4.1.13,
one sees that one can decrease the genus by one with a spin-surgery, except in the case
that (g,Arf) = (1,−1) and in the case (g,Arf) = (0, 1). The latter is nullbordant, while
the other one is not. So, any spin surface with odd Arf-invariant is bordant to the torus
with the odd spin structure.
Thus, the Atiyah-invariant as well as the Arf-invariant define homomorphisms ΩSpin

2 → Z/2.
The Arf-invariant is an isomorphism as we have seen before. The proposition follows, be-
cause the Atiyah-invariant is nontrivial by the discussion in 4.1.4.

Corollary 4.1.19. The second spin bordism group ΩSpin
2 has precisely 2 elements.

Proposition 4.1.20. Any surface bundle on S1 admits a spin structure.
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In view of Lemma 3.5.2, this proposition has an immediate corollary.

Corollary 4.1.21. Any diffeomorphism of M fixes at least one spin structure.

The corollary was proven by Atiyah ([5]) with algebraic methods. We present an easy
topological proof.

Proof of Proposition 4.1.20: Let p : M → S1 be an oriented surface bundle. The total
space M is a smooth oriented 3-manifold. A well-known theorem (due to Stiefel) says that
M is parallelizable. Now we see that TM ∼= M × R3 ∼= TvM ⊕ p∗TS1 ∼= TvM ⊕ (M × R).
Thus the Stiefel-Whitney classes of TvM are trivial. In particular, the surface bundle p is
spin.

4.2 The spin mapping class group

We now consider the general theory of smooth spin M -bundles in the case of (connected,
closed, oriented) surfaces of genus g ≥ 2. The smaller genera will be treated below in the
sections 5.2 and 5.3. Recall the diagram 3.3.9 of homotopy fiber sequences

RP∞ //

²²

BSPIN(M) ' H1(M ; F2) × RP∞

²²
B Sdiff(M ;σ)

²²

// B Sdiff(M)

²²
BDiff(M ;σ) // BDiff(M).

(4.2.1)

Proposition 4.2.2. Let M be an oriented surface of genus g ≥ 2.

1. B Sdiff(M) has two connected components B Sdiff(M)+ and B Sdiff(M)− belonging
to the different values of the Atiyah-invariant.

2. Both components are aspherical if g ≥ 2.

3. The fundamental group π1(B Sdiff(M)±) is a central Z/2-extension of Γ(M,σ), where
σ is a spin structure with Atiyah-invariant ±.

Proof: The diagram 3.3.10 becomes
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0 //

²²

0

²²
Z/2

∼= //

²²

Z/2

²²
π1(B Sdiff(M ;σ))

²²

∼= // π1(B Sdiff(M))

²²
Γ(M ;σ) //

²²

Γ(M)

²²
∗ //

²²

π0(BSPIN(M))

²²
∗

²²

// π0(B Sdiff(M)) = π0(BSPIN(M))/Γ(M)

²²
∗ // ∗

(4.2.3)

because Diff0(M) is contractible. All other homotopy groups are zero. By Corollary 4.1.17,
π0(BSPIN(M))/Γ(M) has exactly two elements, which are distinguished by their Atiyah-
invariants. This is enough to show the propostion.

Definition 4.2.4. Let g ≥ 0 and let ε ∈ Z/2. Let M be a surface of genus g and let σ be
a spin structure on M of Atiyah-invariant ε. Set Γε

g := Γ(M, ε). The spin mapping class

groups Γ̂ε
g is the fundamental group of B Sdiff(M)ε.

Remark 4.2.5. These groups were defined in other terms by Gregor Masbaum in [34].
The definition given is more conceptual.

The extension Z/2 → Γ̂ε
g → Γε

g is always nontrivial. This is Theorem 5.1.7 in the next
section.
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5 Some examples

5.1 Finite group actions and the nontriviality of the obstruction

class

Let G be a finite group and let M be a closed oriented surface of genus g. We will study
actions of G on M by orientation-preserving diffeomorphisms. Such an action induces a
surface bundle

E(G;M) := EG×G M → BG.

We deal with the question under which condition the surface bundle E(G;M) admits a
spin structure. The answer is:

Theorem 5.1.1. Let G be a finite group which acts faithfully on a closed surface M . Then
the induced surface bundle E(G;M) is spin if and only if all 2-Sylow-subgroups act freely
on M .

Since all 2-Sylow-subgroups of a finite group are conjugate, it suffices to check the criterion
for one of them.
Before I prove Theorem 5.1.1, I will give a few preparatory remarks. First of all, if G acts
on M by diffeomorphisms and if we choose a Riemannian metric h on M , then we can
average h over G:

hG :=
1

]G

∑

g∈G

g∗h.

The new metric hG is G-invariant. A metric defines an almost-complex structure on M ,
which is the same as a complex structure. So we can assume without loss of generality
that M is a Riemann surface and G a group of biholomorphic automorphisms.
Another important fact is that for any x ∈ M , the isotropy subgroup Gx, is cyclic. This
can be seen as follows. Choose an invariant Riemann metric. It is a well-known fact that
if an isometry of a connected Riemannian manifold fixes a point and if the differential at
this point is the identity, then the isometry must be the identity. Thus the fixed-point
representation Gx → SO(2) at x is faithful and Gx is cyclic.
Now we can prove Theorem 5.1.1. It is a combination of Proposition 5.1.2 and Proposition
5.1.4 below.

Proposition 5.1.2. Let G be a finite group acting on a closed oriented surface M . Let
H ⊂ G be a 2-Sylow-subgroup and j : H → G the inclusion map. Then E(G;M) is spin if
and only if E(H;M) = (Bj)∗E(G;M) is spin.

Proof: It is clear that E(H;M) is spin if E(G;M) is. To prove the converse, observe
that if we choose BH := EG/H, then Bj : BH → BG is a covering of odd finite degree.
Furthermore, we have a covering of total spaces p : E(H;M) → E(G;M) of the same
degree over Bj, which is nothing else than (EG ×M)/H → (EG ×M)/G. Note that
p∗TvE(G;M) ∼= TvE(H;M). Thus our proposition follows immediately from
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Claim. Let p : X → Y be a covering map of finite odd degree and let E → Y be an
oriented vector bundle such that p∗E is spin. Then E is spin.

To prove the claim, we use the transfer p! : H2(X,F2) → H2(Y,F2). Then p!p
∗ is the mul-

tiplication with the degree, hence the identity on H2(Y ; F2). Thus p∗ is injective, which
shows that E is spin.

Corollary 5.1.3. Let G be a finite group of odd order acting on a surface M . Then
E(G;M) is spin.

Proposition 5.1.4. Let G be a 2-group acting faithfully on a Riemann surface M . Then
E(G;M) is spin if and only if the G-action on M is free.

For the proof of Proposition 5.1.4, I will need two lemmata. If ρ : G → C× is a represen-
tation, let Cρ denotes the complex numbers with the given G-representation.

Lemma 5.1.5. Let G be a finite group. Then the map Hom(G,C×) → H2(G,Z), ρ 7→
c1(EG×G Cρ) is an isomorphism.

Proof: Since G is finite, Hs(BG,C) = 0 if s > 0 and the coefficient sequence Z → C → C×

yields an isomorphism H1(BG,C×) → H2(BG,Z). Further, there is an isomorphism
Hom(G,C×) ∼= H1(BG,C×). It is easy to see that the composition of both isomorphisms
is the Chern class homomorphism as above.

Lemma 5.1.6. Let ρ : C → C× be a faithful representation of a (necessarily cyclic) group
C of order 2k > 1. Then the second Stiefel-Whitney class of ρ is nonzero.

Proof: We must show that EC ×C Cρ is not a spin vector bundle.
Due to Lemma 5.1.5, it suffices to show that the representation ρ does not have a square
root. This is immediate: C contains a nontrivial element h of order 2. If ρ had a square
root σ, then ρ(h) = (σ(h))2 = 1 and ρ is not faithful.

Proof of Proposition 5.1.4: Let G act freely on M . Then there exists an unbranched
covering map f : E(G;M) → BG ×M/G over BG. In addition, f ∗(BG × T (M/G)) ∼=
TvE(G;M). Because M/G is a spin manifold, E(G;M) is spin.
Conversely, if the action is not free, then there is an action of a nontrivial cyclic subgroup
C ⊂ G which is not free. We prove that E(C;M) is not spin if C is a cyclic subgroup
of order 2k for some k ∈ N which does not act freely. By passing to a smaller nontrivial
subgroup, we can assume that a generator of C has a fixed point x ∈M .
The fixed point x yields a section s : BC → E(C;M) of the surface bundle. The pullback
s∗TvE(C;M) is isomorphic to the complex line bundle EC ×C Cρ, where ρ the fixed point
representation at x. The fixed point representation must be faithful. By Lemma 5.1.6,
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s∗TvE(C;M) is not a spin vector bundle and E(C;M) cannot be spin.

As an application of Theorem 5.1.1, we can prove that the obstruction cohomology class
c ∈ H2(BDiff(M ;σ); F2) from 3.5.5 is nonzero if M is an oriented closed surface and σ a
spin structure on M . Equivalently, the central extensions

Z/2 → Sdiff(M) → Diff(M)

and (if g ≥ 1)

Z/2 → Γ̂ε
g → Γε

g

are nontrivial.

Theorem 5.1.7. If M is a closed oriented surface and σ is a spin structure on M , then
the obstruction class c ∈ H2(BDiff(M,σ); F2) is nontrivial.

Proof: We need to show that there exist surface bundles whose monodromy fixes σ, but
which do not admit any spin structure. We have seen that any automorphism of a Riemann
surface fixes a spin structure (4.1.21). So any cyclic group action fixes a spin structure.
However, we need a sharper statement. Let f ∈ Diff(M) an element which acts trivially
on H1(M ; F2) and let σ be a spin structure. The formula 4.1.7 shows that Qσ = Qf∗σ. By
4.1.16, it follows that σ = f ∗σ. Thus f fixes any spin structure.
On any surface M , there exist hyperelliptic involutions. These are involutions, f ◦ f = id
on M , which are characterized by the following equivalent properties:

1. f has 2g + 2 fixed points.

2. f acts as − id on H1(M ; Z).

3. The quotient M/{id, f} is homeomorphic to CP1.

Let f be such an involution, determining an action Z/2 y M . Let σ be an arbitrary
spin structure on M . Then f acts trivially on H1(M ; F2) by 2, thus it fixes σ. Thus the
monodromy of the bundle E(Z/2;M) fixes σ. Nevertheless, f has fixed points and so, by
Theorem 5.1.1, E(Z/2;M) does not have a spin structure.

5.2 Sphere bundles

Recall Smales theorem (Theorem 2.1.2) which says that the inclusion SO(3) → Diff(S2) is
a homotopy equivalence. In more geometric terms, this means that any bundle of surfaces
of genus g = 0 is isomorphic, as an oriented S2-bundle, to the unit sphere bundle of a 3-
dimensional Riemannian vector bundle. Alternatively, since SO(3) is a maximal compact
subgroup of P SL2(C), any surface bundle of genus zero can be viewed as a CP1-bundle with
structural group P SL2(C). It is not true, however, that any CP1-bundle is the projective
bundle of a 2-dimensional complex vector bundle.
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Since S2 is simply-connected, there is a unique spin structure σ0 on it. This is fixed by any
diffeomorphism. The spin diffeomorphism group fits into an exact sequence

Z/2 → Sdiff(S2, σ0) → Diff(S2). (5.2.1)

Proposition 5.2.2. In the diagram below, all horizontal maps are homotopy equivalences.

Z/2

²²

Z/2

²²

Z/2

²²
SU(2) //

²²

SL2(C) //

²²

Sdiff(S2, σ0)

²²
SO(3) // P SL2(C) // Diff(S2).

Proof: The left half of this diagram does not need explanation, and we only consider the
right half. We have already seen that the extension on the right-hand-side is nontrivial
(5.1.7). However, there is a more direct and explicit way of seeing this.
Let us regard σ0 as a complex line bundle (a square-root of the cotangent bundle), or bet-
ter, as a C×-principal bundle. Then its total space is C2 \ {(0, 0)}, and the bundle map to
CP1 is the defining map (alias the Hopf fibration). The group SL2(C) acts in the usual way
on this total space, and this shows that SL2(C) is a subgroup of Sdiff(S2, σ0). Certainly,
the element −1 acts as the element in the kernel of Sdiff(S2, σ0) → Diff(S2). This provides
the diagram; and the proposition now follows from Smales theorem.

Proposition 5.2.3. Let π : E → B be an S2-bundle and let V → B be a 3-dimensional
vector bundle whose sphere bundle is E. Then the following conditions are equivalent.

1. E has a spin structure.

2. V is a spin vector bundle.

3. There exists a 2-dimensional complex vector bundle U → B, such that E is isomor-
phic to the projective bundle PU → B and such that c1(U) = 0.

Because of 1 and 2, the class c ∈ H2(BDiff(S2),F2) ∼= H2(B SO(3); F2) ∼= F2 agrees with
w2.

Proof: We have seen before that the existence of a spin structure on a CP1-bundle is
equivalent to the existence of a lifting of the structural group from P SL2(C) to SL2(C).
This shows the equivalence of 1 and 3. Because the maximal compact subgroup of SL2(C)
is Spin(3) = S3, the equivalence of these with 2 also follows immediately.
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The class of projective bundles of two-dimensional complex vector bundles is slightly larger
than the class of spin-S2-bundles. There is an obstruction for the lifting of bundles of pro-
jective spaces to vector bundles which lies (universally) in H3(BP SL2(C); Z) ∼= Z/2. It can
be identified with βc, the image of c ∈ H2(BP SL2(C); F2) = H2(BDiff(S2); F2) under the
Bockstein homomorphism for the short exact coefficient sequence 0 → Z → Z → F2 → 0.
Now let E → B be an oriented surface bundle of genus zero. Let V → B a 3-dimensional
oriented real Riemannian vector bundle whose unit sphere bundle is E. We can express
the characteristic classes of the surface bundle π : E → B by the characteristic classes of
the vector bundle V .

Proposition 5.2.4. 1. The symplectic classes of π : E → B are trivial.

2. The odd MMM-classes vanish, κ2k+1 = 0.

3. The even MMM-classes are related to the Pontryagin classes of V by the formula:
κ2k = 2p1(V )k.

Proof: The first statement is trivial, since the first homology group of a sphere is zero.
We prove the other statements for the universal case, that is: V := E(SO(3); R3) =
E SO(3) ×SO(3) R3 → B SO(3) and E := E(SO(3); S2). The total space of the universal
surface bundle on B SO(3) is E SO(3) ×SO(3) SO(3)/ SO(2) = E SO(3)/ SO(2) ' CP∞.
The unit tangent bundle of S2 is diffeomorphic to SO(3); it is a free transitive SO(3)-space
under the action of the isometries of S2. Hence the total space of the vertical unit tangent
bundle of the universal S2-bundle is contractible. The only S1-bundles over CP∞ whose
total spaces are contractible are the universal S1-bundle and its dual, and we can identify
the vertical tangent bundle of the universal S2-bundle with the universal complex line bun-
dle or its dual. This ambiguity will be resolved at the end of the proof.
If z is the standard generator of H2(CP∞; Z), namely, the first Chern class of the universal
line bundle (E(S1; C)), then the Euler class e of the vertical tangent bundle is ±z.
The projection map q : CP∞ → B SO(3) is homotopic to the map induced by the in-
clusion SO(2) → SO(3) of the standard maximal torus in SO(3). If we take the real
standard representation of SO(3) on R3, complexify it and restrict it to the maximal
torus, we obtain a sum of the trivial representation, the standard representation of S1

and its dual. Let p1 ∈ H4(B SO(3); Z) be the universal first Pontryagin class. Then
q∗(p1(V )) = −c2(q

∗V ⊗C) by the definition of the Pontryagin classes. But −c2(q
∗V ⊗C) =

−c2((γ1⊕R)⊗C) = −c2(γ1⊕γ̄1⊕C) = −c1(γ1)c1(γ̄1) = −z(−z) = z2. Thus q∗(p1(V )) = z2.
We are ready to compute the MMM-classes:
κn+2 = q!((±z)

n+3) = (±)n+3q!(q
∗(p1(V )zn+1) = (±)n+1p1(V )q!(z

n+1) = p1(V )κn. From
the facts that κ0 = +2 = χ(S2) and κ1 = 0 (since H2(B SO(3),Z) = 0) the claim follows
by induction.

If the S2-bundle is given as a projective bundle PW of a complex 2-dimensional vector
bundle W , then we can give an expression of its MMM-classes in terms of the Chern
classes of W . By Proposition 5.2.4, it suffices to compute the first Pontryagin class of a
certain three-dimensional vector bundle V , depending on W .
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Proposition 5.2.5. Let W → B be a two-dimensional complex vector bundle. Then the
MMM-classes of the projective bundle PW (it is a surface bundle of genus 0) are given by
the formulae κ2k+1 = 0 and κ2k = 2(c1(W )2 − 4c2(W ))k.

Proof: We can assume that the structural group of W is reduced to U(2). Let Q be
a principal U(2)-bundle for W . Then, as an S2-bundle, PW is the same as SV , where
the 3-dimensional vector bundle V is obtained by V := Q ×U(2) R3. Here U(2) acts on
R3 via the map U(2) → PU(2) ∼= SO(3) or, more geometrically by linearly extending
the action on S2 by Möbius transformations. For the calculation of p1, we only need the
complexification of V , which isQ×U(2)C3

ρ, where ρ : U(2) → GL3(C) is the complexification
of the representation above.
A character calculation, carried out on the standard maximal torus of U(2), shows that
ρ is equivalent to Sym2(D) ⊗ (det(D))−1, where D is the defining representation of U(2).
In other words, we see that VC = Sym2(W ) ⊗ (det(W ))−1, whence p1(V ) = −c2(VC) =
−c2(Sym2(W ) ⊗ det(W )−1).
By the splitting principle, we can assume that W is a sum of line bundles, W = E0 ⊕ E1.
Then

Sym2(W ) ⊗ det(W )−1 ∼= C ⊕ E0 ⊗ E∗
1 ⊕ E1 ⊗ E∗

0 .

It follows that p1(V ) = −c2(C ⊕ E0 ⊗ E∗
1 ⊕ E1 ⊗ E∗

0) = −c2(E0 ⊗ E∗
1 ⊕ E1 ⊗ E∗

0) =
−c1(E0 ⊗ E∗

1)c1(E1 ⊗ E∗
0) = c1(E0 ⊗ E∗

1)
2. This is the same as (c1(W ))2 − 4c2(W ).

We have seen that Sdiff(S2, σ0) ' SU(2) = S3. But the classifying space BS3 is the same
as the infinite quaternionic projective space HP∞, whose integral cohomology is

H∗(HP∞; Z) ∼= Z[u]; deg(u) = 4.

The generator u can be chosen to be the second Chern class of the universal 2-dimensional
vector bundle V := ESU(2) ×SU(2) C2 → BSU(2).

Proposition 5.2.6. With the choice of u specified above, the MMM-classes of the universal
spin-S2-bundle on HP∞ are κ2n−1 = 0 and κ2n = (−1)n22n+1un.

Proof: This is immediate from Proposition 5.2.5, because the universal S2-bundle on HP∞

is the projective bundle of the complex vector bundle V .

There is a more direct and easier way to see this, at least up to sign: Use the fact that
the total space of PV is homotopy equivalent to CP∞ and use the Gysin-sequence of the
oriented sphere bundle S2 → CP∞ → HP∞.
Now let us calculate the analytic MMM-classes (see 6.9.6) of sphere bundles.

Proposition 5.2.7. Let E be the unit sphere bundle in a 3-dimensional oriented real vector
bundle V . Then for n ≥ 1, the analytic MMM-classes are given by λn(E) = sn(V ⊗R C).
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Proof. The only nontrivial summand in the index bundle defining the analytic classes is
the vector bundle of holomorphic tangent vector fields to the fibers of E. Recall that
H0(CP1,OTCP1) = H0(CP1,O(2)) ∼= Sym2(C2), the vector space of homogeneous polyno-
mials of degree 2 in 2 variables. The P SL2(C)-action is given by substituting the variables.
The restriction of this representation to the maximal compact subgroup SO(3) ⊂ P SL2(C)
is the complexification of the defining representation of SO(3). If Q is a P SL2(C)-principal
bundle for E, it follows that λn(E) = sn(Q×P SL2(C) Sym2(C2)) = sn(V ⊗R C).

Because H2(B SO(3),Z) = 0, we have λ1 = 0. Note that the class c3(V ⊗ C) is 2-torsion,
but does not vanish. We can compute λ2 = −2c2 = κ2. For the determination of the
values of the higher λn, we use the Newton formula ([36], p.195). In our case it states that
λn + c2λn−2 − c3λn−3 = 0. Inductively, one can see that λn = κn for n = 0, 1, 2, 4 and that
the difference is annihilated by 2. However, the difference vanishes only if c3(V ⊗ C) = 0.
The argument in the proof of Proposition 5.2.5 shows that this is the case for example if
the surface bundle is the projective bundle of a 2-dimensional complex vector bundle.

5.3 Torus bundles

For torus bundles, things behave completely different. Let T = C/(Z⊕iZ) be the standard
torus. The starting point for our considerations is the short exact sequence of topological
groups

Diff0(T ) → Diff(T ) → SL2(Z),

where Diff0(T ) is the group of diffeomorphisms homotopic to the identity and the homo-
morphism Diff(T ) → SL2(Z) is induced by the action on the first homology group of T .
There is a splitting SL2(Z) → Diff(T ) given by the linear action of SL2(Z) on C2. Thus
there is semidirect product decomposition Diff(T ) ∼= Diff0(T )oSL2(Z), where SL2(Z) acts
on Diff0(T ) by conjugation. Since T is a connected Lie group, there is a homomorphism
j : T → Diff0(T ), which is a homotopy equivalence by the work of Earle and Eells (2.1.2).
Moreover, j is SL2(Z)-equivariant. Hence, the short exact sequence above is homotopically
equivalent to the right-split exact sequence

T → T o SL2(Z) → SL2(Z).

It follows that the homotopy groups of BDiff(T ) are given by

πr(BDiff(T )) ∼=











SL2(Z), r = 1,

Z2, r = 2,

0, otherwise.

(5.3.1)

Although Diff(T ) ' SL2(Z) × T , the classifying space is not a product. Instead we have:

Proposition 5.3.2. The action of π1(BDiff(T )) = SL2(Z) on the second homotopy group
Z2 is given by the natural action of SL2(Z).
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More precisely, BDiff(T ) ' E SL2(Z)×SL2(Z)BT and the total space of the universal surface
bundle is equivalent to E SL2(Z) ×SL2(Z) ET .

Proof: It follows from the general construction of classifying spaces for topological groups
G, that EG is not only a right G-space, but also a left Aut(G)-space, both actions commute
and EG → BG is Aut(G)-equivariant. See [49] or any other source on the simplicial
construction of EG and BG for details.
Because SL2(Z) = Aut(T ), there is a torus bundle

E SL2(Z) ×SL2(Z) ET → E SL2(Z) ×SL2(Z) BT.

I claim that this is a universal one, or, equivalently, that its classifying map

E SL2(Z) ×SL2(Z) BT → BDiff(T )

is a homotopy equivalence. This is clear, since if Γ is a discrete group acting on another
group A, then the classifying space of the semidirect product G = A o Γ is given by
EΓ ×Γ BA.

Lemma 5.3.3. If π : E → B is a bundle of complex tori, then π∗V1(E) ∼= Λv(E) (the
notations are explained in section 2.4).

Proof: π∗V1(E) is the complex vector bundle on E whose fiber at a point e ∈ E consists
of all holomorphic 1-forms ω on the Riemann surface Eπ(e). Since the vector space of holo-
morphic 1-forms on a torus is 1-dimensional and since a holomorphic 1-form on a torus does
not have a zero, the evaluation map π∗V1(E) → ΛvE; (ω, e) 7→ ω(e) is an isomorphism.

Corollary 5.3.4. For torus bundles, all topological MMM-classes κn vanish (in integral
cohomology).

Proof: Lemma 5.3.3 implies that c1(TvE) = π∗c1(V1). Thus
κn(π) = π!((c1(TvE))n+1) = π!(π

∗(c1(V1))
nc1(TvE) = (c1(V1))

nπ!(c1(TvE)).
But π!(c1(TvE)) = κ0 = 0 (which is the Euler number of the fibers).

For the computation of the symplectic classes and of the analytic MMM-classes, we need
a description of the Hodge bundles of the universal torus bundle.
For tori, one has dimVn = 1 for all n, and the the natural homomorphisms

Vk ⊗ Vl → Vk+l (5.3.5)

are isomorphisms of 1-dimensional vector bundles. Thus it is sufficient to work out the
case of the bundle V1.
Let φ : BDiff(T ) → BU(1) be the classifying map for the first Hodge bundle. Because it
is induced by the action of Diff(T ) on H1(T ; Z), we conclude that φ factors through the
map B SL2(Z) → B SL2(R) ' BU(1). Thus it suffices to consider torus bundles with a
section, i.e. with structural group SL2(Z). The cohomology of SL2(Z) is well-known. In
the fanciest language, the result is
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Proposition 5.3.6. The abelianization of SL2(Z) is a map SL2(Z) → Z/12. The induced
map B SL2(Z) → B(Z/12) is a HZ-localization in the sense of homotopy theory (see [11]).
The compositions SL2(Z) → Z/12 → SL2(R) (take the standard representation of Z/12 on
R2) and SL2(Z) → Sl2(R) give homotopic maps on the level of classifying spaces.

The proof relies on the well-known fact that SL2(Z) is isomorphic to the amalgamated
product Z/4 ∗Z/2 Z/6 and the Mayer-Vietoris sequence for group cohomology.
As a consequence, H∗(B SL2(Z); Z) ∼= H∗(BZ/12; Z) ∼= Z[u]/(12u), deg(u) = 2. The
generator u can be chosen as the Euler class of the representation SL2(Z) → GL+

2 (R).
Let us compute the first symplectic class γ1 ∈ H2(B SL2(Z); Z). The bundle of first
cohomology groups E SL2(Z) ×SL2(Z) H

1(T,R) = E SL2(Z) ×SL2(Z) R2 has Euler class u,
by definition. The choice a complex structure on the fibers of the universal torus bundle
gives rise to a complex structure on this real oriented vector bundle. With this complex
structure, the resulting complex line bundle is isomorphic to the first Hodge bundle. Thus

Corollary 5.3.7. We have the equality γ1 = u ∈ H2(B SL2(Z),Z).

Now we are able to compute the analytic MMM-classes (see 6.9.6) of torus bundles. The
result is

Proposition 5.3.8. For a torus bundle, we have λn = (−1)n(1 − 2n)un.

This is a trivial consequence of the definitions, of 5.3.5, 5.3.6 and 5.3.7.
Next, we turn to the question of the existence of a spin structure on a torus bundle. The
odd spin structure σ on a torus is fixed by any diffeomorphism, because it is the unique
spin structure with Atiyah invariant 1. It can be described as the trivial holomorphic line
bundle or as the spin structure which corresponds to the Lie group framing on T under
the isomorphism Ωfr

2
∼= ΩSpin

2 . This spin structure is called the odd spin structure.

Corollary 5.3.9. A torus bundle → B has a spin structure if the bundle V1(E) is a spin
vector bundle. Thus, a torus bundle has a spin structure if the first symplectic class γ1 is
divisible by two.

Proof: Apply Lemma 5.3.3.

Proposition 5.3.10. If a torus bundle has an odd spin structure, then γ1 is divisible by 2.

Proof: The space of holomorphic sections of an odd spin structure S on a complex torus T
is one-dimensional and the map H0(T,OS) ⊗H0(T,OS) → H0(T,ΛT ) is an isomorphism.
Therefore the line bundle V1 on the base of the surface bundle is spin.

Proposition 5.3.11. For the odd spin structure σ on T , we can identify the classes c and
γ1 (mod 2) ∈ H2(BDiff(T ;σ); F2).
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Proof: This is not completely obvious from Propositions 5.3.9 and 5.3.10, because one
needs to guarantee that the spin structure provided by 5.3.9 is odd. This follows from the
computation of H2(BDiff(T ); F2) ∼= H2(B SL2(Z); F2) ∼= Z/2. The universal class γ1 is
nonzero (see 5.3.7) and the class c is also nonzero (see 5.1.7).

Corollary 5.3.12. A torus bundle has an odd spin structure if and only if γ1 = 0 (mod 2).

The case of even spin structures seems to be more difficult.
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6 The stable homotopy theory of Riemann surfaces

6.1 The Becker-Gottlieb-Transfer

In this section, π : E → B will always denote a smooth bundle of d-dimensional closed
manifolds. The fiber is denoted byM ; and we denote byQ the associated Diff(M)-principal
bundle. Thus E = Q ×Diff(M) M and TvE = Q ×Diff(M) TM . In this section, we make no
assumptions on the orientability of M ; this will enter the picture later. Our first goal is
to recapitulate the definition of the Becker-Gottlieb transfer (see [9]). Becker and Gottlieb
gave the definition only in the special case of a compact structural group; this restriction
is unnecessary. We do not assume that B is a manifold, we merely want to assume that B
is not too large. More prescisely:

Assumption 6.1.1. There exists an exhaustion3 B(0) ⊂ B(1) ⊂ . . . of B and there exist
continuous maps jn : E(n) := π−1(B(n)) → Rn, such that the following conditions are
satisfied.

• For any x ∈ B(n), jn|π−1(x) is a smooth embedding and all derivatives of jn in fiber-
direction are continuous.

• The maps jn are compatible, i.e. jn+1|E(n) = jn.

Lemma 6.1.2. If B is a countable CW-complex, then 6.1.1 is satisfied.

Proof: Consider the space Emb(M,Rn) of smooth embeddings, endowed with the weak
Whitney C∞-topology. It has a continuous action of the diffeomorphism group Diff(M).
By Whitney’s embedding theorem, Emb(M,Rn) is r-connected if 2d + 2 + r ≤ n. Thus
there exists a section in this bundle over the space B(n−2d−2), which can be chosen to extend
a given section over smaller skeleta. On the other hand, a section over B(n) is nothing else
than a map jn whose existence is asserted in the lemma.

Remark 6.1.3. The space Emb(M ; R∞) := colimn→∞ Emb(M ; Rn) is weakly contractible
by Whitney’s embedding theorem (i.e.: all homotopy groups are trivial) and it carries a
free action of Diff(M).
One can show that the quotient map Emb(M ; R∞) → Emb(M ; R∞)/Diff(M) is a Diff(M)-
principal bundle. Thus Emb(M ; R∞) is a model for E Diff(M). It follows that the universal
smooth M -bundle satisfies Assumption 6.1.1.

With the given exhaustion of B and E, we have models for the suspension spectrum of B
and E. Namely, we set

(Σ̃∞B+)n := ΣnB
(n)
+

3We cannot assume that all B(i) are nonempty.

55



and similarly for E. There is a map of spectra Σ̃∞B+ → Σ∞B+, which is a homotopy
equivalence in the sense of [2]. Consequently, our notation will not distinguish between
these two spectra. Next, we define the Thom spectrum of the vertical normal bundle. The
embedding jn : E(n) → Rn realizes the vertical tangent bundle TvE

(n) as a d-dimensional
subbundle of E(n) ×Rn. We now define the stable vertical normal bundle −TvE of π. It is
not an honest vector bundle, but only a stable vector bundle.

Definition 6.1.4. Let X = (X0 ⊂ X1 ⊂ X2 ⊂ . . .) be an infinite sequence of topological
spaces. Then a stable real vector bundle of dimension r on X is a sequence of real vector
bundles Vn → Xn of dimension n + r, together with a choice of isomorphisms Vn ⊕ R ∼=
Vn+1|Xn .

Definition 6.1.5. Let X be a sequence of spaces as above and let V be a stable vector
bundle. Then the Thom spectrum Th(V ) is the spectrum whose nth space is the Thom
space Th(Vn) of Vn and whose structural maps are given by the inclusions

Σ Th(Vn) ∼= Th(Vn ⊕ R) ∼= Th(Vn+1|Xn+1) → Th(Vn+1).

We set Xn := E(n) and

(−TvE)n := (TvE
(n))⊥ ⊂ E(n) × Rn.

This is an (n−d)-dimensional vector bundle; and due to the compatibility condition in As-
sumption 6.1.1, there are obvious bundle isomorphisms εn : (−TvE)n⊕R ∼= (−TvE)n+1|E(n) .
Thus the vector bundles (−TvE)n and the isomorphisms define a stable vector bundle −TvE
of dimension −d.
The inclusion of (−TvE)n into E(n) × Rn as a subbundle yields a map of spectra

inc : Th(−TvE) → Σ∞E+.

Now we choose tubular neighborhoods of the submanifold jn(Ex) for all x ∈ B. This can
be done in a continuous way, since the space of all tubular neighborhoods is a contractible
space (this follows from [25], Theorem 5.3 on p. 112). The result is an open embedding of
(−TvE)n into B(n) × Rn. The Pontryagin-Thom collapse construction now gives a map

ΣnB
(n)
+ → Th(−TvE)n,

which yields a map of spectra

prt : Σ∞B+ → Th(−TvE),

the pretransfer.

Definition 6.1.6. The Becker-Gottlieb-transfer is the map of spectra

tr = trπ := inc ◦ prt : Σ∞B+ → Σ∞E+.

It is not difficult to show that different choices of the exhaustion and of the embeddings in
Assumption 6.1.1 leads to homotopy equivalent Thom spectra and to homotopic transfers.
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6.2 The pushforward

In this section, we let A be a multiplicative cohomology theory alias a ring spectrum. Let
u ∈ Ãr(Sr) be the rth suspension of the class 1 ∈ Ã0(S0). Let V → X be a vector bundle
of rank r. For x ∈ X, we can identify Vx with Rr. This gives a map of Thom spaces
jx : Sr → Th(V ). An A-orientation or an A-Thom class of V is a class t ∈ Ãr(Th(V )),
such that for any point x ∈ X, j∗xt = ±u (see [46], Chapter V, for information about this).
An A-oriented vector bundle V → X has an A-theory Euler class : Let s : X → Th(V ) be
the zero section and set

χA(E) := s∗t ∈ Ad(X).

The notion of an A-orientation can be generalized to stable vector bundles, but this re-
quires another notion which is important in the present context, the spectrum cohomology.
Let Z = (Zn, zn)n∈N be a spectrum. Then the structural maps zn : ΣZn → Zn+1 induce
maps Ar+n+1(Zn+1) → An+d+1(ΣZn), which can be composed with the suspension isomor-
phism An+d+1(ΣZn) ∼= An+d(Zn) to give maps Ar+n+1(Zn+1) → Ar+n(Zn). The spectrum
cohomology of Z is the inverse limit of this inverse system. For suspension spectra Σ∞X+,
the spectrum cohomology agrees with the cohomology of the space X, and we will not
distiguish between them.
There are maps (see [46], p. 70 ff)

σ : Ar(Z) → Ar(Ω∞Z). (6.2.1)

If X is a space, Z a spectrum and φ : Σ∞X+ → Z a map, then denote by φ[ : X → Ω∞Z

the adjoint of φ. It is trivial to check from the definitions that the diagam

A∗(Σ∞B+) A∗(Z)
φ

oo

σ

²²
A∗(B) A∗(Ω∞Z)

φ[

oo

(6.2.2)

is commutative.
We say that an A-orientation of the d-dimensional stable vector bundle V on X is a
spectrum cohomology class t ∈ Ãd(Th(V )), which restricts to an A-orientation of the
vector bundle Vn for every n ∈ N.
A stable vector bundle does not have an Euler class, because there is no spectrum map
Σ∞X+ → Th(V ) induced by the zero-section.
A-orientations give rise to Thom isomorphisms A∗(Σ∞X+) → Ã∗+d(Th(V )).
We say that a manifold bundle π : E → B is A-oriented if its vertical tangent bundle TvE
is A-oriented. By [46], Proposition 1.10, p. 309, this is equivalent to the existence of an
A-orientation of the stable vertical normal bundle of E.
Let π : E → B be an A-oriented bundle of d-dimensional smooth manifolds. Then the
Thom class defines an isomorphism
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Φ : A∗(Σ∞E+) → A∗−d(Th(−TvE)).

Definition 6.2.3. If the vertical tangent bundle of π is orientable with respect to the
cohomology theory A, then the A-theory pushforward (or umkehr map) is

π! := prt∗ ◦Φ : A∗(E) → A∗−d(B).

The relation between the pushforward map and the Becker-Gottlieb transfer can be stated
as follows:

Proposition 6.2.4. ([9]) For all x ∈ A∗(E), one has

trf∗(x) = π!(χA(TvE)x).

The proof in [9] is only formulated for bundles with compact structural groups, but the
proof easily generalizes if one uses the definition of the Becker-Gottlieb transfer given in
this chapter.
The issue of the multiplicative behavior of the transfer is slightly subtle. In general, the
cohomology A∗(E) does not admit a cup-product, although A is a ring spectrum. However,
if there is a diagonal E → E ∧ E, then there is a multiplication on A∗(E). This happens
if E is the suspension spectrum of a space; and then the product in spectrum cohomology
agrees with the usual cup-product. If f : E → F is a map of spectra with diagonals,
then f induces a ring homomorphism if f commutes with the diagonals. This happens,
for example, if f is of the form f = Σ∞g for a map g between spaces. The transfer is
not of this form and does not commute with the diagonals. So we cannot expect that
trf∗(xy) = trf∗(x) trf∗(y). In particular, we cannot expect that trf∗(1) = 1.

6.3 The universal Becker-Gottlieb transfer

Now we discuss the universal Becker-Gottlieb transfer. Let r : F → BGLd(R) be a Serre
fibration, for example F = B SO(d) or F = B Spin(d). Then we define a spectrum GF

−d as
follows.
Let Grd(Rn) be the Grassmann manifold of d-dimensional (unoriented) subspaces of Rn.
Let Grd(Rn) × Rn ⊃ Ud,n → Grd(Rn) be the tautological d-dimensional vector bundle,
which is classified by a map λ : Grd(Rn) → BGLd(R) and let U⊥

n,d be the orthogonal
complement of Ud,n, which is (n − d)-dimensional. Define Bn,d to be the pullback in the
diagram

Bn,d
//

θn,d

²²

F

r

²²
Grd(Rn) λ // BGLd(R).

(6.3.1)
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It is obvious that there are inclusion maps Bn,d → Bn+1,d and that the vector bundles
θ∗n,dU

⊥
d,n → Bn,d form a stable vector bundle θ∗U⊥

d of dimension −d. Of course, replacing
the general linear groups by the orthogonal groups does not change anything essential.

Definition 6.3.2. ([19]) Let F be a fibration as above. The spectrum GF

−d is the Thom
spectrum of the stable vector bundle θ∗U⊥

d .

The maps θ∗n,dU
⊥
d,n → θ∗n,dU

⊥
d,n ⊕ θ∗n,dUd,n = Bn,d × Rn → F × Rn define a map of spectra

ω : GF

−d → Σ∞F+. (6.3.3)

Now we consider a manifold bundle π : E → B with d-dimensional fibers. A tangential
F-structure on E is a lift s

F

rd

²²

E

s

::
t

t
t

t
t

t
t

t
t

t
t

TvE
// BGLd(R)

of the classifying map of the vertical tangent bundle of E. Examples are ordinary orien-
tations of the vertical tangent bundle and spin structures on the vertical tangent bundle.
A tangential F-structure defines a map of spectra η : Th(−TvE) → GF

−d as follows. The
Gauß map TvE : E(n) → Grd(Rn) defined by the embedding Grd(Rn) from Assumption
6.1.1 together with the lift s gives us a map E(n) → Bn,d, which is covered by a bundle
map (−TvE)n → θ∗n,dU

⊥
d,n. This is a map of stable vector bundles. Thomification yields

the desired map of spectra.
Moreover, the tangential F -structure on E defines a spectrum map Σ∞E+ → Σ∞F+, also
denoted by s. The diagram

Σ∞B+
prt // Th(−TvE) inc //

η

²²

Σ∞E+

s

²²
GF

−d
ω // Σ∞F+

(6.3.4)

is obviously commutative. The adjoint of the map α] := η ◦ prt : Σ∞B+ → GF

−d will be
denoted by

α = α(E,π,B) : B → Ω∞GF

−d.

We call this map the Madsen-Tillmann map of the manifold bundle with F-structure π.
Now we assume that F-bundles are A∗-oriented, in other words, there exists an A∗-
orientation of the universal bundle r∗E(GLd(R),Rd) on F. If π : E → B is a d-manifold
bundle with a tangential F-structure and if c ∈ Al(F) is a characteristic class, then we can
define generalized MMM-classes by the formula

π!(χA(TvE) · c(TvE)) ∈ Al−d(B).
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The relation between the generalized MMM-classes and the transfer is now easy to explain.

Proposition 6.3.5.

π!(χA(TvE) · c(TvE)) = η∗ ◦ prt∗ ◦ω∗(c).

This follows from a trivial diagram chase in the diagram 6.3.4 and from Proposition 6.2.4.
The case d = 2 and F = SO(2) is most important for us. If we set A = HZ and c = zn = cn1 ,
we obtain

κn = (α])∗(ω∗zn). (6.3.6)

We emphasize again that (α])∗ ◦ ω∗ is not multiplicative.

6.4 Relation to bordism theory

A particularly important case of a fibration F → BGLd(R) arises from stable fibrations over
BGL(R). By this term, we mean a sequence of spaces Fd, fibrations rd : Fd → BGLd(R)
and maps id : Fd → Fd+1, making the following diagram strictly commutative

Fd

rd

²²

id // Fd+1

²²
BGLd(R) // BGLd+1(R).

(6.4.1)

The examples one should have in mind are Fd := B SO(d) and Fd := B Spin(d). Although

it is inprecise notation, we will write GF

−d := GFd

−d, GSO
−d := GB SO(d)

−d and GSpin
−d := GB Spin(d)

−d ,
because there is no danger of confusion. One can define maps of spectra

ιd : GF

d → ΣGF

−(d+1)

by the following construction. Adding the span of the last unit vector en+1 ∈ Rn+1 gives a
map Grd(Rn) → Grd+1(Rn+1), which is covered by a bundle map U⊥

d,n → U⊥
d+1,n+1. Using

the commutative diagrams 6.4.1 and

Grd(Rn)

²²

// BGLd(R)

²²
Grd+1(Rn+1) // BGLd+1(R),

(6.4.2)

one constructs maps

(GF

−d)n = Th(θ∗n,dU
⊥
d,n) → Th(θ∗n+1,d+1U

⊥
d+1,n+1) = (GF

−(d+1))n+1

which are compatible with the structural maps of the spectra and give the requested map.
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Proposition 6.4.3. ([19])

1. The homotopy colimit of the sequence GF

−d → ΣGF

−(d+1) → Σ2GF

−(d+2) . . . is the uni-

versal Thom spectrum Σ−dMF.

2. There is a cofiber sequence of spectra

Σ−1GF

−(d−1)

ιd // GF

−d
ω // Σ∞Fd,+,

where ω is the map described in 6.3.3.

The proof can be found (modulo details) in [19]. It is also instructive to make the composite
of all the ι’s explicit. This is a map λ : GF

−d → Σ−dMF. The bundle θ∗n,dU
⊥
n,d → Bn,d is an

n− d-dimensional vector bundle which has an F-structure, that is a lift

Fn−d

rn−d

²²
Bn,d

88
q

q
q

q
q

q
q

q
q

q
q

// BGLn−d(R).

On the level of Thom spaces, we obtain a map

(GF

−d)n := Th(θ∗n,dU
⊥
n,d) → Th(r∗n−dE(GLn−d(R); Rn−d)) = (MF)n−d = (Σ−dMF)n,

which define the spectrum map λ.
Let us consider the whole construction for the case that the base space B is a point. Let M
be a d-dimensional manifold with a normal and tangential F-structure and let π : M → ∗
be the constant map. Then we have maps

Σ∞B+ Σ∞S0
α]

(M,π,∗)// GF

−d
λ // Σ−dMF, (6.4.4)

or in other words; an element in πd(MF), which is the bordism group ΩF

d of d-dimensional
manifolds with a normal F-structure by the Pontryagin-Thom theorem. The following is
not surprising at all; and the proof is merely an unwinding of all the definitions.

Proposition 6.4.5. The element in πd(MF) ∼= ΩF

d represented by the map 6.4.4 corres-
ponds to the F-bordism class of the manifold M under the Pontryagin-Thom isomorphism.

Finally, one can consider GSO
−2 as GU

−2, because U(1) = SO(2). Thus one also has a map
λ : GSO

−2 → Σ−2MU.
It is clear that all constructions in this and the preceding section are natural with respect
to maps of fibrations over BGL(R).
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6.5 The theorems of Tillmann, Madsen and Weiss

From now on, we let d = 2. There are two examples for F which play a role in this work.
The first one is F = BSO(2) = CP∞ where the fibration F → BGL2(R) is the classifying
map for the universal complex line bundle, considered as a real vector bundle. We denote
the resulting spectrum by GSO

−2 . In [33], it is denoted by CP∞
−1 for some reasons. With this

choice of F, an F-structure on a surface bundle E → B is nothing else than an orientation
of the vertical tangent bundle. If M is an oriented closed smooth surface of genus g, then
smooth M -bundles on B are classified by maps B → BDiff+(M), which is homotopy
equivalent to BΓg for g ≥ 2. Because of the remark 6.1.3, the constructions above can be
applied to the universal surface bundle, and we obtain a map

α : BDiff(M) → Ω∞GSO
−2 ,

which was first studied in [32]. The group of components π0(Ω
∞GSO

−2 ) is isomorphic to Z;
and the map α maps BDiff(M) into the component belonging to g−1 (or 1−g, depending
on the choice of the isomorphism), see [18]. The Madsen-Weiss theorem is the following

Theorem 6.5.1. ([33], [19]) If 2k < g, then the map α∗ : Hk(BDiff(F )) → Hk(Ω
∞
g−1G

SO
−2 )

is an isomorphism.

The range of dimensions in which α is an equivalence is precisely the range of stability
in Harer’s stability theorem ([22]), which is a crucial ingredient for the proof of Theorem
6.5.1 and the only part of the proof that does not apply to more general situations. I will
now explain Harer’s theorem.
For the proof of both, the Harer stability and the Madsen-Weiss theorem, it is crucial to
consider surfaces with boundary. Let Mg,n be a connected surface of genus g with n ≥ 0
boundary components and let Diff(Mg,n; ∂Mg,n) be the group of all orientation-preserving
diffeomorphisms of Mg,n which fix the boundary pointwise. If g ≥ 2 or n ≥ 1, then
the unit component of these groups are contractible ([15], [27]) and the groups Γg,n :=
π0(Diff(Mg,n; ∂Mg,n)) of components are the mapping class groups. There are stabilization
maps

1. Γg,n → Γg,n−1 for n ≥ 1 (glue in a disc in one boundary component and extend
diffeomorphisms by the identity);

2. Γg,n → Γg,n+1 for n ≥ 1 (glue in a pair of pants along one boundary component);

3. Γg,n → Γg+1,n−1 for n ≥ 2 (glue in a pair of pants along two boundary components).

Harer’s stability theorem asserts that all these maps are Hk(; Z)-isomorphisms as long as
2k < g. The composition of the last two stabilization maps is a map Γg,n → Γg+1,n (which
is obtained by glueing in a torus with two boundary components) and one can define the
infinite mapping class group

Γ∞,n := colimg→∞ Γg,n.
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The map α can be constructed also for surfaces with boundary and this can be done in a
way that it extends to a map BΓ∞,n → Ω∞GSO

−2 .
It is a well-known theorem that the mapping class groups are perfect if g ≥ 3, i.e.
H1(BΓg,n; Z) = 0. It was first proven by Powell ([42]). A simpler proof was given by
Harer [21]. It also follows from the Madsen-Weiss theorem. Thus one can apply Quillen’s
plus construction (see [1]). The result is a simply connected space BΓ+

g,n and an integral
homology equivalence BΓg,n → BΓ+

g,n. Quillen’s plus construction is functorial (up to ho-
motopy). The glueing map Γ∞,n → Γ∞,n−1 are homology equivalences by Harer’s theorem
and consequently, we obtain homotopy equivalences

BΓ+
∞,n → BΓ+

∞,n−1,

and so we can write BΓ+
∞ := BΓ+

∞,n without danger of confusion.
By elementary obstruction theory, any map BΓ∞,n → Y , where Y is a simple space (the
fundamental group is abelian and acts trivially on all higher homotopy groups), extends
uniquely (up to homotopy) to a map BΓ+

∞ → Y . Any grouplike H-space Y (i.e. π0(Y ) is
a group) is simple, in particular Ω∞GSO

−2 and Ω∞
0 GSO

−2 , and the map α : BΓ∞,n → Ω∞
0 GSO

−2

yields a map α+ : BΓ+
∞ → Ω∞

0 GSO
−2 . The Madsen-Weiss theorem can be reformulated as

the statement that α+ is a homotopy equivalence. It follows that Z ×BΓ+
∞ ' Ω∞GSO

−2 . In
particular, Z×BΓ+

∞ has the homotopy type of an infinite loop space. This was proven by
Ulrike Tillmann ([52]) before the spectrum GSO

−2 and the Madsen-Tillmann map was con-
structed. Her proof relies on abstract infinite loop space machinery ([1],[48]). Tillmann’s
proof gives a connective spectrum B∞(Z × BΓ+

∞) (this is Adams’ notation, [1]) and a ho-
motopy equivalence Ω∞(B∞(Z ×BΓ+

∞)) ' Z ×BΓ+
∞.

Moreover, there is a map Σ∞(Z × BΓ+
∞,+) → B∞(Z × BΓ+

∞) adjoint to the identity on
Z ×BΓ+

∞.
In the paper [32], it is also shown that the map α : Z×BΓ∞ → Ω∞GSO

−2 is an infinite loop
map. Thus Tillmanns infinite loop space structure coincides with the infinite loop space
structure provided by the Madsen-Weiss theorem.
Also in [52], Tillmann showed that the map Z × BΓ+

∞ → Z × BGL∞(Z)+, which is given
by the action of the mapping class on the first homology of the surface, is an infinite loop
map. Thus it comes from a map of spectra ρ : B∞(Z × BΓ+

∞) → KZ (the latter is the
algebraic K-theory spectrum of Z, see section 6.8 for details).

The spin case The second example of F-structures is F = B Spin(2) = CP∞, and the
map F → BGL2(R) is the classifying map of the square of the universal complex line
bundle. An F-structure on a surface bundle is the same as a spin structure. The universal
Madsen-Tillmann map in this case is

α : B Sdiff(M) → Ω∞GSpin
−2 .

It can be shown that the group of components π0(Ω
∞GSpin

−2 ) is isomorphic to Z ⊕ Z/2
and that α maps B Sdiff(M)ε to the component indexed by (g − 1, ε) (see 6.6.5). There
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are spin mapping class groups for surfaces with nonempty boundary and glueing maps as
above (although they are more subtle). Harer proved a stability theorem for the groups
Γε

g ([23]), which was later enhanced by Tilman Bauer ([8]) to a stability theorem for the

(really relevant) groups Γ̂ε
g. The known range of homological stability is much smaller in

the spin case: one needs that 2k2 + 6k − 2 ≤ g for Bauer’s theorem. The Madsen-Weiss
theorem in the spin case is:

Theorem 6.5.2. ([17], [19]) If 2k2 + 6k − 2 ≤ g, then Hk(α) : Hk(B Sdiff(M)ε; Z) →
Hk(Ω

∞
(g−1,ε)G

Spin
−2 ; Z) is an isomorphism.

6.6 Miscellaneous calculations

Mumfords conjecture: We show how the Madsen-Weiss theorem leads to a computa-
tion of the rational cohomology of BΓg in the stable range. This is based on the cofiber
sequence

GSO
−2

ω // Σ∞CP∞ // GSO
−1

derived from 6.4.3. The spectrum GSO
−1 is homotopy equivalent to Σ∞−1S0: its nth space is

the Thom space Th(U1,d) of the orthogonal complement of the tautological real line bundle
on GrSO

1 (Rn), the Grassmannian of oriented lines in Rn, which is homotopy equivalent to
Sn−1. Thus the inclusion of a fiber Sn−1 → GSO

−1 is (n− 2)-connected; and the sequence of
all these inclusions give the desired map of spectra Σ∞−1S0 → GSO

−1 , which is a homotopy
equivalence.
Thus ω as well as Ω∞ω induce isomorphisms in rational cohomology. It is a classical
fact ([50]) that H∗(Q(CP∞

+ ); Q) is a polynomial algebra in the generators σzn, where
σ : H∗(CP∞) → H∗(Q(CP∞

+ )) is the suspension map (which is not multiplicative). Write
yi := Ω∞(ω)∗σ∗zi. It follows that

H∗(Ω∞
0 GSO

−2 ; Q) = Q[y1, y2, y3, . . .]. (6.6.1)

We can identify the MMM-classes as cohomology classes coming from the spectrum coho-
mology of GSO

−2 . By 6.3.6 and 6.2.2, it follows that

α∗(Ω∞ω)∗σzn = κn. (6.6.2)

In view of 6.6.1 and 6.6.2, Mumfords conjecture 2.3.4 follows from the Madsen-Weiss the-
orem.

The spin case It is not difficult to see that the map GSpin
−2 → GSO

−2 is a rational homotopy
equivalence (it is even an equivalence after localization away from 2), see [17].
Let us study the component groups of the spectra GSpin

−2 and GSO
−2 . More generally, we

study the component group of Ω∞GF

−d if F is a stable fibration which has connected total
spaces Fd. Start with the suspension of the cofiber sequence 6.4.3:
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GF

−d → ΣGF

−(d+1) → Σ∞+1(Fd+1,+).

From the long exact homotopy sequence of this cofiber sequence we see that πi(GF

−d) →
πi(ΣGF

−(d+1)) is an epimorphism if i ≤ 0 and an isomorphism if i < 0. Inductively, it follows
that

π0(ΣGF

−(d+1))
∼= π0(Σ

2GF

−(d+2))
∼= . . . π0(Σ

−dMF) = πd(MF).

The epimorphism π0(GF

−d) → π0(ΣGF

−(d+1)) is part of an exact sequence

Z ∼= π1(Σ
∞+1Fd+1,+) → π0(G

F

−d) → π0(ΣGF

−(d+1))
∼= πd(MF) → 0. (6.6.3)

We are interested in the case d = 2 and in the cases F = B SO and F = B Spin. It
is well-known that π0(GSO

−2 ) ∼= Z (see [18]) and that π2(MSO) = 0. We have seen that
π2(M Spin) = F2 (Corollary 4.1.19). There is an obvious map of stable fibrations B Spin →
B SO over BGL(R). If we compare the two short exact sequences 6.6.3 for these cases, we
obtain

Z //

∼=

²²

π0(G
Spin
−2 )

²²

// F2

²²

// 0

Z
∼= // π0(GSO

−2 ) // 0,

(6.6.4)

from which we see by a diagram chase that π0(G
Spin
−2 ) → π0(GSO

−2 ) ⊕ π2(M Spin) ∼= Z ⊕ F2

is an isomorphism.
In the case F = B SO and d = 2, the element in π0(GSO

−2 ) ∼= Z represented by Σ∞S0 →
Th(νM) → GSO

−2 corresponds to ± 1
2
χ(M) = ±(g(M) − 1) (see [18]). It follows

Proposition 6.6.5. If M is a surface with spin structure, then the element in π0(G
Spin
−2 ) ∼=

Z ⊕ F2 represented by Σ∞S0 → Th(νM) → GSpin
−2 corresponds to (±(g − 1); At(M)).

The third homotopy group We let d = 2 and G = SO and turn to the computation
of the homotopy group π3(GSO

−2 ). We will make use of this computation at the very end of
this work, in section 8.6. For a pointed space X, denote by X+ the space X ∪ {∗}; ∗ /∈ X.
There are obvious pointed maps X+ → X and pr : X+ → S0. They induce a splitting

Q(X+) ' Q(X) ×Q(S0). (6.6.6)

Proposition 6.6.7. The composition

GSO
−2

ω // Σ∞CP∞
+

pr // Σ∞S0

induces an isomorphism on the third homotopy groups. Thus, π3(GSO
−2 ) ∼= Z/24.
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Proof: The map ω belongs to the cofiber sequence of spectra

GSO
−2 → Σ∞CP∞

+ → Σ∞−1S0,

from 6.4.3. Because π4(Σ
∞S0) = π5(Σ

∞S0) = 0, the map π3(ω) is an isomorphism.
A computation of Juno Mukai ([40]) shows that the third homotopy group of the infinite
loop space of Σ∞CP∞ (without additional base point) is zero. Thus π3(pr) is an isomor-
phism in view of 6.6.6.

6.7 The Atiyah-Singer index theorem

We now restrict to the case of a bundle π : E → B of Riemann surfaces and show how the
Atiyah-Singer index theorem for families of elliptic operators ([6]) fits in the present context.
A similar discussion is valid for families of complex manifolds of arbitrary dimension and
for other classical operators such as the Atiyah-Singer Dirac operator for families of Spin
manifolds.
Denote by β : K∗ → K∗−2 the Bott isomorphism. Then the Atiyah-Singer index formula
for families can be stated as follows. If V → E is a smooth complex vector bundle, then
one can ”twist” the Cauchy-Riemann operator with the vector bundle V ([4]). The result
is only determined up to operators of lower order, and the K-theory class of the index
index bundle only depends on the K-theory class of V . If V is holomorphic, then one can
choose the Cauchy-Riemann operator of V as the twisted operator.

Theorem 6.7.1. Let π : E → B be a bundle of Riemann surfaces over a compact base
space B. Let V → E be a complex vector bundle. Then the index of the twisted Dolbeault
operator ind(∂̄V ) ∈ K0(B) equals β−1π!([V ]).

Atiyah and Singer formulated the index theorem using a different push-forward map, which
we denote by π]. In the sequel, the 0-th K-theory group with compact support of a locally
compact space X will be denoted simply by K(X).
For the definition of the push-forward, Atiyah and Singer proceed in three steps. If f : X →
Y is a proper embedding with a complex structure on the normal bundle, then let U ⊂ X
be a tubular neighborhood. They define f] as the composition K(X) → K(U) → K(Y ),
where the first map is the Thom homomorphism for the normal bundle and the second
map is induced by the inclusion.
The second case for which they define f] is when f : W → X is the projection map of a
complex vector bundle. In this case, the pushforward is defined to be the inverse of the
Thom-isomorphism K0(X) → K0(W ).
In general, the pushforward of a map f : X → Y is defined by factoring f into X →
W → Y , where W is a complex vector bundle on Y . One needs the assumption that the
stable normal bundle νf = f ∗TY −TX has a complex structure (the choice of the complex
structure influences the definition of f]) and that such a factorization of f exists with the
first map a proper embedding. If E → B is a manifold bundle and if j : E → B×Rn is an
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embedding of the fibers, then the tangential map Tvj : TvE → B×R2n is a proper embed-
ding with a canonical complex structure on the normal bundle. The symbol of any elliptic
pseudo-differential operator P defines a class σp ∈ K0(TvE). The index theorem in the for-
mulation of [6] says that the index bundle ind(P ) ∈ K0(B) is the same as prB

] ◦(Tvj)](σP ).
The principal symbol of the Dolbeault operator is the K-orientation of TvE defined by the
Bott-class. It is now easy to derive the formulation 6.7.1, using naturality properties of
the push-forward.

Sometimes the index factors through the transfer.

Proposition 6.7.2. Let E → B is a bundle of Riemann surfaces. Let V → E be a complex
vector bundle and let Λ be the vertical cotangent bundle. Then

ind(∂̄V ⊗(1−Λ)) = trf∗([V ]) ∈ K0(B).

Proof: The K-theory Euler class of a complex line bundle L is β−1(1 − L′). Further, it
follows from the definitions that the pushforward commutes with Bott periodicity. Thus

ind(∂̄V ⊗(1−Λ)) = β−1(π!(V β(χK(TvE)))) = π!(V χK(TvE)) = trf(V ).

6.8 Examples for the index theorem

I will discuss several examples of Proposition 6.7.2, which are ”natural” in the sense that
the operators exist on the universal surface bundle. We explained after 2.4.7, we can apply
the index theorem with certainty only in the case that the base B is compact. If we say
that two maps out of the universal base space BΓ∞ are homotopic, then we mean that
they are homotopic after restriction to any compact subspace.
Before we can study these examples, we need to say a few words about algebraic K-
theory. Let R be an associative ring with unit. Then there are obvious homomorphisms
GLn(R) × GLm(R) → GLn+m(R), which turn the space

∐

n∈N

BGLn(R)

into a topological monoid. The group completion of this monoid is

ΩB(
∐

n∈N

BGLn(R)).

The group completion theorem ([1]) shows that there is a natural map c : Z×BGL∞(R) →
ΩB(

∐

n∈NBGLn(R)), which is a homology equivalence. Furthermore, the infinite loop
space machinery ([48], [1]) shows that there is a connective spectrumK(R) and a homotopy
equivalence Ω∞K(R) ' ΩB(

∐

n∈N BGLn(R)). This is the algebraic K-theory spectrum of
R. Because ΩB(

∐

n∈NBGLn(R)) is an H-space, the map c is a HZ-localization in the

67



sense of homotopy theory (see [11]).
It is well-known that the commutator subgroup [GL∞(R),GL∞(R)] is perfect. Thus we
can apply Quillen’s plus construction to the space BGL∞(R) with respect to the com-
mutator subgroup. The result is a simple space BGL∞(R)+ and a homology equivalence
BGL∞(R) → BGL∞(R)+. Thus ΩK(R) ' Z ×BGL∞(R)+.
If R is a topological ring, then GLn(R) is a topological group and we can apply the con-
struction of KR literally. When R = C, the result is the usual connective K-theory
spectrum k.
Similarly, one can construct symplectic K-theory, replacing GLn(R) by SP2n(R) every-
where (we only need the case R = Z). More precisely, there is a connective spectrum
K SP(Z) and a homology equivalence Z × B SP∞(Z) ' Ω∞K SP(Z). There is an ob-
vious map τ : K SP(Z) → K(Z). Note: under the isomorphisms π0K(Z) ∼= Z and
π0K SP(Z) ∼= Z, the map induces multiplication by 2.
The maps SP2n(Z) → SP2n(R) ' U(n) induce a map ζ : K SP(Z) → K(C) = k.
Now we can describe our examples for the index theorem. The first example we want to
study is the example V = 1, the trivial line bundle. As explained above, trf∗(1) is in
general not 1 ∈ K0(B).
Consider the unit in K0(CP∞). It is a map of spectra Σ∞CP∞

+ → k, which factors through
the projection Σ∞CP∞

+ → Σ∞S0 and the unit map u : Σ∞S0 → k. This unit map can be
factored as Σ∞S0 → KZ → KCδ → k. The first is the unit map into KZ, the spectrum
KCδ is the algebraic K-theory spectrum of the discrete ring C and KZ → KCδ is induced
from the map of rings Z → C. The third map is the map induced by idC on algebraic
K-theory, viewed as a map from the discrete ring C to the topological ring C.
Thus the index map ind ∂̄1−Λ = trf∗(1) of the operator ∂̄1−Λ factors through the sphere
spectrum. In particular, all rational characteristic classes of the index bundle in degrees
larger than one vanish, because Q0(S0) is rationally acyclic. This is not too surprising,
since there is another description of ind(∂̄1−Λ). Let b ∈ B and let C := π−1(b) be the com-
pact Riemann surface over b. Then the fiber of the index bundle over b is the virtual vector
space H0(C,O)−H1(C;O)−H0(C,ΛC)+H1(C, λC) = C−H0(C; ΛC)′−H0(C,ΛC)+C =
2−H1(C,C). Here we used Serre-duality and the Hodge-decomposition. All isomorphisms
are natural, and so we obtain a bundle isomorphism ind(∂̄1−Λ) ∼= 2 − H1

v (π). The latter
is the flat bundle of first cohomology spaces. Thus the index bundle has a canonical flat
structure. Moreover, the bundle H1

v (π) can be identified with the sum of the Hodge bundles
V1(π) ⊕ V1(π) and it is induced by the maps

B → BΓg → B SP2g(Z) → BGL2g(C)δ → BU(2g).

We have seen that the diagram of spectra
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B∞(Z ×BΓ∞)

α

²²

Bρ // KZ
u // KCδ

²²
k

GSO
−2

ω // Σ∞CP∞
+

pr // Σ∞S0 u // KZ // KCδ

OO

is commutative (up to homotopy).
At this point, it starts to look plausible that already the two maps B∞(Z ×BΓ+

∞) → KZ
are homotopic. This is indeed true, at least if we take the induced maps on infinite loop
spaces. This is pointed out by Tillmann in [53] and relies on the main theorem of [14].
More precisely, we can say

Proposition 6.8.1. ([53], [14]) The maps Z×BΓ+
∞ → Z×BGL∞(Z)+ given by the action

on the first homology group and by the index map for the bundle 1 − Λ are homotopic (as
maps of spaces, not necessarily as infinite loop maps).

The index bundle ind ∂̄V does not factor through Σ∞CP∞
+ if V is not a multiple of 1 − Λ.

An interesting example for this phenomenon is provided by the bundle V = 1.
Recall the map of spectra λ : GSO

−2 → Σ−2MU, which can be composed with the Conner-
Floyd map ξ : MU → k to give a map GSO

−2 → Σ−2k. The Bott periodicity map is a map
Σ−2k → k.

Proposition 6.8.2. Let E → B be a surface bundle on a compact space B. Then the
composition Σ∞B+ → GSO

−2 → Σ−2k → k represents ind(∂̄1).

This is an immediate consequence of Theorem 6.7.1, Definition 6.2.3, and the fact that ξ
represents the Thom class of the universal complex vector bundle.
There is another, more naive description for ind(∂̄1). We consider the map Bρ : BΓg →
B SP2g(Z) → B SP2g(R) ' BU(g) from 2.3.6. It classifies the universal Hodge bundle V1.
Serre duality tells us that V1

∼= coker(∂̄1). The kernel bundle of ∂̄1 is the trivial complex
line bundle and so we see that

ind(∂̄1) = 1 − V1.

6.9 From the Mumford conjecture to the Madsen-Tillmann map

Here we study in more detail the example V = TvE. The index bundle ind(∂̄T (1−Λ)) =
ind(∂̄T−1) is represented by the composition

Σ∞B+
α // GSO

−2
ω // Σ∞CP∞

+
l // k.

The whole composition pulls back the class sn to the MMM-class κn, because l∗sn = en and
because of Proposition 6.3.5. It is important to mention that sn is only a rational spectrum
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cohomology class of k, not an integral one. Thus the adjoint map B → Ω∞k = Z × BU
pulls back sn ∈ H2n(Z × BU ; Q) to κn ∈ H2n(B; Q). The map l represents the class of
the canonical line bundle in K0(CP∞) and its adjoint Q(CP∞

+ ) → Ω∞k = Z × BU is the
rational equivalence from [50] mentioned above. Thus we see that rationally the integral
Chern character classes of the index bundle ind(∂̄T−1) agree with the MMM-classes.

Remark 6.9.1. A few remarks are to be done at this place. If g ≥ 2, and if C is the
fiber at a point b ∈ B, then the fiber of the index bundle under consideration is just the
formal difference −H1(C,O(T (1,0)C)) − C + H1(C,OC). By the Kodaira-Spencer defor-
mation theory of complex manifolds (of complex dimension 1), it follows that the vec-
tor space H1(C,O(T (1,0)C)) parameterizes all infinitesimal deformations of the complex
manifold C, that means, it should be the tangent space to the moduli space of Riemann
surfaces of genus g. Teichmüller theory tells us that this is indeed true. By Serre duality
H1(C,O(T (1,0)C)) = H0(C,Λ⊗2

C )′, and this is the tangent space to Tg (and not the cotan-
gent space, because the definition of the Teichmüller map H0(C,Λ⊗2

C ) → Tg involves the
choice of a metric on the space of quadratic differentials.) There is still the problem that
the moduli space is not a smooth manifold, but only an orbifold. Nevertheless, it has a
complex tangent orbibundle, which has well-defined Chern classes. However, these Chern
classes are only rational cohomology classes and not integral ones.
It should be more than a curiosity that the Chern character of the difference of these two
natural bundles agrees with the tautological classes, which ultimately yield the isomor-
phism Q[κ1, κ2, . . .] → H∗(BΓ∞; Q) predicted by the Mumford conjecture.

I now show how one could find the Madsen-Tillmann map when one starts from the
Mumford conjecture 2.3.4. This may be also the way Madsen and Tillmann found their
map. The Mumford conjecture predicts that

Q[κ1, κ2, . . .] → H∗(BΓg,Q) (6.9.2)

is an isomorphism in the stable range of Harer’s stability theorem. The first observation
is that the left-hand side of the conjectural isomorphism 6.9.2 is isomorphic to the coho-
mology of the infinite Grassmannian, H∗(BU,Q) ∼= Q[s1, s2, . . .]. We choose this system
of generators instead of c1, c2, . . . because of their better algebraic properties (see below).
It is natural to look out for a map

Φ : BΓg → BU

realizing the conjectural isomorphism 6.9.2 in rational cohomology. By Tillmann’s theorem
(see [52]), BΓ+

∞ is an infinite loop space, in particular, H∗(BΓ∞; Q) is a Hopf algebra. The
multiplication map m : BΓ+

∞ × BΓ+
∞ → BΓ+

∞ (homotopic to the loop sum) is homotopic
to the colimit of the glueing maps

ag,h : BΓg,2 ×BΓh,2 → BΓg+h,2.

What is the behavior of the classes κn under the structural map? The answer is that they
are primitive, i.e.
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Proposition 6.9.3.

a∗g,hκn = 1 ⊗ κn + κn ⊗ 1.

Proof: Let E, F be surface bundles over X of genus g, h with two trivialized boundary
components and G be the bundle obtained by glueing at two boundary components. Then
the vertical tangent bundles are trivialized along the boundary. Thus e(TvF )e(TvE) = 0.
It follows that κn(G) = π∗e(TvG)n+1 = π∗e(TvE)n+1 + π∗e(TvF )n+1.

If we want that the conjectural map Φ is a map of H-spaces (this is natural, because of
Tillmann’s theorem), then we are almost forced to have Φ∗(n! chn) = κn, since sn = n! chn

generate the integral primitive classes. So, one is led to the question:

Question 6.9.4. Is there a virtual vector bundle V on BΓg such that n! chn(V ) = κn?

Index bundles give virtual vector bundles. We want an index bundle ind ∂̄W which is defined
naturally for all bundles of Riemann surfaces. There are not too much possibilities, because
the tensor powers of the cotangent bundle are the only natural line bundles on Riemann
surfaces. The Grothendieck-Riemann-Roch theorem shows that W = Tv − 1 is the correct
choice:

Proposition 6.9.5. sn(ind(∂̄Tv) − ind(∂̄1)) = κn in rational cohomology, where 1 denotes
the trivial holomorphic line bundle.

We can ask whether the equation in 6.9.5 is an equation of integral cohomology classes.
To consider this more closely, we define the analytical MMM-classes λn ∈ H2n(BΓg; Z).

Definition 6.9.6. The analytical MMM-classes of a surface bundle π : E → B are the
classes sn(ind(∂̄Tv) − ind(∂̄1)) ∈ H2n(B; Z).

It is not true that the equation in Proposition 6.9.5 is an equation of integral cohomology
classes. The topological MMM-classes differ from the analytical ones. This can be seen as
follows. If one takes a surface M and an action of a finite (cyclic groups are enough) group
G, then one studies the bundle E(G;M) := EG×GM → BG. There are explicit methods
to compute both, the analytical and the topological MMM-classes of these examples. The
topological classes κn can be computed using the higher Riemann-Hurwitz formula of [30],
see also [3]. The result only depends on the fixed-point data of the action.
The analytical classes can be computed using the Lefschetz-formula of Atiyah and Bott:
There is an invariant complex structure on M ; and the index bundles are just given by the
appropriate combination of bundles of the form EG×G H

i(M ; Λ⊗n
M ).

If one chooses a cyclic group action almost at random, then one sees that both classes
differ. Also, we have shown in section 5.2 that both classes differ for sphere bundles and
in section 5.3 that the same is true for tori.
The work [50] by Graeme Segal, which was already mentioned, contains a stronger state-
ment than merely the rational homotopy equivalence Q(CP∞

+ ) ' Z×BU . Segal shows that
there exist a splitting (not an infinite loop map) Z × BU → Q(CP∞

+ ), which shows that
Q(CP∞

+ ) ' Z × BU × F , where F is a quite mysterious space which is rationally acyclic.
The difference classes κn − λn seems to be related to the cohomology of the space F . A
systematic study of the difference classes would go beyond the scope of this work.
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6.10 The Madsen-Tillmann-diagram

In the following diagram of spectra, we recollect the discussion of the present chapter.

k

K(Z)

OO

K(Z) Σ∞S0
u

oo

K SP(Z)

τ
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n
n

n
n

n
n

n
n

n
n

n
n

ζ

²²

B∞(Z ×BΓ+
∞)ρ

oo

β ind ∂̄1

²²

ind ∂̄1−λ

OO

α // GSO
−2

λ

²²

ω // Σ∞CP∞
+

l //

pr

OO

k

k Σ−2k
β−1

oo Σ−2MU
Σ−2ξ

oo

(6.10.1)
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7 Divisibility of MMM-classes for spin surface bun-

dles

7.1 The general case

In this section, we study the divisibility properties of characteristic classes for surface
bundles with spin structures. All our results are modulo torsion, i.e.:

Convention 7.1.1. If B is a space and x ∈ H∗(B,Z) and 0 6= a ∈ Z, then the statement
”x is divisible by a” means that the image of x in the free group H∗

free(B; Z) := H∗(B,Z)/T
is divisible by a (T denotes the torsion subgroup).

The divisibility of characteristic classes of oriented surface bundles was studied by Galatius,
Madsen and Tillmann in [18]. Their main result is:

Theorem 7.1.2. ([18]) Let Dn be the maximal divisor of the class κn. Then D2i = 2 and
D2i−1 = den(Bi

2i
).

Bi is the ith Bernoulli number, which is defined by the expansion

td(z) :=
z

1 − e−z
= 1 +

z

2
+

∞
∑

k=1

(−1)k+1 Bk

(2k)!
z2k. (7.1.3)

Bk is a rational positive number; and von Staudt’s theorem (see [10], p. 410-411) gives the
prime decomposition of its denominator:

den(
Bk

2k
) =

∏

(p−1)|2k

p1+νp(2k).

Note that this is always an even number. That den(Bk

2k
) divides κ2n−1 was already noted by

Morita ([38]) and follows from the Grothendieck-Riemann-Roch theorem in the following
way. We compute ch(ind(∂̄1)) in two ways. First, it is:

ch(ind(∂̄1)) = 1 − g +
∞
∑

k=1

γk

k!

by the definition of γk. On the other hand, by the Grothendieck-Riemann-Roch theorem
and by the definition of κn, we have (c = c1(Tv)):

ch(ind(∂̄1)) = π!(td(c)) = 1 − g +
∞
∑

k=1

(−1)k+1 Bk

(2k)!
κ2k−1.

By the way, this shows that s2k vanishes rationally. Comparison of coefficients leads to

s2k−1 =
Bk

2k
κ2k−1. (7.1.4)

Thus κ2k−1 is divisible by den(Bk

2k
).
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7.2 The even classes

Assumption 7.2.1. Let us now assume that the surface bundle π : E → B admits a spin
structure. Then there exists a complex line bundle S → E and an isomorphism S2 ∼= Λv.
We denote y := −c1(S); thus 2y = c = c1(Tv).

Proposition 7.2.2. For a spin surface bundle, κn is divisible by 2n+1. This holds even
integrally.

Proof: κn = π!(c
n+1) = 2n+1π!(y

n+1).

Theorem 7.2.3. For spin surface bundles, the class κ2n is not divisible by any nontrivial
multiple of 22n+1. This holds in the stable range for spin mapping class groups.

Before we prove the result, we note that the statement is false if g ≤ 2 and if 4n is larger
than the homological dimension of the spin moduli space. However, our proof relies on an
unstable computation for g = 0 and on the Madsen-Weiss theorem.
Proof: First, we study the universal spin surface bundle of genus 0. This is the projective
bundle of the 2-dimensional complex vector bundle

V := ESU(2) ×SU(2) C2 → BSU(2) ∼= HP∞.

Its even MMM-classes are (compare 5.2.6):

κ2n = ±22n+1un,

where u ∈ H4(HP∞; Z) is a polynomial generator of the ring H∗(HP∞; Z) ∼= Z[u]. Thus it
follows that the divisibility for κ2n is optimal for g = 0.
We now enhance this result, where we use the Madsen-Weiss theorem in the spin case ([19]).
Because the Arf-invariant of the spin structure on the sphere is 0, the Madsen-Tillmann
map of the surface bundle studied above

HP∞ → Ω∞GSpin
−2

goes into the (−1, 0)-component. The reasoning above, together with Proposition 7.2.2
tells us that the maximal divisor of κ2n ∈ H4n(Ω∞

(−1,0)G
Spin
−2 ,Z) is 22n+1. Now let g ∈ N

and ε ∈ Z/2 be arbitrary. By the Madsen-Weiss theorem in the spin case, the map

BΓSpin,ε
g → Ω∞

(g−1,ε)G
Spin
−2

induces an isomorphism in integral homology in low degrees. This shows the claim.

7.3 The odd classes

Now we discuss the case of the odd MMM-classes. Let E → B be a spin surface bundle.
We have seen that 22n|κ2n−1 and that den(Bn

2n
)|κ2n−1 and we have seen that in the presence

of a spin structure, the divisibility of the even classes improves by a power of 2. It is
natural to ask whether this also happens for the odd classes.

74



Theorem 7.3.1. If the surface bundle π : E → B has a spin structure, then κ2n−1(π) is
divisible by 22n den(Bn

2n
) if B is compact (this is probably not a serious restriction, compare

the remarks after Theorem 2.4.7).

We have already seen that both 22n and den(Bn

2n
) divide κ2n−1. But since the denominators

of the Bernoulli numbers are even, 22n and den(Bn

2n
) are not coprime, and we need new

arguments to prove Theorem 7.3.1.
We keep the notations from 7.2.1 and prove Theorem 7.3.1 in two steps.

Proposition 7.3.2. For spin surface bundles, the class κ2n−1 is divisible by 22n−1 den(Bn

2n
)

Proof: The proof relies on the Grothendieck-Riemann-Roch theorem. We study the index
bundle of the operator4 ∂̄1+S. We keep the notation and compute

ch(ind ∂̄1+S) = π!(td(2y)(1 + e−y)) = π!(2 td(y)).

Thus v2n−1 := s2n−1(ind ∂̄1+S) = 2Bn

2n
π!(y

2n) is an integral class. By the definition of the
MMM-class, it follows that

κ2n−1 = 22nπ!(y
2n) = 22n−1 2n

Bn

v2n−1 = 22n−1 den(Bn

2n
)

num(Bn

2n
)
v2n−1. (7.3.3)

Since num(Bn

2n
) and 22n−1 den(Bn

2n
) are coprime by von Staudt’s theorem, the proposition

follows.

Now we care about the last factor of 2. In the proof of Proposition 7.3.2, we did not really
use the index theorem, because only the interpretation of γ2n−1 as the class of the Hodge
bundle on the base and not its integrality required the use of analysis. This is not true for
the proof of the next theorem, where the last factor of 2 is detected. In view of 7.3.3, it
suffices to show that v2n−1 is divisible by 2. In other words:

Proposition 7.3.4. The class s2n−1(ind ∂̄1+S) ∈ H2n(B; Z) is divisible by 2.

Proof: We compute

s2n−1(ind ∂̄1+S) = s2n−1(ind ∂̄1) + s2n−1(ind ∂̄S) = γ2n−1 + s2n−1(ind ∂̄S).

By 7.3.3 and 7.1.4, γ2n−1 is divisible by 2.
If the dimension of the kernel of ∂̄S is constant (and thus the kernel is a vector bundle),
then we see from Serre duality (2.4.4) that

ind ∂̄S = ker ∂̄S − ker ∂̄S.

4This choice looks accidental, but it is not. The reason is that Ψ2(ind ∂̄1+S) = ind ∂̄1; Ψ2 is the Adams
operation. The choice of the bundle 1 + S arises naturally from this requirement. Also, it should be more
natural to consider the Dirac operator on spin surface bundles. This is true and the Dirac operator and the
Cauchy-Riemann operator are closely related, but we prefer to use the Cauchy-Riemann operators which
are more common.
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Here it is really important that S2 = Λv as holomorphic line bundles and not merely as
complex line bundles. It is a general fact that for any complex vector bundle V , we have
sk(V̄ ) = (−1)ksk(V ). Thus it follows that

s2n−1(ind ∂̄S) = 2s2n−1(ker ∂̄S),

as required. If the dimension of the kernel is not a constant function, then the argument
above also applies. To see this, one has to look at the construction of the index bundle in
that case (see [31]).
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8 The icosahedral group and π3(BΓ+
∞)

One possible construction for elements in the homotopy groups of BΓ+
g arises in the follow-

ing way. Take a homology n-sphere M and a representation ρ : π1(M) → Γg. We obtain
a homotopy class of maps Bρ : M → Bπ1(M) → BΓg, or an isomorphism class of surface
bundles on M . Note, however, that the representation ρ does not need to be induced by
an action of π1(M) on Σg if π1(M) is not finite.
Since the fundamental group of a homology sphere M is perfect, we can apply Quillen’s
plus construction to the whole fundamental group. The result is a 1-connected space M+

and a homology equivalence M → M+. The Hurewicz theorem tells us that πn(M+) ∼= Z
and any generator of this group yields a homotopy equivalence M+ ' Sn.
Thus, if we apply the plus construction to the map Bρ, we obtain a homotopy class of
maps Sn → BΓg, in other words, an element in πn(BΓ+

g ). A similar construction, applied
to the general linear group instead of the mapping class group, was considered by Jones
and Westbury in their paper [29], which we will use later and which was the stimulus for
considering the icosahedral group in connection with the homotopy of the mapping class
group.
The most famous case of a homology sphere, which was also the first example to be
discovered is that of the Poincaré sphere, which I will describe now.

8.1 The icosahedral group and the Poincaré sphere

Consider a regular icosahedron in Euclidean 3-space, centered at 0. It has 20 faces (which
are triangles), 12 vertices (at every vertex, exactly 5 edges and 5 faces meet) and 30 edges.
Let G be the symmetry group of the icosahedron. It acts transitively on the vertices as
well as on the edges and faces of the icosahedron. We denote the isotropy subgroups of
a chosen edge, face, vertex, respectively, by G1, G2 and G3, respectively. The orders of
this subgroups are 2, 3, 5, respectively. Thus G is a subgroup of SO(3) of order 60. It is
well-known that G is isomorphic to the groups P SL2(F5) and A5 (the alternating group).
In particular, G is perfect.
There is a universal central extension Ĝ of G by Z/2 which is isomorphic to SL2(F5). We
call this the binary icosahedral group. It can be obtained by taking the preimage of G
under the 2-fold covering SU(2) → SO(3). The group Ĝ is also perfect and its center is
the same as the kernel of the map φ : Ĝ→ G and contains exactly one nontrivial element
h. The quotient Ĝ\SU(2) is the Poincaré homology 3-sphere.
The Poincaré sphere also can be described as a Seifert 3-manifold ([47]). I give a short
description of Seifert homology spheres.
Let n ∈ N, and let (ai, bi) be pairs of coprime integers, i = 1, . . . , n. Take n disjoint
embedded discs in S2 and let F := S2 \ (D2

1 ∪ . . . ∪ D2
n). Consider S1 × F . Let h be the

curve represented by S1 and let xi be the boundary of D2
i . Then n solid tori are glued in

such that the meridian of the ith solid torus is glued to the curve aixi + bih. The result is a
closed manifold, the Seifert manifold M((a1, b1), . . . , (an, bn)). By the Seifert-van Kampen
theorem, it follows that its fundamental group has the presentation
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〈h, x1, . . . , xn|[h, xi] = 1, x1x2 . . . xn = 1, xai
i = h−bi〉.

By the Hurewicz theorem, M((a1, b1), . . . , (an, bn)) is an integral homology sphere if and
only if a1 . . . an

∑n
i=1

bi

ai
= ±1.

If we take a1 = 2, a2 = 3, a3 = 5, b1 = −1, b2 = 1, b3 = 1, then we obtain the Poincaré
sphere. This is not hard to see: Consider the quotient map Ĝ\S3 → Ĝ\S3/S1 = Ĝ\CP1.
The latter is a compact Riemann surface which has necessarily genus 0 (If CP1 → X is a
nonconstant holomorphic map of Riemann surfaces, then X ∼= CP1). The quotient map
M → S2 = G\CP1 is not a fibration, but it has three singular fibers which lie over the
orbit of the vertices, the orbit of the midpoints of the edges and the orbit of the midpoints
of the faces of the icosahedron. With this construction, it is easy to derive the presentation
of the Poincaré sphere as a Seifert sphere. This also gives us a presentation of the group
Ĝ:

Ĝ ∼= 〈h, x1, x2, x3|[xi, h] = 1, x1x2x3 = 1, x2
1 = x−3

2 = x−5
3 = h〉.

The relation h2 = 1 does not seem to follow immediately from this presentation. From this
presentation we derive a presentation of G:

G ∼= 〈y1, y2, y3|y1y2y3 = 1; y2
1 = y−3

2 = y−5
3 = 1〉.

The map Ĝ→ G is given by h 7→ 1, xi 7→ yi. yi generates an isotropy group Gi ⊂ G.
The Poincaré sphere seems to be the only example of a homology 3-sphere with finite
fundamental group (cf [37]).

8.2 Surfaces with an action of the icosahedral group

Now we construct certain actions of the binary icosahedral group on Riemann surfaces
which in the end will give interesting elements in π3(BΓ+

g ). It is likely that these actions
were already known to Felix Klein. The construction is based on an easy lemma. Let O(k)
be the kth tensor power of the Hopf bundle on CP1. Recall that the global holomorphic
sections of O(k) can be identified with the vector space of homogeneous polynomials of
degree k on C2. Further, O(k) is an SL2(C)-equivariant bundle over the SL2(C)-space
CP1. If k is odd, then the central element −1 acts as −1 on O(k) (i.e. on any fiber of the
bundle). If k is even, then −1 acts trivially on O(k), i.e. the action descends to an action
of P SL2(C).

Lemma 8.2.1. Let G ⊂ P SL2(C) be a finite subgroup and let Ĝ ⊂ SL2(C) be the extension
of G by Z/2. Let m ∈ N be positive. Let s be a G-invariant holomorphic section of O(2m)
having only simple zeroes. Then there exists a hyperelliptic Riemann surface f : X → CP1

with a Ĝ-action, such that f is equivariant. The construction has the following properties.
If m is odd, then the central element h ∈ Ĝ is the hyperelliptic involution, if m is even,
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then h acts trivially on X.
Further, the branch points of f are precisely the zeroes of s.5

Proof: Let S ⊂ O(2m) be the graph of the section s. It is a surface of genus 0 and it
is stable under the G-action on O(2m). Let q : O(m) → O(2m) be the squaring map,
let X := q−1(S) and let f := q|X . Clearly, X has a Ĝ-action and f is equivariant. Also,
a generic point of S has exactly 2 preimages, being permuted by the involution −1 on
the fibers on O(m). We need to show that X is a smooth connected Riemann surface.
The smoothness of X is equivalent to the condition that the zeroes are simple (the locus
{(x, y) ∈ C2|y2 = xm} is smooth if and only if m = 1), and the connectivity is clear since
s has precisely 2m > 0 zeroes.
We have seen that the antipodal map of O(m) induces the hyperelliptic involution. This
implies the second statement. The last sentence is clear from the construction.

From now on, let G again be the icosahedral group. I will give three examples of the
construction above.

Example 8.2.2. Let z1, . . . , z30 be the midpoints of the edges of the icosahedron, con-
sidered as points on CP1 instead on S2. The precise value of the points does not play a
significant role in this discussion.
Now we take holomorphic sections si, i = 1, . . . , 30 of the Hopf bundle O(1) (alias square
root of the tangent bundle of CP1) having a simple zero at zi and being nonzero elsewhere.
Such sections exist and are unique up to multiplication with a complex constant. Set
s := s1 ⊗ . . .⊗ s30 ∈ H0(CP1,O(30)).
For g ∈ Ĝ, there exists a c(g) ∈ C× with gs = c(g)s, because gs has the same zeroes as s.
The map c : g 7→ c(g) is a homomorphism Ĝ→ C×. Since Ĝ has no Abelian quotient, c is
constant. Thus, s is an invariant section.
If we apply the construction of the lemma to s, we obtain a surface of genus 14 (by the
Riemann-Hurwitz formula) with a Ĝ-action.

Example 8.2.3. Similarly, we can take the 12 vertices as branch points for the hyperelliptic
covering. The result is a surface of genus 5. The central element h acts trivially on the
surface. It is the surface of genus 5 which will give the best result (i.e., the order of the
resulting element in π3((BΓg)

+) is the largest).

Example 8.2.4. Similarly, we can take the 20 midpoints of the faces of the icosahedron as
branch points. The result is a surface of genus 9 with an action of Ĝ. The central element
acts as the identity.

Proposition 8.2.5. 1. The number of fixed points of the elements x1, x2, x3 ∈ Ĝ in
Example 8.2.2 is 2, 0, 0, respectively.

5Conversely, the automorphism group of any hyperelliptic surface of genus g ≥ 2 is a possibly trivial
extension of a finite subgroup of P GL2(C) by Z/2.
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2. The number of fixed points of the elements x1, x2, x3 ∈ Ĝ in Example 8.2.3 is 4, 2, 4,
respectively.

3. The number of fixed points of the elements x1, x2, x3 ∈ Ĝ in Example 8.2.4 is 4, 4, 2,
respectively.

Proof:

Example 8.2.2: Since h is the hyperelliptic involution, it has precisely 2g + 2 = 30 fixed
points, namely the branch points which lie over the midpoints of the edges of the icosahed-
ron.
There are two fixed points of y1 on P1, and they are two opposite branch points (i.e. mid-
points of edges). Thus, x1 has exactly 2 fixed points on X.
y2 fixes precisely two opposite midpoints of faces. Hence all fixed points of x2 lie over these
two points. But if x2 would have at least one fixed point, then this must also be a fixed
point of x3

2 = h. This is impossible, since h has already the 30 fixed points mentioned
above and since no nontrivial automorphism of a Riemann surface of genus g ≤ 2 can have
more than 2g + 2 fixed points ([16], p.257). Thus x2 is fixed-point-free.
The same argument shows that x3 is also fixed-point free.
Example 8.2.3: Recall that h acts as the identity and that the branch points are precisely
the midpoints of the 20 faces of the icosahedron, two of which are fixed by y2.
Down on P1, y2 has exactly 2 fixed points. Since both are branch points, it follows that
the number of fixed points of x2 is 2.
Down on P1, y3 has exactly 2 fixed points, which are not branch points and thus have 2
preimages. The two points in the preimage are permuted by x3. Because x3 acting on the
surface has odd order, the permutation of the two preimages must be the identity. Thus
x3 has 4 fixed points.
The consideration for x1 is slightly more complicated. y1 has exactly 2 fixed points on P1

(they are midpoints of two opposite edges of the icosahedron). A more careful look at the
action of h and x1 shows that the number of fixed points must be 4.
Example 8.2.4: Now the vertices of the icosahedron are the branch points and the central
element h acts as the identity.
The generator y3 has two fixed points, and since they are branch points, x3 also has 2 fixed
points.
y2 has 2 fixed points on P1 and so x2 has 4 fixed points (since its order is odd and the fixed
points lie over the two fixed points of x2).
x1 has 4 fixed points. To see this, let q ∈ CP1 be the midpoint of an edge fixed by x1 and
let p1, p2 be the adjacent vertices. The preimage of the edge containing q under the hyper-
elliptic covering is a simple closed curve S which is fixed by x1 (as a set, not pointwise). y1

defines a diffeomorphism f of the curve. Since x1 changes the adjacent faces of the edge,
the resulting diffeomorphism is orientation-reversing and interchanges two opposite points
(the preimages of pi). Further, we can choose a parameterization of S by S1 and of the arc
in P1 by [−1, 1], such that the branch points correspond to ± and the projection to the arc
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in P1 to the real part and such that f is linear. Then it follows that f(z) = −z̄. This shows
that x2 has two fixed points on the curve and thus the total number of fixed points is 4.

8.3 Review of the work by Jones-Westbury

Now I will describe the work [29] by Jones and Westbury. They consider the following
situation. Assume that M is a homology n-sphere and assume that ρ : π1(M) → SLN(C)
is a representation (in fact, any representation π1(M) → GLN(C) takes values in SLN(C),
because π1(M) is perfect). The representation defines a map Bρ : M → Bπ1(M) →
BGLN(Cδ) (the latter is the classifying space of GLN(C), considered as a discrete group).
After stabilization (GLN → GL∞ = colim GLN) and application of the Quillen plus con-
struction to, we obtain a homotopy class of maps Sn 'M+ → (BGL∞(C)δ)+, or, in other
words, an element in πn((BGL∞(C)δ)+) = Kn(Cδ). More precisely, SL∞(Cδ) ⊂ GL∞(Cδ)
is the commutator subgroup and it is perfect. Thus we can take the Quillen plus construc-
tion of BGL∞(Cδ) with respect to the group SL∞(Cδ). The result is the unit component
(KCδ)0 of the K-theory space of the discrete ring Cδ. Because the representation takes
values in SL∞(C), the image of the map induced by Bρ on fundamental groups is in the
group SL∞(C). Hence the Quillen plus construction applies to Bρ.
Further, for odd values of n, there exists a homomorphism e : Kn(Cδ) → C/Z. The
name for this homomorphism results from the fact that it extends the classical e-invariant
e : πst

2n+1 → Q/Z defined by Adams. Let us explain the meaning of the last phrase. By the
Barratt-Priddy-Quillen theorem (see, for example [48]), there is a homotopy equivalence
Z×BΣ+

∞ ' Q(S0), where the plus construction on the left hand side is taken with respect
to the alternating group, which is perfect. The obvious representation Σ∞ → GL∞(Z),
together with the inclusion Z ⊂ Cδ, gives us a map q : Q(S0) → KZ → KCδ and thus a
homomorphism πst

2n+1 → K2n+1(Cδ) ([43]) 6.
Let us also recall the classical fact that e : πst

3 → 1
24

Z/Z is an isomorphism.
Jones and Westbury considered the problem of computing the e-invariant for those classes
in K3(Cδ) defined by Seifert-spheres and representations of their fundamental groups, at
least for special classes of homology spheres and special classes of representations.
Let M = M((a1, b1), . . . , (an, bn)) be a Seifert homology sphere and let ρ : π1(M) →
SLN(C) be a representation (alias flat vector bundle on M), such that ρ(h) acts as a scalar
λh. Define

αi := ρ(xi)

and let

6An alternative way to see the map q: Recall that the K-theory space of a ring R is an infinite loop
space. A map S0 → KR is given by sending the non-basepoint in S0 to a point in the 1-component of KR.
By the universal property of the functor Q from spaces to infinite loop spaces, this map extends uniquely
(up to homotopy) to Q(S0).
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λ1(i), . . . , λN(i)

be the eigenvalues of αi. We have

λh =: ζrh

N , ζN := exp(
2πi

N
).

We define rational numbers sk(j) by the relation

λk(j) =: ζ
Nsk(j)−bjrh

Naj
.

Let e be the e-invariant of the element in K3(Cδ) defined by the map M → B SLN(Cδ) →
BGL(Cδ) given by the representation ρ. Theorem C in [29] states that

2<Ne = −a
n
∑

j=1

N
∑

k=1

N
∑

l=1

(sk(j) − sl(j))
2

2a2
j

∈ C/Z,

where a := a1 . . . an. In the case where h acts as the identity, there is a simpler formula to
compute the e-invariant ([29], Lemma 5.3 and Theorem A), namely

e = −
n
∑

j=1

N
∑

k=1

ask(j)
2

2a2
j

.

The proof of these formulae depend strongly on the Atiyah-Patodi-Singer index theorem
for manifolds with boundary.

8.4 Application of the Jones-Westbury formula to the mapping

class group

In this section, we compute the e-invariants of the representations of the icosahedral group
on the first homology spaces of the surfaces from the examples 8.2.2, 8.2.3, 8.2.4 constructed
above. We keep the notation from the last subsections. Recall that we have

(a1, b1) = (2,−1); (a2, b2) = (3, 1); (a2, b2) = (5, 1).

Proposition 8.4.1. The e-invariant of the element in K3(Z) given by example 8.2.2 has
order 6, 12 or 24 in Q/Z.

We cannot obtain a sharper result with these methods.
Proof: Because h is the hyperelliptic involution, it acts as −1 on the first homology group.
Since N = 28, we have rh = 14.
Since x1 has 2 fixed points, it follows that tr(α1) = 0 by the Lefschetz fixed point formula.
Because x2

1 = h, the eigenvalues are ±i, the multiplicities being 14 for both signs.
Thus sk(1) = 0 for k = 1, . . . , 14; sk(1) = 1 for k = 15, . . . , 28. The first summand in the
Jones-Westbury formula amounts to
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56e1 = −30
28
∑

k=1

28
∑

l=1

(sk(1) − sl(1))
2

2a2
1

= − · 30 · 49 ≡ 0 (mod Z).

Because x2 is fixed-point-free, it follows that tr(α2) = 2. Because x3
2 = h, it follows that the

eigenvalues of α2 are of the form ζj
6 with j = 1, 3 or 5. Let µi be the number of eigenvalues

with power i. We must determine µi. The relevant equations are

1. µ1 + µ3 + µ5 = 28;

2. ζ6µ1 + ζ3
6µ2 + ζ5

6µ3 = 2 (trace formula);

3. µ1 = µ5 (α1 is real).

These equations have a unique integral nonnegative solution, (µ1, µ3, µ5) = (10, 8, 10).
Thus s1(2) = . . . = s10(2) = 1; s11(2) = . . . = s20(2) = 0; s21(2) = . . . = s28(2) = 2.
The contribution to the e-invariant is

56e2 = −
30

18
(1000) = −

5

3
(1000) ≡ −

5

3
(mod Z) ≡

1

3
(mod Z).

The computation of the third summand follows the same pattern. We end up with
s1(3) = . . . s6(3) = 1, s7(3) = . . . s12(3) = 2, s13(3) = . . . s18(3) = 4, s19(3) = . . . s24(3) = 0,
s25(3) = . . . s28(3) = 3. It follows that 56e3 = −30

50
(36 + 6)80 ≡ 0 (mod Z).

In the end, we obtain 56e ≡ 1
3
.

Choose a representative of e in Q, also denoted e. Because e must be annihilated by 24 in
Q/Z (see section 8.6), we can write e = s

24
for s ∈ Z. We obtain 56s

24
= r+ 1

3
which implies

the proposition.

Proposition 8.4.2. For Example 8.2.3, the e-invariant is 1
2
.

For Example 8.2.4, the e-invariant is − 1
12

.

Proof: We keep the notation as before and treat first Example 8.2.3. Then N = 18. By
the count of fixed points and the Lefschetz formula, we see that tr(α1) = −2, tr(α2) = 0,
tr(α3) = −2.
The eigenvalues of α1 are of the form ±1. It follows that s1(1) = . . . s8(1) = 0 and s9(1) =

. . . s18(1) = 1. The contribution to the e-invariant is e1 = −30
∑18

k=1
sk(1)2

8
= −75

2
≡ 1

2

(mod Z) (we use the simplification of the Jones-Westbury formula).
For y2, it follows that s1(2) = . . . = s6(2) = 0, s7(2) = . . . = s12(2) = 1, s13(2) = . . . =
s18(2) = 2 and that e2 = −900

18
≡ 0 (mod Z).

For the last summand, we obtain s1(3) = s2(3) = 0; s3(3) = . . . = s6(3) = 1, s7(3) = . . . =
s10(3) = 2; s11(3) = . . . = s14(3) = 3, s15(3) = . . . = s18(3) = 4. The summand for the
e-invariant is −180 ≡ 0 (mod Z).
Summing everything up, gives us e = 1

2
.
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For Example 8.2.4, we only give the results, because the computation follows the same
pattern.
s1(1) = . . . = s4(1) = 0, s5(1) = . . . = s10(1) = 1. Thus e1 = −75

4
.

s1(2) = . . . = s2(2) = 0, s3(2) = . . . = s6(2) = 1; s7(2) = . . . = s10(2) = 2. Thus e2 = −100
3

.
s1(3) = s2(3) = 0, s3(3) = s4(3) = 1, s5(3) = s6(3) = 2; s7(3) = s8(3) = 3, s9(3) =
s10(3) = 4. Hence e3 ≡ 0 (mod Z).
In the end, we obtain e ≡ − 1

12
.

8.5 Increasing the genus

Example 8.2.4 produces an element π3(BΓ+
5 ) whose e-invariant is 1

12
. The question arises

whether we can increase the genus of the surface, since π3(BΓ5)
+ is certainly not in the

stable range for Harer stability.
Geometrically, the stabilization procedure is as follows. Consider our surface X of genus
5 with an action of the icosahedral group G, which is faithful (the central element h ∈ Ĝ
acts as the identity on X). Then we choose a point p ∈ X which is not fixed by any
nontrivial g ∈ G and an embedding j : D2 → X, p ∈ D = j(D2), such that gD ∩ hD = ∅
whenever g, h ∈ G, g 6= h. Let Fn be a surface of genus n with one parameterized boundary
component. Define Xn as the pushout of the diagram

∐

g∈G S1 //

²²

∐

g∈G Fn

X \ (∪g∈GgD)

Then Xn is a closed smooth surface of genus 5 + 60n with an faithful G-action. The
representation of Ĝ on H1(Xn) is the direct sum H1(X)⊕2n ·φ∗ZG, where φ : Ĝ→ G was
the extension homomorphism and ZG denotes the regular representation of G. Since the
e-invariant is additive as a map RĜ→ Q/Z (see [29]), we need to compute the e-invariant
of the regular representation of G, pulled back to Ĝ. We do this with the Jones-Westbury
formula again. Because Ĝ is perfect, the regular representation takes values in the special
linear group.
Let α : Ĝ→ SL120(C) represent 2·φ∗ZG. Certainly, the central element acts as the identity.
If we restrict the representation 2 ·ZG to the subgroup 〈y1〉 ⊂ G of order 2, it is the sum of
60 copies of the regular representation of Z/2. Thus, the contribution to the e-invariant is
e1 = −30

8
·60 ≡ 0 (mod Z). Similarly, the second summand in the Jones-Westbury formula

becomes −1000
3

≡ −1
3

(mod Z) (the representation restricted to 〈y2〉 is 40 times the regular
representation of Z/3. The third summand is e3 ≡ 0 (mod Z). Thus we obtain

Proposition 8.5.1. The e-invariant of the action Ĝ y Xn is − 1
12

− n
3
.

In particular, we do not obtain element with e-invariants of higher order.
It seems reasonable that this result is the best possible, i.e. that there does not exist an
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action of the binary icosahedral group on some surface such that the resulting element
in π3(BΓ+

∞) has a smaller e-invariant. To prove this, it would suffice to show that the e-
invariant of any integral representation of Ĝ belongs to ( 1

12
Z)/Z ⊂ Q/Z. How can one show

this? The e-invariant defines an additive homomorphisms RĜ→ C/Z. The representation
ring of the finite group Ĝ is a free finitely generated abelian group and one has a rather
small explicit basis. By direct checking it is possible to find a Z-basis for the subgroup
of RĜ consisting of representations which are defined over the integers. However, the
amount of time and paper one needs for this may be quite large and so we refrain from
doing anything in this direction.

8.6 Concluding remarks

Proposition 6.6.7 and the Madsen-Weiss theorem show that π3(BΓ+
∞) ∼= Z/24 and an

isomorphism is induced by BΓ+
∞ → Q(CP∞

+ ) → Q(S0). Theorem 6.8.1 tells us that the
maps

Z ×BΓ+
∞ → Z ×BGL∞(Z)+

given by the action on the first homology and

Z ×BΓ+
∞ → Ω∞GSO

−2 → Q(CP∞
+ ) → Q(S0) → Z ×BGL∞(Z)+

are homotopic.
Since the e-invariant π3(Q(S0)) → Q/Z is injective, the composition

π3(BΓ+
∞) → π3(Q(S0)) → Q/Z

is also injective and it agrees with the composition

π3(BΓ+
∞) → K3(Z) → Q/Z

of the representation map with the e-invariant. This shows that the order of the element
in π3(BΓ+

∞) with e-invariant 1/12 constructed in this chapter has order 12 (and not 24).
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A Appendix on groupoids

In this appendix, we give the proof of two abstract statements about classifying spaces of
topological groupoids.

Lemma A.0.1. Let G be a topological groupoid with a discrete object set. Let R be a
system of representatives for the set Ob(G)/ ∼=. Then the functor

F :
∐

x∈R

Aut(x) → G

induces a homotopy equivalence of classifying spaces:

∐

x∈R

BAut(x) → BG.

Proof: We show that F is an equivalence of topological categories by defining an inverse
functor H.
For any y ∈ Ob(G), there is a unique object H(y) ∈ R and an isomorphism ay : H(y) → y.
We define H by sending

y 7→ x; (g : y → z) 7→ a−1
z ◦ g ◦ ay.

We write composition in a category contravariantly, pretending that the morphisms are
maps between sets. Since the object set is discrete, H is a continuous functor. It is trivial
to check that H is right adjoint (it is even an equivalence of categories). Thus F and H
induce mutually inverse homotopy equivalences.

Let H be a topological groupoid (with discrete object set); G a topological group with unit
1 and φ : H → G a continuous morphism of groupoids. The kernel of φ is the groupoid
whose objects are the objects of H and whose morphisms are the elements h ∈ Mor(H)
with φ(h) = 1. We say that a morphism of groupoids (alias functor) Φ : H → G is surjec-
tive if for any object x ∈ Ob(H) and any g ∈ Mor(G) = G, there exists y ∈ Ob(H) and
h ∈ MorH(x; y) with Φ(h) = g.

Proposition A.0.2. Let G, H and φ as before and let K = kerφ. Assume that φ is
surjective in the sense that for any g ∈ G, there exists h ∈ MorH with φ(h) = g. Assume
further that the map Mor(H) → G is a Serre fibration.
Then the canonical map from BK to the homotopy fiber of Bφ : BH → BG is a homotopy
equivalence.

The proof is a bit longer. First, we prove the proposition under the assumption that G
and H are discrete. We can use Quillen’s Theorem B ([44], p. 97) to do the job. We state
it in greater generality than actually needed. Let F : A → B be a functor between small
categories. For an object Y ∈ Ob(B), we define the right fiber Y/F to be the category
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whose objects are the pairs (X, b); X an object of A and b : Y → F (X) a morphism in
B. A morphism (X; b) → (X ′, b′) in Y/F is a morphism a : X → X ′ in A such that
b′ = F (a) ◦ b.
Any morphism β : Y → Y ′ in B determines a functor β∗ : Y ′/F → Y/F by sending (X ′, b′)
to (X ′, b′ ◦ β). This functor is called the transition map. There is an obvious forgetful
functor v : Y/F → A. There is also an obvious functor u : Y/F → Y/B, where the latter is
the category of all objects over Y in B. The classifying space of Y/B is contractible, since
it has a terminal object. Quillen’s Theorem B states that if all transition maps induce
homotopy equivalences on the level of classifying spaces, then the following commutative
diagram is homotopy cartesian:

B(Y/F ) v //

u

²²

BA

F

²²
B(Y/B) // BB.

In other words, B(Y/F ) is the homotopy fiber of BF : BA → BB. If B = G is a group,
then every morphism in B is an isomorphism and thus every transition map is a homotopy
equivalence after realization. Thus the assumption of Quillen’s Theorem B are satisfied.
It remains to identify B(Y/F ) with BK. Let F : H → G be a morphism of groupoids, let
G be a group and let φ be surjective. Let K be the kernel of φ.
Let ∗ be the object of B. We define a functor F : K → ∗/φ:
The objects of K are the objects of H, and F sends an object a to the object (a, 1) ∈
Ob(∗/φ). A morphism f : a→ b in H is in K if and only if φ(f) = 1; and F sends it to the
morphism f : (a, 1) → (b, 1). It is readily checked that F is essentially surjective (every
object in ∗/φ is isomorphic to one of the form F(a)) and that F is bijective on morphism
sets. Under these circumstances, F induces a homotopy equivalence on classifying spaces.
Note that the construction of F is natural in G,H and φ.
This finishes the proof of the proposition in the case that H and G are discrete.
In the general case, we want to apply a generalized version of Quillen’s Theorem B, due to
Waldhausen ([54]). It is stated for simplicial categories. Recall that a simplicial category is
a simplicial object in the category of small categories and functors. The standard example
is the singular simplicial category S•C of a topological category C. The objects of the
category SnC in the nth degree are the continuous maps from the standard n-simplex ∆n

to the object space of C, the morphisms of SnC are the continuous maps ∆n → Mor(C),
with pointwise composition.
If A• is a simplicial category, we can form its nerve N•A•, which is the bisimplicial set
([n], [m]) 7→ NnAm := Funct([n];Am), where [n] is the partially ordered set 0 < 1 < . . . n,
viewed as a category.
For any bisimplicial set ([n], [m]) 7→ Xn,m, there is a canonical homeomorphism between
the iterated realizations:

|[n] 7→ |[m] 7→ Xn,m|| ∼= |[m] 7→ |[n] 7→ Xn,m||,
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see [44], p. 94. We denote both spaces with the symbol B|A•|. In the case that Xn,m =
NnSmC for a topological category C, this shows that

|[m] 7→ |[n] 7→ NnSmC|| ∼= |[m] 7→ B(SmC)|

and

|[n] 7→ |[m] 7→ NnSmC|| ∼= |[n] 7→ |S•NnC|

are homeomorphic. Because for any space X; X and |S•X| are weakly homotopy equiva-
lent, we see that

|[n] 7→ |S•NnC| ' |[n] 7→ NnC| = BC.

All homeomorphisms and homotopy equivalences occurring in this discussion are natural.
It follows that we can replace H, G and φ in the proposition by their singular simplicial
counterpart. More precisely, we study S•φ : S•H → S•G. It is a simplicial functor. Let us
state Waldhausens improvement of Quillen’s Theorem B. Assume that F• : A• → B• is a
simplicial functor. We make the additional assumption that any object in B• is isomorphic
to a zero-dimensional one. That means the following: For any y ∈ Ob(Bq), there exist
z ∈ Ob(B0) and an isomorphism f : y → ε∗z; where ε : [q] → [0] is the unique map. Then
the right fiber over y ∈ B0 is the simplicial category

q 7→ Fn/ε
∗y.

If all transition maps of the right fibers which are induced by morphisms in B0 are homo-
topy equivalences, then the analogous statement to Quillen’s Theorem B is true. There
is a version without the assumption about the zero-dimensional objects which we do not
need here.
In our case, B = S•G is a simplicial group and thus it has only one object in any degree.
Thus the additional assumption is satisfied. The transition maps are all homotopy equiv-
alences because all morphisms in B0 are isomorphisms.
The assumption that our original φ was a surjective Serre fibration implies that Snφ :
SnH → SnG is a surjective homomorphism of discrete groupoids with kernel SnK. We
conclude that we have a homotopy equivalence

BK = B|[n] 7→ SnK| → B|[n] 7→ Fn/ε
∗ ∗ | = B(F•/∗)

by the consideration for the discrete case. By the improved Theorem B, it follows that

B(F/∗) → hofibB|S•φ|

is a homotopy equivalence, which finishes the proof of the proposition.
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B List of notations

At(M,σ) — the Atiyah invariant of the spin structure σ on the surface M (4.1.2)
Bn — nth Bernoulli number, 7.1.3
BG — classifying space of the group G
C(X;Y ) — space of continuous maps X → Y
χA(V ) — Euler class in the generalized cohomology theory A of the A-oriented vector
bundle V
∂̄V — Cauchy-Riemann operator on a surface bundle twisted with a vector bundle V
den(q) — denominator of the rational number q
Diff(M) — usually the group of orientation-preserving diffeomorphisms of the manifold
M
Diff0(M) — the group of diffeomorphisms of M homotopic to the identity
Diff(M,σ) — subgroup of Diff(M), consisting of diffeomorphisms fixing the spin structure
σ (3.2.1)
e — the e-invariant (only in chapter 8)
e(V ) — Euler class in ordinary cohomology of the oriented vector bundle V
χA(V ) — Euler class in the generalized cohomology theory A
EG → BG — universal G-principal bundle; E(G;X) → BG — the bundle EG ×G X;
where X is a G-space
G y X — the group G acts on the space X
Gδ (Cδ) — the Lie group G (the ring C) considered as discrete group (ring)
GF

−d — the generalized Madsen-Tillmann spectrum (6.3.2)
GL+

d (R) — the group of all real matrices with positive determinant

G̃L+
d (R) — the twofold connected covering group of GL+

d (R) (3.1)
Γg,Γg,n,Γ∞ — mapping class group of closed surfaces of genus g, mapping class group of
surfaces of genus g with n boundary components, infinite mapping class group
Γε

g, Γ̂
ε
g — subgroup of the mapping class group fixing a spin structure of Atiyah invariant

ε, spin mapping class group of genus g and Atiyah invariant ε
γn, γn(E), γn(π) — the symplectic cohomology classes (2.3.8)
k — connective complex topological K-theory spectrum
κn, κn(π), κn(E) — the Morita-Miller-Mumford classes or MMM-classes (2.3.1)
KR — algebraic K-theory spectrum of the discrete ring R
ΛvE — vertical cotangent bundle of the manifold bundle π : E → B
λn — the analytical Morita-Mumford classes (6.9.6)
Mg — moduli space of Riemann surfaces of genus g
Mor(C) — morphism space of the topological category C
OC — sheaf of local holomorphic functions on the Riemann surface C
Ob(C) — object space of the topological category C
ΩF

d — the normal F-bordism group
Ω∞E — infinite loop space of the spectrum E

ΩaE — the component of Ω∞E which corresponds to a ∈ π0(E) = π0(Ω
∞E)
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π : E → B — default notation for a manifold bundle
Q(X), Q0(X) — the infinite loop space of the spectrum Σ∞X, the unit component of
Q(X)
S(M) — the space of all almost complex structures on the surface M
sn — integral Chern character class (2.3)
SP2n(R) — the symplectic group with entries in R (2.3.5)
SPIN(M) — the groupoid of all spin structures on the manifold M (3.3.1)
Sdiff(M,σ) — the group of spin diffeomorphisms of (M,σ) (3.3.4)
Sdiff(M) — the groupoid of all spin structures and spin diffeomorphisms of M (3.3.4)
Sdiff(M)ε — the groupoid of all spin structures with Atiyah invariant ε and all spin dif-
feomorphisms (if M is a surface)
Σn,Σ∞ — the symmetric groups
Σ∞X — suspension spectrum of a pointed space X
Tg — Teichmüller space of Riemann surfaces of genus g
TvE — vertical tangent bundle of the manifold bundle π : E → B
Th(V ) — Thom space of the vector bundle V
Th(V ) — Thom spectrum of the stable vector bundle V (6.1.5)
Vn(π) — nth Hodge bundle of the surface bundle π : E → B.
X+ — the space X with an additional base point
X+ — the Quillen plus construction applied to X
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Band 32, Birkhäuser Verlag, Basel-Stuttgart 1966.

[11] Bousfield, A. K.: The localization of spaces with respect to homology. Topology
14 (1975), 133-150.

[12] Bredon, Glen: Topology and Geometry. Graduate Texts in Mathematics 139,
New York, 1993.

[13] Brown, Kenneth S.: Cohomology of groups. Graduate Texts in Mathematics,
87. Springer-Verlag, New York-Berlin, 1982.

[14] Dwyer, Wiliam; Weiss, Michael; Wiliams, Bruce: A parametrized index the-
orem for the algebraic K-theory Euler class. Acta Math. 190 (2003), no. 1,
1-104.

91



[15] Earle, Clifford J.; Eells, James: A fibre bundle description of Teichmüller
theory. J. Differential Geometry 3 (1969), 19-43.

[16] Farkas, Hershel M.; Kra, Irwin: Riemann surfaces. Graduate Texts in Mathe-
matics, 71. Springer-Verlag, New York-Berlin, 1980.

[17] Galatius, Søren: Mod 2 homology of the stable spin mapping class group,
preprint, arXiv math.AT/0505009 (2005).

[18] Galatius, Søren; Madsen, Ib; Tillmann, Ulrike: Divisibility of the stable
Morita-Mumford class. University of Aarhus preprint, February 2005, avai-
lable at http://www.imf.au.dk/cgi-bin/dlf/viewpublications.cgi.

[19] Galatius, Søren; Madsen, Ib; Tillmann, Ulrike; Weiss, Michael: The homotopy
type of the cobordism category. Preprint, arXiv.org/math.AT/0605249, 2006.

[20] Griffiths, Phillip; Harris, Joseph: Principles of Algebraic Geometry. Reprint
of the 1978 original. Wiley Classics Library. John Wiley and Sons, Inc., New
York, 1994.

[21] Harer, John L.: The second homology of the mapping class group of an ori-
entable surface, Invent. math. 72 (1983), 221-239.

[22] Harer, John L.: Stability of the homology of the mapping class groups of ori-
entable surfaces. Ann. of Math. (2) 121 (1985), no. 2, 215-249.

[23] Harer, John L.: Stability of the homology of the moduli spaces of Riemann
surfaces with spin structure. Math. Ann. 287 (1990), no. 2, 323-334.

[24] Harris, Joe; Morrison, Ian: Moduli of curves. Graduate Texts in Mathematics,
187. Springer-Verlag, New York, 1998.

[25] Hirsch, Morris W.: Differential topology. Graduate Texts in Mathematics, 33.
Springer-Verlag, New York-Heidelberg, 1976.

[26] Imayoshi, Yoichi; Taniguchi, Masahiko: An introduction to Teichmüller
spaces. Translated and revised from the Japanese by the authors. Springer-
Verlag, Tokyo, 1992.

[27] Ivanov, Nikolai: Mapping Class Groups. In: Handbook of geometric topology,
ed. by R.J. Daverman and R. B. Sher, 2002, p. 523-633.

[28] Johnson, Dennis: Spin structures and quadratic forms on surfaces. J. London
Math. Soc. (2), 22 (1980), 365-373.

[29] Jones, John D. S.; Westbury, Bruce W.: Algebraic K-theory, homology
spheres, and the η-invariant. Topology 34 (1995), no. 4, 929-957.

92



[30] Kawazumi, Nariya; Uemura, Takeshi: Riemann-Hurwitz-formula for Morita-
Mumford classes and surface symmetries. Kodai Math. J. 21(1998), 372-380.

[31] Lawson, H. Blaine, Jr.; Michelsohn, Marie-Louise: Spin Geometry. Princeton
Mathematical Series, 38. Princeton University Press, Princeton, NJ, 1989.

[32] Madsen, Ib; Tillmann, Ulrike: The stable mapping class group and Q(CP∞
+ ).

Invent. Math. 145 (2001), no. 3, 509-544.

[33] Madsen, Ib; Weiss, Michael: The stable moduli space of Riemann surfaces:
Mumfords conjecture. arXiv.org/math.AT/0212321 version 3, July 14, 2004.

[34] Masbaum, Gregor: On representations of Spin mapping class groups arising
in Spin TQFT. Geometry and physics (Aarhus, 1995), 197–207, Lecture Notes
in Pure and Appl. Math. 184, Dekker, New York, 1997.

[35] Miller, Edward Y.: The homology of the mapping class group. J. Differential
Geom. 24 (1986), no. 1, 1-14.

[36] Milnor, John W.; Stasheff, James D.: Characteristic classes. Annals of Mathe-
matics Studies, No. 76. Princeton University Press, Princeton, N. J.; Univer-
sity of Tokyo Press, Tokyo, 1974.

[37] Milnor, John: Groups which act on Sn without fixed points. Amer. J. Math.
79 (1957), 623-630.

[38] Morita, Shigeyuki: Characteristic classes of surface bundles. Invent. math. 90
(1987), 551-577.

[39] Morita, Shigeyuki: Characteristic classes of T 2-bundles. Homotopy theory
and related topics (Kyoto, 1984), 135–148, Adv. Stud. Pure Math., 9, North-
Holland, Amsterdam, 1987.

[40] Mukai, Juno: The S1-transfer map and homotopy groups of suspended complex
projective spaces. Math. J. Okayama Univ. 24 (1982), no. 2, p. 179-200.

[41] Mumford, David: Towards an enumerative geometry of the moduli space of
curves. In: Arithmetic and geometry, Vol. II, 271-328, Progr. Math., 36,
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scher Flächen”. Supervisor: C.-F. Bödigheimer
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