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0 Introduction

The central point of most studies of Riemann surfaces is the Uniformization
Theorem, the mighty black box that brings the conformal and hyperbolic struc-
tures in one-to-one correspondence. On the one hand, we profit from the variety
of points of view for surfaces: to the two viewpoints mentioned above we can add
the complex and the algebraic ones; thus we obtain a lot of tools coming from
different areas of mathematics. On the other hand, passing from one structure
to another is quite often a hard task, which makes the use of different tools at
the same time rather difficult.

For instance, assume a Riemann surface given by some equations in CPn.
Then we can work with its complex and algebraic structures fairly explicitely.
What about the hyperbolic structure? Can we compute the length spectrum?
Or just the length of the shortest closed curve? If the algebraic structure is a
special one, e.g. has a lot of automorphisms, then we have a chance to determine
the hyperbolic structure. In general, however, we can only hope to obtain good
estimates, using fact like this: If a complex cylinder of small modulus can be
imbedded im the surface, then the core curve of the imbedding’s image is short.

When passing from a single Riemann surface to bundles of Riemann surfaces,
i.e. studying the moduli space Mg, the problems get even worse. Namely, we
have to understand how a change of one structure affects the others. For instance,
moving along a Teichmüller geodesic is, in a sense, a well understood change of
a complex structure, which is hard to describe in hyperbolic (Fenchen-Nielsen
coordinates) or algebraic terms.

For the study of the moduli space, many different structures on it have been
introduced, all being natural in the sense of being defined in terms of structures
on Riemann surfaces. As a consequence, each of these natural structures on Mg

can be used to study (bundles of) Riemann surfaces from one or two viewpoints
mentioned in the beginning; however, non of the structures on Mg is well adapted
to all four viewpoints.

The problem of passing between the structures lifts from structures on Rie-
mann surfaces to those on Mg, though some links exist. For instance, the Delinge-
Mumford compactification Mg, which allows to study the algebraic orbifold struc-
ture on Mg, is hard to interprete in terms of the Teichmüller metric, but is just
the completion with respect to the Weil-Petersson metric. Another example is
the fact that the Kobayashi metric with respect to the complex structure on Mg

coincides with the Teichmüller metric.
On the other hand, there are very special subspaces of Mg which are, in

analogy to Riemann surfaces with many automorphisms, well-behaved to most of
the many structures on Mg. These so called Teichmüller curves are holomorphic
immersions of complex curves (Riemann surfaces of finite type) in Mg, which
are isometric with respect to the Teichmüller metric. Alternatively, they are con-
structed as projections of closed orbits of a natural GL+

2 R-action on the moduli
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space’s cotangent bundle.
In this thesis, we study how Teichmüller curves lie in the compactification

Mg, and, although we are not able to compare the restrictions of Teichmüller
and Weil-Petersson metrics locally, we compare the areas of abelian Teichmüller
curves with respect to those metrics. More precisely, we study the homology
class of Teichmüller curves in H2(Mg, Q) by evaluating the following cohomology
classes on them:

• The class of the compactification divisor D = Mg \ Mg is evaluated by
computing the intersection number of a compactified Teichmüller curve
with D. In the somewhat special case of abelian Teichmüller curves we
deduce the intersection number with each component of D.

• For abelian Teichmüller curves, we evaluate the first Morita-Mumford co-
homology class κ1 on the homology class of Teichmüller curve. Since the
components of D and κ1 generate H2(Mg, Q) freely, this evaluation com-
pletes the homological study of abelian Teichmüller curves.

By Wolpert’s results, κ1 is a multiple of the cohomology class of the Weil-
Petersson Kähler form. Since a Teichmüller curve is holomorphically immersed,
the evaluation of κ1 provides a computation of the Weil-Petersson area of an
abelian Teichmüller curve. Since Teichmüller curves are isometrically immersed
with respect to Teichmüller metric, we can easily compute this area too. Com-
paring the two areas, we see that the quotient of both depends on surprisingly
few data.

This thesis is organized as follows. In the first section we introduce orbifolds,
and define moduli spaces as well as related structures. A reader familiar with
these can as well skip this section. Note however, that we take the strong notion
of orbifolds, allowing isotropy groups to act trivially. In the next section we
introduce flat surfaces, a notion closely related to that of holomorphic quadratic
differentials. In the third section we define an action of PSL2 R on the space of
flat surfaces, and relate this to the action of PSL2 R by Möbius transformations
on the lower half-plane H. Out of this relation we obtain a map H → Tg into
the Teichmüller space, which we call Teichmüller disc, and show this to be a
holomorphic and isometric imbedding. We define Teichmüller curves to be closed
images of Teichmüller discs in Mg, which is a very restrictive condition.

Note that our definition of Teichmüller curves as suborbifolds of Mg differs
slightly from the usual one, which we discuss in the remark at the end of Section
5 and in Section 6.4. Our definition takes note of the trivial action of automor-
phisms of flat surfaces on Teichmüller curves; as we are working with the strong
notion of orbifolds, this definition is quite natural.

In Section 4 we prepare passing to Mg by considering the cusps of a Teich-
müller curve. So far, we introduced a setting known to mathematicians working
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in Teichmüller theory. At least since Veech’s papers in the 80s, where he found
a relation to the dynamics of billiards, this setting has been an object of many
studies. On the contrary, Sections 5 and 6 contain new constructions and results.

In Section 5, the main idea is to adapt the usual procedure of opening-up-
nodes of a noded surface to the context of flat surfaces. We construct a bundle
of flat surfaces over a disc D such that

• the complex structures of all but one fibers correspond to points in the
image of Teichmüller curve’s cusp,

• in suitable coordinates of Mg, where the divisor is given by a simple func-
tion, the classifying map D → Mg can easily be made precise.

Using these properties we are able to compute the intersection number of the
compactified cusp and the compactification divisor D.

In the last section, we use the previous construction to compute the zero
divisor of a holomorphic section in the relative cotangent bundle of the universal
curve over an abelian Teichmüller curve. This leads us to the evaluation of the
first Morita-Mumford class on the homology class of the Teichmüller curve.

Acknowlegements. I am deeply indebted to Professor Ursula Hamenstädt,
who introduced me to this field and supported me steadily, especially in bad times.
Her patience and many fruitful discussions with her made this thesis possible. I
also thank Thomas Foertsch, Benjamin Ko, Alexander Lytchak, Emanuel Nipper,
Juan Souto and Sewa Shevchishin for various conversations and much more, and
Heike Bacher for the good mood inside the working group. I am greatful for the
financial support that I received from Max-Planck-Institute in Bonn during the
most time of my doctoral studies. My personal thanks for the moral support go
to my parents and to my wife Natalie. Finally, special thanks go to Dr. Armin
Holschbach for careful proofreading and language editing.

1 Moduli spaces as orbifolds

The natural environments of the objects of this work are the moduli spaces,
which we introduce in this section. There are many different ways to handle
these spaces; for this thesis the orbifold viewpoint is appropriate. We use the
strong notion of orbifolds, allowing isotropy groups to act trivial. In the first
subsection we give the definition of orbifolds, state some properties, and define
the essential objects on orbifolds, such as vector bundles, divisors, Chern classes
etc. In the second we define Teichmüller and moduli spaces and describe the
Deligne-Mumford compactification. After that we introduce the universal curve,
its relative tangent bundle, the compactification divisor, and the Mumford-Morita
classes.
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1.1 Orbifolds

Let X be a topological space. A chart or coordinate neighborhood for X is a
triple (Ũ , Γ, φ), where Ũ ⊂ Cn is open, Γ is a finite group acting by biholomor-
phisms on Ũ , φ : Ũ → U ⊂ X is a continuous map onto an open subset of X,
such that φ ◦ γ = φ for all γ ∈ Γ and φ induces a homeomorphism Ũ/Γ → U .

A collection of charts defines an orbifold structure on X if the collection
(Ui)i is a base for the topology of X and the following compatibility condition is
satisfied: whenever U1 ⊂ U2, there exists a holomorphic imbedding λ : Ũ1 → Ũ2

and an injective group homomorphism λΓ : Γ1 → Γ2 such that φ1 = φ2 ◦ λ and
λ ◦ γ = λΓ(γ) ◦ λ for any γ ∈ Γ1.

If 0 ∈ Ũ and Γ fixes 0, we call Ũ a coordinate neighborhood for φ(0), and
refer to Γ as the isotropy group of φ(0), which is well-defined up to isomorphy.

A manifold is an orbifold with trivial isotropy groups.

An orbifold morphism is a continuous map f : X → Y together with injections
of isotropy groups Γx → Γf(x) such that for any x ∈ X there exists a holomorphic

lift f̃ : Ũx → Ũf(x) compatible with isotropy groups and projections. An orbifold
morphism is a cover if the local lifts can be chosen biholomorphic.

Let X be an orbifold and let G act properly discontinuously by morphisms on
X. Then the quotient orbifold X/G is defined in the usual way, using the charts
of X. We call the projection X → X/G a normal cover with covering group G;
the order of G is the degree of the normal cover.

A good orbifold is an orbifold X that admits a finite normal manifold cover, i.e.
there exists a manifold X̃ and a finite group G acting on X̃ such that X̃/G ∼= X.
A finite normal manifold cover exists whenever some finite manifold cover exists.
We will be dealing with good orbifolds only.

Remark. The homomorphism Γ → Aut(Ũ) does not have to be injective. If
X is connected, the kernels of these morphisms are isomorphic for all charts. Let
X̃ → X be a normal manifold cover with the covering group G, i.e. we have a
homomorphism G → Aut(X̃). Then the kernel of the map is a subgroup of the
isotropy group of any point in M .

In the category of orbifold, fiber products exist, i.e. given morphisms Y
f1→ X

and Z
f2→ X, there exists an unique orbifold Y ×X Z and morphisms Y ×X Z

p1→ Y
and Y ×X Z

p2→ Z satisfying f1 ◦ p1 = f2 ◦ p2 with the following property: given

an orbifold T , and morphisms T
t1→ Y and T

t2→ Z with f1 ◦ t1 = f2 ◦ t2, there

exists a unique T
t→ Y ×X Z with pi ◦ t = ti, for i = 1, 2.

If Y → X is a normal cover, so is Y ×X Z → Z, with the same covering group.
Since an orbifold morphism induces an injection of isotropy groups, Y ×X Z is
a manifold if Y is one. Sometimes we refer to Y ×X Z → Z as the preimage of
Y → X under Z → X1.

1In the category of sets or manifolds, for an inclusion Y → X, the map Y ×X Z → Z is
indeed the inclusion of the preimage.
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In the following we extend some concepts from the category of manifolds to
orbifolds. For manifolds we can use the usual definitions.

Local objects, like differential forms, can be defined in terms of charts, and
then get patched together to global objects. For instance, we define a differential
form locally to be a differential form on a chart Ũ , invariant under the isotropy
group. The usual transition condition then gives us the notion of global differen-
tial form. In the same manner we can define divisors and vector bundles. Note
that the definition of vector bundles does not coincide with the usual one when
the orbifold is viewed as the underlying topological space. For instance, we de-
fine orbifolds tangent and cotangent bundles to be locally tangent and cotangent
bundles of chart neighborhoods with the usual identifications via derivative and
coderivative of transition maps and isotropy groups. By this definition, the fiber
over a point is a quotient of a vector space by the isotropy group. In order to
save the intuition of local triviality, we can regard the tangent space at a point
as a vector space equipped with an action of the isotropy group. This can be
achieved by generalizing the notion of points to geometric points, however we do
not go into these details.

In the case of good orbifolds we can define the global objects directly, by taking
the corresponding objects on any normal manifold cover, which are invariant
under the covering group. Then a vector bundle is a vector bundle on some
manifold cover, equipped with a lift of the covering group’s action to bundle
automorphisms. Analogously we can define other bundles ; we will use the notion
of surface bundles.

The set of complex line bundles over an orbifold X endowed with the tensor
product is a group which we call Pic(X). Again, this is not the classical Picard
group of the underlying topological space. Usually this one is called the orbifold
Picard group, but since we have no use for the classical one we omit the “orbifold”
in our notation.

Let Y
p→ X be a finite normal manifold cover, let G be the covering group.

Then the pullback p∗ : H∗(X, Q) → H∗(Y, Q) is injective and the image of p∗

consists of the G-invariant elements in H∗(Y, Q).2 Hence, we can define a push
forward p! : H∗(Y, Q) → H∗(X, Q) by the property |G|p∗p!(α) =

∑

g∈G g∗α. Note
that for a G-invariant α ∈ H∗(Y, Q) we obtain p∗p!(α) = α. For instance, given
a line bundle in Pic(X), we can pass to a manifold cover Y , construct the first
Chern class of the pulled back bundle and push forward the obtained element from
H2(Y, Q) to H2(X, Q). We call the resulting cohomology class, which does not
depend on the choice of Y , the Chern class of the line bundle. The constructed
assignment Pic(X) → H∗(X, Q) is a homomorphism of groups.

The fundamental class [X] ∈ H2dimCX(X, Q) is defined as 1
|G|

p∗([Y ]). This
definition is also independent of the choice of Y .

2By homology and cohomology of an orbifold we mean the usual homology and cohomology
of the underlying topological space.
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Since we can define characteristic classes not only for line bundles but more
generally for vector bundles, we are able to define the (orbifold) Euler charac-
teristic χ(X) of a good orbifold X, as the evaluation of the tangent bundle’s
Euler class eX on the fundamental class [X]. Since π∗eX = eY , we conclude
|G|χ(X) = χ(Y ). Note that in general χ(X) is rational but not an integer.

Remark Let X be an orbifold, G a finite group. Let G act trivially on X.
Then X/G ≇ X as orbifolds, for instance |G|χ(X/G) = χ(X).

1.2 Moduli spaces

Teichmüller space. Let g > 1 be an integer. Fix a closed topological surface
S of genus g. Consider the set of pairs (X, f), where X is a Riemann surface
and f is a homeomorphism S → X, which we call a marking. By a Riemann
surface we mean a conformal, complex or hyperbolic structure on the underlying
topological space; by the uniformization theorem these data are equivalent. We
define the pairs (X1, f1) and (X2, f2) to be equivalent, if there exists a conformal
(biholomorphic, isometric) map X1 → X2 that is homotopic to f2 ◦ f−1

1 . The
Teichmüller space T (S) of S is the set of equivalence classes of this relation.
The base surface S plays no essential role, since any change of the base by a
homeomorphism gives rise to a bijection of Teichmüller spaces. In the following
we use the notation Tg.

Teichmüller metric. For the equivalence classes of pairs (S1, f1) and (S2, f2)
as above, we define their Teichmüller distance to be 1

2
inff log(Kf ), where Kf is

the quasiconformal constant of f , and f varies over diffeomorphisms homotopic

to S1

f2◦f
−1
1→ S2. With the topology induced by this metric, Tg is homeomorphic

to an open real (6g − 6)-dimensional ball.
Complex structure. For a fixed point in Tg, Bers constructed a local imbed-

ding of Tg into a complex vector space dual to the space of holomorphic quadratic
differentials on the corresponding fixed surface. After the verification of the com-
patibility of this construction with a change of the base one defines the complex
structure by requiring the imbedding to be holomorphic. The cotangent bundle
of Tg can then be identified with the bundle of pairs (X,ω), where X is a marked
Riemann surface and ω is a holomorphic quadratic differential on X. We denote
this bundle by Ω2Tg.

Royden showed that the Kobayashi metric with respect to this complex struc-
ture coincides with the Teichmüller metric.

Weil-Peterson metric. Using the identification mentioned above, one de-

fines a Riemannian metric on the cotangent bundle of Tg by < φ,ψ >WP :=
∫

Xp

φψ
ρ2

on T∗
pTg, where p is a point in Tg, Xp is the corresponding Riemann surface, φ

and ψ are quadratic differentials on Xp and ρ is the hyperbolic metric on X. By
duality we obtain a metric on Tg, which is called Weil-Petersson metric. This
metric turns out to be non-complete, CAT(0) and Kähler. We denote the Kähler
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form by ωWP .
Mapg action. Given an orientation-preserving homeomorphism of the base

surface S, we can precompose its inverse to the marking S
f→ X and obtain a new

marking on X. Since the homeomorphisms homotopic to identity act trivially, we
have defined an action of the group Map(S) of homotopy classes of orientation
preserving homeomorphisms of S on T (S), and, as above, an action of Mapg on
Tg. This action is properly discontinuous and preserves all the three structures.
Hence we can push forward the distance functions to the quotient space.

The stabilizers of points in Tg are easily seen to be canonically isomorphic to
the groups of conformal self-maps (biholomorphic self-maps, hyperbolic isomet-
ries) of corresponding Riemann surfaces.

Moduli space. The moduli space Mg = Tg/ Mapg is the set of Riemann
surfaces up to conformal (biholomorphic, isometric) equivalence, since the mark-
ings do not matter for the quotient. Since the action is not free, Mg does not
inherit a manifold structure from Tg, instead we can define an complex orbifold
structure induced by the manifold structure on Tg.

Orbifold structure on Mg. We define the orbifold structure on Mg =
Tg/ Mapg by taking small balls in Tg as coordinates. Note that Map(S) acts on
any homology group of S. Take the quotient of Tg by the kernel of Map(S) →
Aut(H1(S, Z/n)) for any n > 2, which acts freely on Tg. This quotient is then a
manifold that covers Mg normally of finite degree.

Compactification of Mg. The moduli space Mg is non-compact, for
instance the continuous function assigning to each Riemann surface the length
of the shortest geodesic in the hyperbolic structure does not attain its infimum.
However, there is a natural compactification Mg due to Mumford and Deligne.
The additional points in Mg correspond to Riemann surfaces with pinched curves;
so called noded surfaces:

A noded surface is a complex space such that each point has either a neigh-
borhood biholomorphic to a disc or to a neighborhood of 0 in the variety defined
by xy = 0 in C2. A node, in this definition, is a point of second type. From the
hyperbolic point of view, we allow cusps which are ordered pairwise; a node is
such a pair of cusps.

We can extend the orbifold structure of Mg to the compactification by defin-
ing chart neighborhoods for the new points. For this purpose we need to know
how to open up the nodes, i.e. to pass smoothly from noded surfaces to the usual
ones.

Opening up nodes (after [Wo85]). Let X0 be a noded suface with nodes
x1, ..., xk. For each node we choose D+

i and D−
i disjointly, a pair of discs inter-

secting in the node xi. Choose coordinates: z−i : D → D−
i with z−i (0) = xi, where

D is the unit disc {z ∈ C||z| < 1} ; and z+
i : D̂ → D+

i with z+
i (∞) = xi, where D̂

is the disc
{

z ∈ Ĉ = C ∪ {∞} |1 < |z|
}

. We assume the discs to be chosen such

that their complement in X0 contains an open subset that is a homotopy retract
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of X0 \ {x1, ..., xk}.
Let B be a neighborhood of 0 in C3g−3. We will assign to each point in B a

(possibly) noded surface and hence obtain a map to Mg, which maps a point in B
to the class of the corresponding surface. By means of Beltrami differentials with
support in the complement of discs we can describe the space of deformations
of X0 which change the complex structure outside discs. We identify the last
3g− 3− k coordintes in B with a neighborhood of 0 in the tangent space of such
deformations (see for example [H]). The first k coordinates describe opening up
nodes, which leaves the complex structure in the complement of disks invariant.
Since we can do it separately for each node, we will stick to one node and the
corresponding coordinate.

Let λ ∈ C, 0 < |λ| < 1. Remove the image of {z ∈ D||z| < |λ|} from D− and

and the image of
{

z ∈ D̂||z| > |λ|−1
}

from D+; identify the remainder of both

discs by z+ 7→ λz+. We have replaced the pair of discs by a cylinder. As λ tends
to zero, the hyperbolic lenght of the shortest core curve of the cylinder tends to
zero, and by careful considerations we can recognize X0 as limit surface.

Figure 1: Opening up a node.

Orbifold structure on Mg. We do not go into details showing that such
charts define an orbifold structure on Mg, and that the isotropy groups of the
added points are automorphism groups of the corresponding noded surfaces. Note
that although the chart depends on the choice of discs, the direction for “open-
ing nodes without changing the complex structure outside” is well defined, it is
normal to the set of surfaces having locally the maximal number of nodes.

For the finite covers of Mg defined above, the compactification corresponding
to Mg is still not a manifold. However, Mg is a good orbifold, as one can show by
some generalization of the finite manifold cover construction for Mg (see [Lo]),
and the manifold covers are projective manifolds.

Compactification divisor. Let x ∈ Mg \Mg, let B be a coordinate neigh-
borhood as in the opening-the-nodes-procedure. Then the divisor on B defined
by z1 ···zk = 0 is invariant under the isotropy group of x, since each element of the
group (which is an automorphism of the corresponding noded surface) preserves
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the set of nodes. The collection of all such local divisors defines a divisor D on
Mg. The support of D is the set Mg \Mg. Sometimes D is called the divisor at
infinity, since it is infinitely far away from any point in Mg with respect to the
Teichmüller distance. In the Weil-Petersson metric, Mg is just the completion of
Mg.

Let x be a point in D such that there is a non-separating node on the cor-
responding surface. Since non-separatedness is preserved by the automorphisms
of the surface, we can analogously define the divisor D0, whose support contains
all such points. In the same manner we define Di, 1 ≤ i ≤ [g

2
], whose support

contains points corresponding to surfaces, where at least one pinched curve cuts

off a subsurface of genus i. We immediately see that D =
∑[ g

2
]

i=0 Di.

Bundles of holomorphic differentials. The cotangent bundle of Mg is,
by means of the cotangent bundle of Tg, the orbifold of quadratic differentials
Ω2Mg, more precisely, a fiber over a point in Mg is the space of holomorphic
quadratic differentials on the corresponding surface endowed with the action of
automorphisms by pullbacks. The bundle of holomorphic 1-forms ΩMg is also
easily constructed from the corresponding bundle on Tg.

Universal curves. Let S be a surface of genus g, and C → B be a holo-
morphic bundle of marked Riemann surfaces, i.e. a topologically trivial bundle
of surfaces of genus g with a fixed isomorphism π1(S) → π1(Cb) for some and
hence every fiber of C. Then we obtain a map B → T (S) assigning to every
point the class of its fiber. This classifying map turns out to be holomorphic.
There is a bundle of marked surfaces C → T (S) such that its pullback along
the constructed base map B → T (S) is biholomorphic to the original bundle C.
Thus, holomorphic bundles of marked surfaces with base B are in 1-1 correspon-
dence to holomorphic maps B → Tg. Because of this property the bundle C is
called the universal curve3. The bundle is easily constructed as a quotient of Tg,1,
the Teichmüller space of Riemann surfaces with one marked point, by a suitable
action of π1(S).

Let x ∈ T (S) and let S → Sx be the corresponding marked surface. For
φ ∈ Map(S) the fibers Cx and Cφ(x) are canonically isomorphic to Sx, and hence we
obtain an action of Mapg on C, which is a lift of the Mapg-action on Tg. Let Γx ⊂
Mapg be the isotropy group of x ∈ Tg. By definition, Γx acts on Cx as Aut(Cx) by
canonical identification. Hence, fixed points of automorphisms of surfaces give
rise to fixed points of the constructed action. Since the stabilizers of points in
C are finite, we obtain an orbifold structure on the quotient C/ Mapg. We have
constructed a holomorphic bundle of Riemann surfaces C/ Mapg → Mg, however,
only in the sense of orbifolds: the pullback to any chart neighborhood is a surface
bundle, whereas fibers of the projection itself are the quotients Cx/ Aut(Cx). This
bundle is again universal in the previous sense, this time in the orbifold category:
orbifold surface bundles over an orbifold base B are in 1-1 correspondence to

3This notion comes from algebraic geometry and means relative curve = surface bundle.
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orbifold morphisms B → Mg. The universal property is shown easily by passing
to the universal covers of the bases of the bundles and using the universal property
of the Teichmüller space. We denote this object also by C and call it the universal
curve by abuse of notation.

Moreover, the universal bundle of Riemann surfaces extends to a universal
bundle of noded surfaces, which is a bundle over Mg. We denote this bundle
again by C and call it universal curve. If we take the algebraic definition of
noded surface, i.e. fill the nodes, then this bundle is a projective orbifold, in the
sense of finite manifold covers to be projective manifolds. Sometimes we will use
the hyperbolic concept of surfaces with cusps, but we always mean the algebraic
C when dealing with (co)homology of the universal curve over Mg. Note that
although some fibers are singular, all fibers fit together to an orbifold. The space
of nodes is a subspace of C of complex codimension 2; hence, by classical theory of
analytic spaces, the nodes are “very removable singularities”: roughly speaking,
whatever is defined in the complement of nodes in C, extends nicely to the nodes.

Relative tangent bundle. Let π : C → Mg be the universal curve of
Riemann surfaces. Denote by TC/Mg

the kernel of dπ : TC → TMg, which is a
subbundle of TC of rank one. This line bundle is called relative tangent bundle
of the universal curve, since it consists of elements in TC, which are tangent to
fibers.

At first glance, it is not obvious how to define the corresponding line bundle
on the universal curve of noded surfaces. Namely, in the singular points of noded
surfaces, which are fibers of π : C → Mg, dπ nullifies at least two linear indepen-
dent directions. However, we can use the algebraic definition of line bundles on
analytic space X as locally free OX-modules of rank one.

More precisely, there is coordinate neighborhood of a node in C and a coordi-
nate neighborhood of its image in Mg, such that the projection in this coordinates
is π : D × D × D3g−4 → D × D3g−4, (z1, z2, w1, ...w3g−4) 7→ (z1z2, w1, ..., w3g−4).
One checks easily, that every holomorphic section in the tangent bundle that is
nullified by dπ, is a holomorphic multiple of (z1∂z1 − z2∂z2), and thus the last
section is a generator of the kernel of dπ viewed as a sheaf morphism.

Relative cotangent bundle. This is defined as the dual of the relative
tangent bundle TC/Mg

. The restriction of a holomorphic section in the relative
cotangent bundle to a fiber is a holomorphic 1-form on the fiber. Thus, a holo-
morphic section in this bundle induces a holomorphic section in the bundle of
1-forms ΩMg. In the nodes, we either proceed as before, showing that dz1

z1
− dz2

z2

generates the bundle in the coordinates above, or we trust in the removability of
singularities and do not care much about the nodes.

Mumford-Morita classes. Next we define the probably most prominent
cohomological classes on Mg, the so-called Mumford-Morita classes. Let 0 ≤
k ≤ 3g − 3, π : C → Mg be the universal curve and πL : CL → L be its
pullback to a finite manifold cover L → Mg. Let eL ∈ H2(CL, Q) be the first
Chern class of the relative tangent bundle. We define κk,L ∈ H2k(L, Q) to be the
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image of ek+1

L
under the Gysin morphism, i.e. take the Poincare dual of ek+1

L
in

H6g−4−2(k+1)(CL, Q), push it forward to H6g−6−2k(L, Q) and apply to the resulting
class the inverse of the Poincare duality H6g−6−2k(L, Q) → H2k(L, Q). We push
κk,L forward to H2k(Mg, Q) and call the image κk the k-th Mumford-Morita class.
Note that the resulting class does not depend on the particular choice of the cover
L.

Alternatively, we can push forward the powers of the Chern class of the uni-
versal curve’s relative tangent bundle as elements in H∗(C, Q) to H∗−2(Mg, Q);
however, in this situation the classical Gysin morphism is a priori not defined.

Either way, we obtain a class κk with the following property: Let W
j→ Mg

be a compact (sub)orbifold of dimension k, let CW
jC→ C be the preimage of W in

C. Then (κk, j
C
∗ [CW ]) = (ek+1, j∗[W ]), where (., .) : Hi(X, Q) × Hi(X, Q) → Q is

the usual pairing for X = Mg, C, and [CW ] and [W ] are the fundamental classes.

2 Flat and translation surfaces

Let X be a Riemann surface and ω be a holomorphic quadratic differential
on X, i.e. a holomorphic section in T∗X ⊗X T∗X. Let Z be the set of zeros of
ω. Let U ⊂ X − Z be a simply connected neighborhood of p0 ∈ X. Let

√
ω

be a holomorphic 1-form on U with
√

ω ⊗ √
ω = ω. Such a root exists and is

unique up to multiplication by ±1. Since
√

ω is holomorphic, the integral
∫ p

p0

√
ω

depends only on p ∈ U and not on a particular path in U from p0 to p. Hence, we
obtain a locally biholomorphic map U → C, which we call a chart for X natural
with respect to ω. One checks immediately that a transition map of two natural
charts is a translation in C, possibly followed by − idC due to the choice of the
root; we obtain an atlas for X − Z with this property. Note that the restriction
of ω to U is just the pullback of dz2 := dz ⊗ dz via the natural chart.

On the other hand, given a topological surface (possibly non-compact) with an
atlas such that the transition maps are restictions of ±−translations on R2 = C,
we obtain a complex structure on the surface and a non-vanishing holomorphic
quadratic differential by patching together the pullbacks of dz2.

The zeros of ω in X and, correspondingly, punctures of the topological surface
in the backward construction require more careful consideration, but we do not
go into these details. We just note that most of the problems with these points
are handled by Riemann’s theorem on removable singularities.

Definition 2.1. A half-translation or flat surface is a pair (X,ω), with a Riemann
surface X and a holomorphic quadratic differential ω on X.

By means of the natural atlas we obtain further structure on a flat surface.
Since the transitions are ±−translations, hence isometries of C, we can pull back
the euclidean metric on C to a euclidean metric on X − Z. The metric can be
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continued to X, however, it becomes singular in Z. Later on, we will see what it
looks like in a neighborhood of a zero of ω.

For a tangent vector on X with base point outside Z, the argument ∈ [0; 2π)
measured in a natural chart is well-defined up to π. Hence, we have a notion of
direction ∈ [0; π). The geodesics in the constructed metric on X −Z are lines of
constant direction, and for any direction θ ∈ [0; π) we obtain a foliation of X −Z
by geodesics with direction θ. For instance, we have the so-called horizontal
foliation in the direction θ = 0, and the vertical foliation in the direction θ = π

2
,

which is orthogonal to the horizontal one with respect to the metric.

Let us take a closer look at the zeros of ω. Let z ∈ Z and let U → C be a
chart neighborhood of z such that ω is the pullback of zkdz2. The preimages of

lines lj : (0, ǫ) → C, t → te2πi j
k+2 for j = 0, ..., k + 1 are horizontal, as one can see

by integrating a local square root of ω. Each of the k + 2 regions between them
get mapped by a natural chart onto a neighborhood of zero in a half-plane.

Figure 2: The half-planes bounded by the horizontal half-leaves. In the right
coordinate ω = zkdz; the left coordinate is ω-natural.

Hence, extending the metric on X −Z into z, we obtain a conical singularity
with angle (k + 2)π. For each direction θ there are (k + 2) θ-half-leaves starting
in the zero. The foliations and the metric are singular in Z, and we refer to the
zeros of ω as singularities.

Figure 3: The horizontal and the vertical foliations close to a zero of ω.

Given a holomorphic 1-form α on a Riemann surface X we can do analogous
constructions, without chosing a square root. In this case transitions between
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natural charts are translations, the directions are well-defined in [0; 2π) and the
foliation is oriented. At a zero of order k we see 2(k + 1) half-planes.

Definition 2.2. A translation or very flat surface is a pair (X,α), with Riemann
surface X and a holomorphic 1-form α on X.

These flat surfaces are sometimes easier to handle. In the general case, the
orientation cover for any θ-foliation is very flat; so, dealing with very flat surfaces
is often sufficient.

Flat surfaces are usually contructed from polygons in C by gluing parallel
sides, as indicated in the following figure. More precisely, assume a set of polygons
given, whose sides are ordered in pairs, each consisting of two parallel sides of
the same lenth. For each pair there is a unique ±−translation mapping one side
to the other, such that one side’s inner normal direction get mapped to the other
side’s outer normal direction. Identification of each pair along this map yields an
oriented compact flat surface, with quadratic differential dz2. In the case that
only translations are involved, we obtain a very flat surface with differential dz.

Figure 4: Gluing a flat surface from a polygon. In the first and the last images
we see the horizontal foliation.

The angles at the singularities of the constructed surface are positive multiples
of π. In some special cases we obtain an angle π, accordingly, the quadratic
differential has a representation 1

z
dz2 in a neighborhood of the singularity, and is

therefore not holomorphic; these cases should be excluded.
The probably most famous examples are the L-surfaces and the origami. The

first arise from L-shaped polygons with identifications as in the following figure.
These surfaces have genus 2 and were studied e.g. by McMullen in [McM1] and
Bainbridge in [Ba]. Origami are constructed by gluing finitely many copies of a
square. For detailed discussion of examples see the next section.

Finally we want to mention the special case when for some direction θ, every
θ-half-leaf starting in a singularity runs into a singularity. Then, cutting the
surface along all singular θ-leaves we obtain a collection of nonsingular euclidean
surfaces with nonempty4 geodesic boundary, which are cylinders by the Gauss-

4In the exceptional case of a torus, the boundary is empty, since quadratic differentials have
no singularities.
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Figure 5: L-surface. Figure 6: An origami: “Eierlegende Wollmilchsau”.

Bonnet theorem. Any nonsingular θ-leaf is contained in one of these cylinders,
and is parallel to the boundary, hence closed. We call this decomposition of the
surface the cylindrical decomposition in direction θ. The example in the Figure
4 has one horizontal cylinder; the surfaces in the last two figures decompose into
two horizontal cylinders as well as into two vertical ones.

3 Teichmüller discs and curves

3.1 Teichmüller discs

Let i ∈ C be the imaginary unit, Imλ and Reλ be the real and imaginary
parts of a complex number λ = Reλ + i Imλ.

We start with the action of PSL2 R = SL2 R/ {±1} on the lower half-plane
H = {z ∈ C|Imw < 0} by Möbius transformations56. This action determines an
anti-action on the cotangent bundle of the lower halfplane T∗H, which extends to
an anti-action of GL+

2 R/ {±1} on T∗H by A • (w, u) = (µ−1
A (w), det A · (µA)∗wu),

where u ∈ T∗
wH, µA is the Möbius transformation defined by A, and (µA)∗w :

T∗
wH → T∗

µ−1
A

(w)
H is its pullback. The restriction of the last anti-action to the

bundle of non-zero cotangent vectors Ṫ
∗
H is transitive and free, and therefore,

for any choice of (w, u) ∈ Ṫ
∗
H we obtain a bijective map A 7→ A • (w, u).

For (w, u) = (−i, dw) there is another useful description of this orbit map:

For λ ∈ C∗ let Uλ =

(

Reλ −Imλ
Imλ Reλ

)

be the representation of multiplication by

λ on C = R2 as a real matrix. For w ∈ H set Aw :=

(

1 −Rew
0 −Imw

)

. Then, using

KAN-decomposition, we can decompose any A ∈ GL+
2 R as A = UλAw with

unique λ and w.

5We use w for the coordinate on H, keeping z reserved for a natural coordinate on a trans-
lation surface.

6For M =

(

a b

c d

)

, the Möbius transformation µM : C → C is defined by w 7→ aw+b

cw+d
, which

is a holomorphic map preserving H and H.
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Lemma 3.1. Let A = UλAw. Then A • (−i, dw) = (w, λ2dw).

Proof. We deduce µ−1
A (−i) = w from the following computation:

µA(w) = µUλ
(µAw

(w)) = µUλ
(Re w+i Im w−Re w

−Im w
) = µUλ

(−i) = (−i Re λ−Im λ
−i Im λ+Re λ

) = −i.

Denote by µ′|v the derivative of µ in v ∈ H. Using (µM)′|v = ad−bc
(cv+d)2

for M =
(

a b
c d

)

, we obtain µ′
Uλ
|−i = λλ

λ
2 = λ

λ
, where λ = Reλ − i Imλ; and we obtain

µ′
Aw

|w = −Im w
(Im w)2

= − 1
Im w

. This implies (µA)∗−i(dw) = (µUλAw
)′|wdw = µ′

Uλ
|Aw(w) ·

(µAw
)′|wdw = − λ

λIm w
dw. The computation of detA = det Uλ · det Aw = λλ ·

(−Imw) completes the proof.

Note that under this identification the anti-action of SL2 R by multiplication
from the right on GL+

2 R/ {±1} corresponds to the anti-action by pullbacks of

Möbius transformations on Ṫ
∗
H, which are holomorphic and can be extended to

T∗H.
On the other hand, GL+

2 R acts on the space of marked translation surfaces
Ω2Tg as follows. Given a translation surface (X,ω) and an A ∈ GL+

2 R, we
construct a new translation surface A(X,ω): Take the natural atlas with ±-
translations as transition maps and postcompose every natural chart with A.
This produces a new atlas, where the transition maps are the old transitions
conjugated by A, and hence are ±-translations too. Again, we do not go into
details concerning zeros of ω, but it is easy to see that this new structure gives
rise to a new Riemann surface and a holomorphic quadratic differential on it.
Though AX is not well-defined without ω, we will use this notation for the
Riemann surface underlying A(X,ω), if the differential is clear from context.
This defines an action of GL+

2 R on the moduli space of quadratic differentials
Ω2Mg. To lift this action to Ω2Tg, we note that the underlying topological space
for X and AX is the same, by definition. The identity on the topological space
is a homeomorphism idA : X → AX, which we postcompose with a marking for
X to obtain a marking for AX. We will suppress the markings in the notation,
as long no confusions can arise. The next examples are simple but useful:

• Uλ(X,ω) = (X,λ2ω), in particular UλX = X.

• A(t) =

(

e
t
2 0

0 e−
t
2

)

describes a Teichmüller deformation of X, which has

the minimal quasiconformal constant in the homotopy class of idA : X →
AX. The map R → Tg, t 7→ A(t)X is the Teichmüller geodesic generated
by (X,ω), see [Ab] for details.

The stabilizers of the constructed action of GL+
2 R on Ω2Tg obviously contain

±1; therefore, for a fixed (X,ω), we obtain a map Ṫ
∗
H → Ω2Tg, A • (−i, dw) 7→

A(X,ω), which extends to J : T∗H → Ω2Tg by J(w, 0) = (AwX, 0). Since
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UλAwX = AwX, this map descends to j : H → Tg, j : w 7→ AwX, as indicated in
the following commutative diagram:

Ω2Tg

Tg

GL+
2 R

T∗H

H

........................................................
.....
............

............................................................... ........
....

...............................

......
.
.....
......
.π

...............................

......
.
.....
......
.π

.............................................................................................................................................................................................
.

............

J

....................................................................................................................................................................................................................
.

............

j

Definition 3.2. We call the map j in the diagram the Teichmüller disc generated
by (X,ω).

Before we proceed to the properties of the Teichmüller curves, we state the
following easy fact, which follows directly from the definitions.

Fact 3.3. Let B ∈ SL+
2 R and (X,ω) a (marked) flat surface. Let jB be the

Teichmüller disc defined by B(X,ω), and JB analogous. Then JB(A•(−i, dw)) =
AB(X,ω) = J ◦ µ∗

B(A • (−i, dw)) and jB = j ◦ µ−1
B .

3.2 Properties of Teichmüller discs

The next two lemmas show why Teichmüller curves are sometimes called
complex geodesics.

Lemma 3.4. j is isometric with respect to the Poincare and Teichmüller metrics,
in particular injective.

Proof. First observe that j maps the geodesic γ0 : R → H, t 7→ −e−ti to

j ◦ γ0 : t 7→
(

1 0
0 e−t

)

X =

(

e−
t
2 0

0 e−
t
2

)(

e
t
2 0

0 e−
t
2

)

X, which, by combination of

the two examples above, is a Teichmüller geodesic.
Let γ : R → H be any other geodesic. Then there exists B ∈ SL2 R such that

γ = µB−1 ◦γ0. By the above fact, j◦γ = jB ◦γ0, hence j maps a Poincare geodesic
to a Teichmüller geodesic. Since both metric spaces are uniquely geodesic, this
proves the statement of the lemma.

Lemma 3.5. j is holomorphic.

Proof. Let B1(X) be the unit ball in the Banach space of Beltrami differentials
on X, i.e. (−1, 1)-forms, endowed with the L∞-norm. The map B1(X)

π→ T (X)

mapping β ∈ B1(X) to the class of the unique fβ : X → Xβ with
∂̄fβ

∂fβ
= β is

holomorphic by definition of the complex structure on Tg (see [H]).
For w ∈ H let fw := idAw

: X → AwX be the identity map, which
is multiplication by Aw in the natural charts of (X,ω) and Aw(X,ω), hence
fw(z) = Rez − Imz Rew − i Imz Imw = Rez −w Imz. This implies β(fw)(z) =
∂z̄fw

∂zfw

dz̄
dz

= 1−iw
1+iw

dz̄
dz

= i+w
i−w

dz̄
dz

.



3.2 Properties of Teichmüller discs 17

We see that I : H → B1(X), w 7→ β(fw) is holomorphic ⇒ j = π ◦ I is
holomorphic.

Corollary 3.6. Let ji be the Teichmüller disc generated by (Xi, ωi), for i = 1, 2.
If j1(H) = j2(H), then there exists B ∈ GL+

2 R such that B(X1, ω1) = (X2, ω2).
The matrix B is unique up to {±1}.
Proof. Since ji are holomorphic isometric imbeddings, the map j−1

1 ◦ j2 is an
orientation preserving isometry of H, hence, there exists a matrix B ∈ SL2 R such
that j2 = j1 ◦ µ−1

B . By the Fact 3.3 we obtain j2 = (j1)B.

In the proof of the isometry of j, we have seen that the generator of a Teich-
müller disc j generates the Teichmüller geodesic j ◦ γ0, and hence is unique up
to scaling (see [Ab]), which is achieved by multiplication with a multiple of the
unit matrix. Hence, there is a unique diagonal matrix D such that D(X2, ω2) =
B(X1, ω1). The statement of the corollary follows now.

Let X be a marked Riemann surface. Recall the identification of the space
of holomorphic quadratic differentials on X with the cotangent space of Tg at
the corresponding point x: A quadratic differential ω on X defines a linear map
T0B1(X) ∼= B1(X) → C by β 7→

∫

X
ωβ, which descends via T0B1(X) → TxTg

to a linear map TxTg → C, see [H] for details. The next rather technical lemma
gives the last bit of information on j that we will need:

Lemma 3.7. If the euclidean area of (X,ω) equals 1, then j∗ ◦ J = 1
2i

idT∗
H
,

more precisely j∗(A(X,ω)) = 1
2i

(A • (−i, dw)), where the multiplication in T∗H

is fiberwise.

Proof. Let A = Uλ. Note that A(X,ω) = (X,λ2ω) and A • (−i, dw) =
(−i, λ2dw). We also have I∗(−i, ∂w) = (0, 2i

(i+i)2
dz̄
dz

) ∈ T0B1(X) in ω-natural coor-

dinate z. Then 〈A(X,ω), j∗(−i, ∂w)〉 =
∫

X
λ2dz2 1

2i
dz̄
dz

= λ2

2i

∫

X
dzdz̄ = λ2

2i
. Hence,

〈j∗(A(X,ω)), (−i, ∂w)〉 = λ2

2i
⇒ j∗(A(X,ω)) = λ2

2i
(−i, dw) = 1

2i
(A • (−i, dw)).

Let A ∈ GL+
2 R be arbitrary. Decompose A as UλB with B ∈ SL2 R. Applying

the first part of the proof to jB, and using Fact 3.3 we compute

j∗(UλB(X,ω)) = (jB ◦ µB)∗(UλB(X,ω)) = µ∗
B(j∗B(Uλ(B(X,ω))))

= 1
2i
µ∗

B(Uλ • (−i, dw)) = 1
2i
(UλB • (−i, dw)).

Definition 3.8. Let (X,ω) be a flat surface. The cotangent bundle B2 of the
Teichmüller disc generated by (X,ω) is the image of J in Ω2Tg, with the projection
π ◦ J−1 : B2 → H. It is a line bundle isomorphic to T∗H via j∗ ◦ J = 1

2i
idT∗

H
and

J ◦ j∗ = 1
2i

idB2 .
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3.3 Teichmüller curves

In this section the action of the mapping class group comes into play, therefore
we denote all the markings; if the marking is not noted we mean the underlying
complex structure only. Let X be a Riemann surface. For simplicity of notation,
instead of Tg and Mapg we will use T (X) and Map(X), the models based on X,
i.e. the elements of T (X) are classes of pairs (Y, f) with Y Riemann surface and
f : X → Y etc.

Recall the definition of the action of Map(X) on T (X): Let φ denote a
mapping class on X or some representative of the class. Then precomposition
of φ−1 to the markings defines a self-map of T (X) which respects all involved
structures, in particular, it is holomorphic. We denote this automorphism of
T (X) by Φ. On the cotangent bundle of T (X) we obtain an anti-action of
Map(X) by pullbacks. In terms of identification of T∗T (X) with Ω2T (X) this

anti-action is by precomposition φ to markings of flat surfaces: (Y, f, ω)
Φ∗

7→ (Y, f ◦
φ, ω).

Let j and J be the maps defined by (X, id, ω) as in the previous section.
Then Φ−1 ◦ j and Φ∗ ◦ J are the corresponding maps defined by the marked flat
surface Φ∗(X, id, ω) = (X,φ, ω), which follows from the definition of Teichmüller
discs. In particular, Map(X) acts on the set of Teichmüller discs, respecting their
cotangent bundles.

Now assume that Φ stabilizes the image of the Teichmüller disc generated by
(X, id, ω). Applying Corollary 3.6 to the Teichmüller discs Φ−1◦j and j we obtain
a unique M(φ) ∈ GL+

2 R/ ± 1 such that Φ∗(X, id, ω) = M(φ)(X, id, ω). By Fact
3.3 we obtain Φ−1 ◦ j = j ◦ µM(φ)−1 , hence, the pullback of Φ : T (X) → T (X) to

H via j is j−1 ◦ Φ ◦ j = µM(φ).
From (X,φ, ω) = Φ∗(X, id, ω) = M(φ)(X, id, ω) we deduce another important

property of M(φ): there exists a holomorphic map c : M(φ)X → X respecting
the flat structure, i.e. being ±-translation in the natural coordinates, such that
c ◦ idM(φ) is homotopic to φ. Then c ◦ idM(φ) : X → X is a representative of the
homotopy class of φ, which is affine with respect to ω-natural coordinates with
derivative M(φ).

We denote by StabMap(X) j(H) the subgroup of Map(X) stabilizing the image
of the Teichmüller disc generated by (X, id, ω), and by Aff(X,ω) the subgroup
of Map(X) consisting of homotopy classes having affine representatives. We
have proved StabMap(X) j(H) ⊂ Aff(X,ω). For the converse, let φ be an affine
diffeomorphism of (X,ω), let M ∈ GL+

2 R/ {±1} be its derivative, which is ob-
viously constant. Then c := φ ◦ id−1

M : MX → X is a ±-translation in the
natural coordinates, hence, holomorphic. We conclude c◦ idM = φ ⇒ (X,φ, ω) =
M(X, id, ω) ⇒ Φ ∈ StabMapg

j(H).
Note that the matrices in question must preserve the euclidean area of the

flat surfaces and are therefore elements of PSL2 R.
We now switch back to the usual notation. In the following diagram the
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horizontal arrows are isomorphisms; and the left vertical arrow takes derivative
of some affine representative, which is well defined since everything else is. We
have shown that the diagramm commutes.

PSL2 R Isom(H)

M µM

Mapg ⊃ Aff(X,ω) StabMapg
j(H) ⊂ Aut(Tg)

φ Φ Φ

j−1 ◦ Φ ◦ j

........................................................................................................................................................................................................
...........

.∼
.....................................................................................................................................................................................................................

...........
.................

............................................................................................................................................................

......
.
.....
......
.

Der

............................................................................................................................................................

......
.
.....
......
.

..................................................................................................................................................................................
...........

.∼

........................................................

......
.
.....
......
.

................

...................................................................................................................................................................
...........

.................

Note that the image of the right vertical arrow acts properly discontinuously
on H since StabMapg

j(H) does on Tg, hence, we can pass to the quotients. The
kernel of the vertical arrows is Aut(X,ω) = {φ ∈ Aut(X)|φ∗(ω) = ω}, in partic-
ular, finite. We obtain a morphism of orbifolds H/ StabMapg

j(H) → Mg, which
we call j again, by abuse of notation.

Definition 3.9. Let j : H → Tg be the Teichmüller disc generated by (X,ω).
The Veech group G(X,ω) ⊂ PSL2 R of the flat surface (X,ω) is the image
of the vertical arrows in the previous diagram. The extended Veech group is
Γ(X,ω) := Aff(X,ω) = StabMapg

j(H) ⊂ Mapg, which is an extension of G(X,ω)
by Aut(X,ω). If the Veech group of (X,ω) is a lattice, we call (X,ω) a Veech
surface, and the orbifold morphism C := H/Γ(X,ω) → Mg the Teichmüller
curve generated by (X,ω). The cotangent bundle of the Teichmüller curve is the
quotient of B2 by Γ(X,ω), which is a line bundle over C isomorphic to T∗C. We
abuse the names j, J , and B2 for the corresponding “quotiented” objects.

Ω2Mg

Mg

B2

GL+
2 R

T∗C

C

....................................................................................................
.....
............

....................................................................... .......
.....

....................................................
.....
.
............

........................................................

......
.
.....
......
.
π

........................................................

......
.
.....
......
.
π

........................................................................................................................................................
.

............

.................................................................................................................................................................................................................................................................
.

............

j

.......................................
.

............

Note that the new j is not necessarily an imbedding due to possible self-
intersections, however it is a holomorphic immersion; analogously the total space
of B2 is not a subset of Ω2Mg.

The isotropy groups of the orbifold C may all be nontrivial, since they contain
Aut(X,ω). If, for instance, (X,ω) is hyperelliptic, so is any A(X,ω), and the
hyperelliptic involution fixes j(H) pointwise.

Let C → Mg be a Teichmüller curve. Since C is of finite type, passing to
a finite normal manifold cover of Mg and coming back, we observe that there
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exists a canonical compactification C ⊃ C and a holomorphic extension of j to
C → Mg, such that C\C is a finite set. In the section 4 we will see that the image
of the additional points lies in the boundary Mg −Mg; from this we deduce that
j(C) is closed in Mg. Though we will not need it, we want to mention that the
converse is also true: if the image of the Teichmüller disc generated by (X,ω) is
closed in Mg, then (X,ω) is a Veech surface; for a sketch of the proof see [V95].

3.4 Abelian Teichmüller curves

In the case that the generator of a Teichmüller disc or curve is a very flat
surface, i.e. we start with a holomorphic 1-form rather than quadratic differential,
we obtain a somewhat finer structure over C.

Let ΩTg be the bundle of holomorphic 1-forms. Analogously to the case
of quadratic differentials we define an action of GL+

2 R on the bundle by post-
composing natural charts with a matrix. Given (X,α) ∈ ΩTg, we obtain a
bundle B ⊂ ΩTg over the Teichmüller disc generated by (X,α2) consisting
of GL+

2 R(X,α) and the zero section. The bundle morphism ΩTg × ΩTg →
Ω2Tg, ((Y, α1), (Y, α2)) 7→ (Y, α1 ⊗ α2) defines an isomorphism of line bundles
B ⊗ B → B2. The bundle B and the last isomorphism descend to bundles on
H/ StabMapg

j(H) = C.

3.5 Examples

As mentioned in Section 2, examples of flat surfaces usually arise from poly-
gons by gluing parallel sides. We give now some examples of flat surfaces and
information on their Veech groups, as well as some Teichmüller curves constructed
in other ways. Although the list is not complete, up to cover construction in
Example 3, there are only some further sporadic examples of Veech surfaces
known.

Example 1. Starting with a square, whose sides are labeled counterclockwise
by a, b, c and d, we identify a with c and b with d to obtain a standard torus T .
The Veech group of a square is obviously PSL2 Z, and the generated Teichmüller
curve is the entire moduli space M1, which is regarded as the trivial example.

Example 2. Given a finite set of equal squares Pi, i ∈ {1, ...n} with sides
ai, bi, ci and di, i ∈ {1, ...n}, we can identify each a-side with some c-side and
each b-side with some d-side to obtain a (possibly disconnected) flat surface S
and a branched cover S → T . This map is branched at most over one point and
is a local isometry outside the branch points, which are singularities on S. Such
surfaces are called origami or square tiled surfaces. Gutkin and Judge proved in
[GJ] that the Veech group of a flat surface is commensurable to PSL2 Z if and
only if the surface is square tiled. [SchTh] contains an elementary introduction
to origami as well as an algorithm that computes a Veech group of an origami in
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terms of generators and relations7. A nice example of an origami with many nice
properties is the “Wollmilchsau” in the Figure 6, for details see [HeSch].

Example 3. The analog of the previous construction can be applied to
any polygon. Even more generally, given a flat surface (S1, ω1) and a finite

holomorphic branched cover S2
p→ S1, we obtain a flat surface (S2, p

∗ω1) that
inherits some information from (S1, ω1). For instance, if the cover is branched
over singularities only8, then the Veech groups of S1 and S2 are commensurable,
see [GJ]. The Teichmüller curves that do not arise via this cover construction are
called primitive.

Example 4. L-shaped polygons, see Figure 5, deliver flat surfaces of genus 2
with one singularity. McMullen gives in [McM1] a list of side-length for L-shaped
polygons that generate Teichmüller curves. Even more, in [McM2] he shows that
every primitive abelian Teichmüller curve generated by a surface of genus 2 with
one singularity is generated, up to conjugation, by one of his L-surfaces. The proof
in [McM1] is rather algebraic: McMullen shows that his L-surfaces lie in GL+

2 R-
invariant algebraic subspaces of ΩM2, which have complex dimension 2 since they
satisfy enough algebraic conditions. This approach makes the computation of the
Veech groups difficult; a very detailed treatment of these Teichmüller curves can
be found in [Ba], where Bainbridge computes their Euler characteristics.

Unfortunately, McMullen’s approach does not seem to generalize to higher
genera: the higher the dimension of the moduli space, the more appropriate
conditions one has to find. However, using these ideas, McMullen was able to
construct infinite series of primitive Teichmüller curves in genus 3 and 4 and
finitely many in genus 5, see [McM3].

Example 5. Identifying opposite sides of a regular 4g-gon we obtain a flat
surface of genus g with one singularity. A (4g +2)-gon yields a flat surface of the
same genus with 2 singularities of equal orders. From [V92] follows that these
flat surfaces generate Teichmüller curves; Vorobets computed the corresponding
Veech groups in [Vo] to be ∆(2g,∞,∞)9 and ∆(2g + 1,∞,∞), respectively.

Example 6. Given a regular n-gon we reflect it on one side to obtain a
2(n− 1)-gon with parallel opposite sides. Identifying these pairs we obtain a flat
surface with one or two singularities. These polygons generate Teichmüller curves
by [V92]. By [Vo], the Veech groups are ∆(2, n,∞) for odd n, and ∆(n

2
,∞,∞)

for n even.

7The thesis can be downloaded under http://digbib.ubka.uni-
karlsruhe.de/volltexte/documents/2735, the published version [SchAlg] is reduced to the
algorithm.

8If S1 is a torus, one allows the cover to branch over one point only, as square tiled surfaces
do.

9The triangle group ∆(k, l,m) with k , l, m ∈ N∪ {∞} is the orientation preserving part of
the group generated by reflections in H on sides of a hyperbolic triangle with angles (π

k
, π

l
, π

m
).

The triangle group is actually a conjugacy class of subgroups in PSL2 R. The quotient of the
upper/lower halfplane by ∆(k, l,m) is a sphere with 3 special points, where the angles are 2π

k
,

2π

l
and 2π

m
; in case that k, l, or m is ∞ we obtain a cusp instead of special point.
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More generally, given a set of vectors {v1, .., vn} ⊂ R2 and a permutation σ
on n elements, such that the polygon with consecutive sides v1, ..., vn, −vσ(1), ...,
−vσ(n) has no self-intersections, one obtains a very flat surface by identification of
corresponding sides. For suitable σ, the vectors {v1, .., vn} build up local complex
coordinates for the space of flat surfaces with fixed orders of singularities. This
is used e.g. in [Z] to study these spaces.

Another class of examples arises by unfolding rational polygons: Given a
euclidean polygon, whose angles are rational multiples of π, there is a canonical
way to produce a finite set of congruent polygons by consecutive reflections on
sides, which can be glued together to a flat surface, such that the projection to the
initial polygon maps geodesics to billiard trajectories, see [KZ] for details. Veech’s
initial concern was the dynamics of billiards; he proved that the lattice property
of the Veech group of the “unfolded” polygon implies optimal dynamics of the
billiard: each nonsingular trajectory is either closed or uniformly distributed (for
details on the Veech dichotomy see the original paper [V89] or [HuSch]). The
converse, however, is not true, see [SW].

Example 7. Unfolding a right triangle with smallest angle π
n
, we obtain a

regular n-gon for even n (see Example 5) and two regular n-gons for odd n (see
Example 6).

Example 8. An acute isosceles triangle with apex angle π
n

consists of two
copies of a right triangle with angle π

2n
, hence leads to a 2n-gon, see Example 5.

Unfolding an isosceles triange with base angle π
n

leads to Example 7.

Example 9. The only other non-obtuse triangles generating Teichmüller
curves have angles (π

4
, π

3
, 5π

12
), (π

5
, π

3
, 7π

15
), and (2π

9
, π

3
, 4π

9
), respectively, as was shown

by Kenyon, Smillie und Puchta in [KS] and [P]. The corresponding Veech groups
are ∆(6,∞,∞), ∆(15,∞,∞), and ∆(9,∞,∞).

Example 10. For obtuse triangles, such a classification is not known. Besides
Example 8, the only infinite series of obtuse triangles generating Teichmüller
curves was given by Ward in [W]: an obtuse triangle with angles ( π

2n
, π

n
, (2n−3)π

2n
)

unfolds to a surface with Veech group ∆(3, n,∞).

Example 11. Ward’s and Veech’s examples were generalized in [BM], where
Bouw and Möller constructed Teichmüller curves with Veech groups equal to the
triangle groups ∆(n,m,∞), for almost all n, m ∈ N ∪ ∞. Since Veech groups
are never cocompact, these are all possible triangle groups in this context. The
authors define a complex bundle of Riemann surfaces with 1-dimensional base
B, and prove that the image of the base under the classifying map B → Mg is
an image of Teichmüller curve with required properties. The methods are rather
algebraic, based on results of [M]. The construction however seems to be inspired
by [V89], where Veech gives algebraic equations for his flat surfaces.

For further references concerning triangles (and hence n-gons) consult the
summary [Lel]; for the determination of the Veech groups in Examples 5 and 6
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see for instance [Lei].
Finally, the last way to construct flat surfaces that we mention here is the

so-called Thurston-Veech construction.
A multicurve α = {α1, ...αn} is a collection of distinct isotopy classes of simple

closed curves on a topological surface S that can be realized disjointly. A weighted
multicurve is a formal sum

∑n
i=1 aiαi, where α = {α1, ...αn} is a multicurve and

ai ∈ R+ positive real numbers. Note that the intersection pairing extends linearly
from curves to weighted multicurves.

Given two multicurves
∑n

i=1 aiαi and
∑n

j=1 bjβj on S that fill the surface
(i.e. the complementary regions of the union of any isotopy classes’ realizations
are necessarily topological discs), there is a unique flat structure on S with the
following properties:

• the horizontal leaves are compact, and the horizontal cylinders have αi’s as
core curves and heights ai.

• the vertical leaves are compact, and the vertical cylinders have βi’s as core
curves and heights bi.

Namely, for each intersection point of αi and βj take a rectangle of height
ai and width bj. Glue two rectangles along vertical sides if they correspond
to consecutive intersection points of αi with β, and along horizontal sides if
they correspond to consecutive intersection points of βj with α. The vertices of
the rectangles are then glued together to singularities. For more details on the
construction see e.g. Section 5 in [Bo], or [Lei].

Leininger shows in [Lei] that for any filling pair of multicurves α and β, there
are appropriate weights such that the horizontal as well as vertical cylinders have
modulus10 µ, where µ ∈ R depends on the intersection configuration of the two
multicurves. By the following lemma the Dehn twist around α has an affine

representative with derivative

(

1 µ
0 1

)

; analogously, the Dehn twist on β has

an affine representative with derivative

(

1 0
µ 1

)

. For µ ≤ 2 these two elements

generate a lattice in PSL2 R, and therefore we obtain examples of Teichmüller
curves. However, the examples produced in this way are already mentioned above:
for µ < 2 Leininger obtains, up to conjugation, Examples 5, 6 and 9; for µ = 2 we
obtain a Veech group that is commensurable to PSL2 Z, by [GJ] these Teichmüller
curves are generated by origami.

Lemma 3.10. Let (C,α) and (C ′, α′) be flat cylinders with horizontal boundaries
and differential forms non-vanishing in the interior of the cylinders. Let u be the

10The modulus of a euclidean cylinder is the ratio of circumference and height, which char-
acterizes the cylinder viewed as Riemann surface. A cylinder of modulus µ is biholomorphic to

the region
{

z ∈ C|e− 2π

µ < |z| < 1
}

.
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circumference and h the height of C. Let f : C → C ′ be a homeomorphism
isometric on the boundary. Let τ : [0; 1] → C be a vertical arc connecting the
boundary components of C, let

∫

f◦τ
α′ = ah + ibh. Then the homotopy class

[f ] (relative ∂C) has an affine representative with derivative M =

(

1 a
0 b

)

. In

particular, the Dehn twist C → C has an affine representative with derivative
(

1 u
h

0 1

)

.

Proof. Let τ ′ be the geodesic arc homotopic to f ◦τ with fixed end points. Then
there is a representative of [f ] that maps τ affine to τ ′. Cutting the cylinders
along τ and τ ′, we obtain a map from a rectangle to a parallelogram, which is
affine on the boundary. Then the homotopy class (relative rectangle’s boundary)
of this map has a representative that is affine in the interior too. The derivative
can be easily computed from the affine representation on the boundary.

In the case of the Dehn twist, the image of the vertical arc τ is homotopic to
the composition of τ and the boundary curve γ. Hence,

∫

f◦τ
α =

∫

τ
α +

∫

γ
α =

ih + u, and we compute a = u
h

and b = 1.

Summing up, besides a finite number of examples, the following primitive
examples are known:

• the square,

• McMullen’s L-surfaces and the series in [McM3],

• the Teichmüller curves with triangular Veech groups in [BM], which include
those in [V92] and [W].

4 Cusps of Teichmüller curves

Let j be the Teichmüller disc generated by (X,ω), let G := G(X,ω) be its
Veech group and Γ := Γ(X,ω) be the extended Veech group. We are going to
study the cusps of C := H/Γ. In the case of Teichmüller curves these are the
only ends and therefore of great interest; however, this section and the most of
the next one apply in the general situation too.

In the last section we have seen that for flat surfaces with horizontal cylindrical
decomposition there is a good chance that the Veech group contains a parabolic

of the form

(

1 b
0 1

)

. In the next lemma we show that the horizontal cylindrical

decomposition is necessary:
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Lemma 4.1. Let M =

(

1 b
0 1

)

∈ G, where b 6= 0 is a real number. Then (X,ω)

decomposes into horizontal cylinders, and their moduli are commensurable11.

Proof. Let φ ∈ Aff(X,ω) = Γ be an affine diffeomorphism with derivative
M . Then φ permutes singularities of (X,ω). Taking a sufficiently high power
of φ we can assume that φ fixes each singularity. Analogously we can assume
φ to fix each horizontal half-leaf starting in the singularities. From the matrix

Der(φ) = M =

(

1 b
0 1

)

we deduce that φ fixes these half-leaves pointwise.

Assume that one of them does not run into a singularity, in particular it is not
closed. Let l : R≥0 → X be the parametrisation of this leaf with unit speed. Let
p ∈ X be a nonsingular limit point of {l(n)|n ∈ N}; if every limit point of this
set is singular, we pass to a limit point of {l(n + ε)|n ∈ N} for some small ε ∈ R.
Let N(p) ⊂ X be a small neighborhood of p, and z : N(p) → R2 be a ω-natural
coordinate with z(p) = 0. Since p is fixed under φ as a limit point of fixed points,
the representation of φ in the coordinate z is linear, namely, multiplication by
M . On the other hand, the image of l(R≥0) ∩ N(p) under z is a collection of
infinitely many horizontal intervals, since the leaf is not closed. These horizontal

intervals consist of fixed points of φ, hence M =

(

1 0
0 1

)

, which contradicts the

assumption.
By the discussion at the end of Section 2 we obtain a horizontal cylindrical

decomposition of (X,ω). Let C1, ..., Ck be these cylinders and let µi be the
modulus of Ci. Since φ is the identity on the boundaries, it must be a power of
the Dehn twist in the interior of each cylinder. The Dehn twist on Ci has an affine

representation with derivative

(

1 µi

0 1

)

by Lemma 3.10, and we conclude that b

is a common multiple of the µi’s, hence the moduli are commensurable.

A subgroup G′ ⊂ PSL2 R is parabolic iff the elements of G′ share an eigenvec-
tor with eigenvalue ±1. Let G′ ⊂ G be a parabolic subgroup of the Veech group
of (X,ω). Let A be a matrix mapping the eigenvector of G′ to some horizontal
vector. Then we can apply the previous lemma to the surface A(X,ω), whose
Veech group is AGA−1. We deduce the cylindrical decomposition of (X,ω) in the
direction of the eigenvector of G′; the commensurability of moduli is preserved
by idA : X → AX. Conversely, it is easy to see that each direction on (X,ω) that
yields a cylindrical decomposition with commensurable moduli is fixed under a
cyclic subgroup. Hence, parabolic subgroups of G correspond to directions with
cylindrical decompositons and commensurable moduli.

Up to a change of the generator of the Teichmüller disc, which corresponds
to precomposition of a Möbius transformation to j and conjugation of the

11Real numbers are commensurable if they generate a discrete additive subgroup of R, which
is cyclic then.
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Veech group, we can assume the parabolic subgroup G′ to contain

(

1 1
0 1

)

.

From the Jørgensen inequality we deduce the following property of the horodisc
H :=

{

w ∈ H|Imw < −1
}

: For any M ∈ G we have either µM(H) ∩ H = ∅
or µM(H) = H. Denote by Γ′ the preimage of G′ under Γ

Der→ G. Then the
open suborbifold H/Γ′ ⊂ H/Γ is what we call a cusp. We call (the conjugacy
class of) Γ′ the fundamental group of the cusp, and denote it by π1(cusp). It
contains a normal subgroup π0

1(cusp) consisting of multiple Dehn twists in the
cylinders; these are precisely the affine diffeomorphisms that are identity on the
union of singular leaves in the corresponding direction. Note that Der is injective
on π0

1(cusp), since Dehn twists are not holomorphic.

5 Universal curve over a cusp

In this section we will construct a cover of the universal curve over a com-
pactified cusp of a Teichmüller curve. In the first step we construct a bundle of
noded surfaces over a disc D, with additional structure; and in the second step
we show that the fibers have complex structures corresponding to points in the
image of the cusp in Mg. By the universal property of the compactified moduli
space we obtain a morphism D → Mg, whose image compactifies the cusp. As
a corollary, we will be able to compute the intersection number of the cusp with
the compactification divisor.

The idea on which this section is based is illustrated in the following figure.
Namely, let X be a flat surface. Then opening the nodes of a suitable noded
surface X0 with suitable parameters gives a surface that can be obtained by
applying a matrix to the initial surface X. The reader should keep this simple
figure in mind while reading the technical constructions.

5.1 Surface bundle over a disc

Let (X,ω) be a flat surface generating a Teichmüller curve as in the previous
section; X decomposes into horizontal cylinders C1, ...Ck. Let γi : S1 → X be the
core curve in the middle of Ci, i.e. running around the cylinder through points
equidistant to the both boundary components. Cut X along every γi to obtain
Xcut, a surface with 2k boundary components γ+

i , γ−
i , i = 1, .., k.

Denote by C+
i ⊂ Xcut the half of Ci bounded by γ+

i , and define C−
i analo-

gously. Let ui be the circumference and hi be the height of Ci and let µi = ui

hi

be the modulus of Ci. Via ω-natural charts Ci is biholomorphic to a rectangle in
C of height hi and width ui with the vertical sides identified by translation. We
can assume that the center of the rectangle coincides with 0 ∈ C and obtain a

new chart for Ci by applying the map z 7→ e
2πi
ui

z
. The new model for Ci is the

ring region
{

z ∈ C|e−
π
µi < |z| < e

π
µi

}

.
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X
Xcut X0

AX Xλ

In the new model, ω equals ( ui

2πi
dz
z
)2. For instance, the horizontal foliation

maps to the foliation by concentrical circles, the vertical one maps to the radial
foliation. The image of γi is the unit circle, without loss of generality we can
assume it to be parametrized by R/Z → C, t 7→ e2πit. We can also assume

that the C+
i get mapped to the inner region

{

z ∈ C|e−
π
µi < |z| ≤ 1

}

and C−
i to

the outer region
{

z ∈ C|1 ≤ |z| < e
π
µi

}

. Using these models for C
+/−
i we attach

punctured discs

• D−
i = {z ∈ C|0 < |z| < 1} to C−

i ,

• D+
i = {z ∈ C|1 < |z|} to C+

i .

We obtain a noded surface X0; by continuation of ω(z) = ( ui

2πi
dz
z
)2 we obtain

a quadratic differential ω0 on X0. Note that if we start the construction with a
differential form α, we obtain a holomorphic differential α0.

In the following we construct a family of flat surfaces over the unit disc D =
{z ∈ C||z| < 1}. Let µ be the least common multiple of µi, i = 1, ..., k, set
ni := µ

µi
, for λ ∈ D let λi := λni .

We start with X0 × D. Delete the regions
{

(z, λ) ∈ D−
i × D||z| ≤ |λi|

}

and
{

(z, λ) ∈ D+
i × D||z| ≥ 1

|λi|

}

for all i. Denote by R the remaining part of X0×D,

which is a 2-dimensional complex manifold consisting of Xcut × D and the parts
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R−
i :=

{

(z, λ) ∈ D−
i × D||z| > |λi|

}

and R+
i :=

{

(z, λ) ∈ D+
i × D||z| < 1

|λi|

}

for

i = 1, ..., k. Set Ṙ−
i :=

{

(z, λ) ∈ R−
i |λ 6= 0

}

and Ṙ+
i :=

{

(z, λ) ∈ R+
i |λ 6= 0

}

.

Identify Ṙ+
i and Ṙ−

i via the holomorphic map fi : Ṙ+
i → Ṙ−

i , (z, λ) 7→ (zλi, λ).
We want to show that the space X = R/(f1, .., fk) is Hausdorff. For this, we need
only to consider pairs of points (z1, 0) ∈ R+

i and (z2, 0) ∈ R−
i ; for other pairs the

Hausdorff condition is obviously fulfilled. Let (z1+ε, δ) be a point close to (z1, 0);
then fi : (z1 + ε, δ) 7→ ((z1 + ε)δni , δ) ∈ R−

i , whose first coordinate tends to zero
as δ −→ 0. Hence, the image of a small neighborhood of (z1, 0) under fi does not
intersect a small neighborhood of (z2, 0). Thus X is Hausdorff.

We have constructed a complex 2-manifold X consisting of Xcut × D and
Ri := (R+

i ∪ R−
i )/fi, i = 1, ..., k. Note that the “bundle structure map” X → D

is well defined, hence we obtain a family of Riemann surfaces, which are compact
except the fiber over 0 ∈ D, which is X0.

We have a holomorphic section in (the square of) the relative cotangent bundle
of X0 × D → D, which is α0 (or ω0, resp.) on each fiber. In R±

i it is given by
the (square of) ( ui

2πi
dz
z
). From the following computation we deduce its invariance

under fi:

(

f ∗
i

(

dz

z

))

|(z0,λ)(∂z) =
dz

z
|(z0λi,λ)(λi∂z) =

1

z0

=
dz

z
|(z0,λ)(∂z)

Consequently, we obtain a holomorphic section A in (the square of) the rela-
tive cotangent bundle of X → D.

Remark. The zeros of A are precisely (zeros of ω) × D ⊂ Xcut ⊂ X , with
corresponding multiplicities.

5.2 The fibers of the surface bundle

Let Xλ denote the fiber of X → D over λ, let Aλ be the restriction of A to
Xλ. Before we prove the central Proposition 5.2, let us recall how we construct
Xλ out of X. First, we cut along curves γi and attach discs D±

i to obtain X0.
Then we cut off parts of D±

i , and identify their remains by fi. Summing up, we
inserted a cylinder for each γi, see the previous figure.

Let π : N → Mg be a coordinate neighborhood of the point in Mg corre-
sponding to X0, with respect to the attached discs D−

i and D+
i , i = 1, ...k. The

map identifying the remain of D±
i is z 7→ λiz, hence, we obtain Xλ by opening

the nodes of X0 with coordinates (λ1, ..., λk) = (λn1 , ..., λnk), where niµi = µ. We
record the following fact:

Fact 5.1. Let c : D → Mg be the classifying map of X . Then c factors through
D → N , λ 7→ (λn1 , .., λnk , 0, ..., 0), which is injective since ni’s have no common
divisor.

The next proposition brings us back to GL+
2 R-actions:
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Proposition 5.2. Let λ ∈ D, λ 6= 0. Let φ and r be real numbers such that

λ = e2πiφ+r and let A =

(

1 φµ
0 1 − rµ

2π

)

. Then (Xλ,Aλ) ∼= A(X,ω).

Proof. Note that Xcut is isometrically imbedded in (Xλ,Aλ). Hence, we con-
sider C±

i and γ±
i as cylinders and curves in Xλ. Recall the parametrization of γ±

i

by R/Z → D±
i , t 7→ e2πit.

Let Zi ⊂ Xλ denote the i-th inserted cylinder, which is bounded by γ±
i . Let

ρi be the image of the arc [0, 1] → D−
i , s 7→ e(2πiφ+r)nis in Xλ. This arc in D−

i

connects 1 = γ−
i (0) to λi = λni , the last point is the image of γ+

i (0) under the
identification fi : z 7→ λiz. Hence, ρi connects γ−

i (0) to γ+
i (0) in Xλ.

We define ρt
i to be the image of the arc [0, 1] → D−

i , s 7→ e(2πiφ+r)nis+2πit in Xλ.
Analogously, it connects γ−

i (t) to γ+
i (t). Moreover, Zi is swept out by these dis-

joint arcs, hence, we can homotopy the inclusion Xcut → Xλ to a homeomorphism
f : X → Xλ by “pulling” γ−

i to γ+
i along ρt

i for each i. This homeomorphism
is isometric on the union of horizontal saddle connections, which we denote by
K. Let τi be the vertical arc connecting boundaries in Ci ⊂ X, intersecting γi in
γi(0). In Xcut, τi decomposes into τ−

i in C−
i and τ+

i in C+
i . From the construction

of f we conclude that the arc f ◦ τi is homotopic to the composition of the arcs
τ−
i , ρi = ρ0

i and τ+
i .

We are now able to apply Lemma 3.10 to each Ci; note that in the interior of
each horizontal cylinder there exists a square root of ω, therefore we can assume
to deal with differential forms rather than with quadratic differentials; we choose
the orientation such that τi is running in the positive vertical direction. For the
following computation, recall that the pullback of Aλ to D±

i is ui

2πi
dz
z
, and µ = niµi

is the least common multiple of the moduli µi = ui

hi
.

∫

f◦τi

Aλ =

∫

τ−

i

Aλ +

∫

ρi

Aλ +

∫

τ+
i

Aλ = ihi +

1
∫

0

ui

2πi

(2πiφ + r)nie
(2πiφ+r)nisds

e(2πiφ+r)nis
=

= ihi +
ui(2πiφ + r)ni

2πi
= ihi + uiniφ − i

niuir

2π
=

= µiniφ · hi + i(1 − µinir

2π
) · hi = µφ · hi + i(1 − µr

2π
) · hi

By Lemma 3.10, in each Ci, f is homotopic relative boundary to an affine

map with derivative A =

(

1 a
0 b

)

with a = φµ and b = 1 − rµ
2π

. The composition

of these homotopies is affine with the same derivative. Then Xλ
idA◦f−1

→ AX has
derivative ±1, hence is an isomorphism of flat surfaces.

Corollary 5.3. Let c : D → Mg be the classifying map of X . Let H :=
{

w ∈ H|Imw < −1
}

be the horoball mapped to the cusp of Teichmüller curve
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generated by (X,ω). Let p : H → Ḋ, w 7→ e−
2πi
µ

w+ 2π
µ , where Ḋ = D \ {0}.

Then there exists a unique morphism Ḋ → cusp such that the following diagram

commutes. The morphism Ḋ → cusp is a cover of degree
∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣
and extends

to D → cusp with the same properties.

Tg

Mg

H ⊃ H

cusp

Ḋ

....................................................................................................................................................................................................

......
.
.....
......
.

π

....................................................................................................................................................................................................

......
.
.....
......
.

..............................................................................................................................................................................................................................................................................................................
.

............

j

.................................................................................................................................................................................................................................................................................................................................................
.

............

j

............................................................................................................................................................
.....
............

p

..............................................................................................................................................................................
.....
.
............

c

................................................................................................................................................................................ .......
.....

Proof. Let w = −φµ− i(1− rµ
2π

) ∈ H. Then Aw is the matrix A in Proposition
5.2, thus π(j(w)) = AwX = [Xλ], where [Xλ] denotes the isomorphy class of Xλ,
which is a point in Mg. On the other hand, c(p(−φµ− i(1− rµ

2π
)) = c(e2πiφ+r) =

c(λ) = [Xλ], hence, the upper left triangle commutes.
For the definition of Ḋ → cusp note that the deck transformations of

H → Ḋ build up the group generated by the Möbius transformation of

(

1 µ
0 1

)

,

hence coinsides with the image of π0
1(cusp) in PSL2 R. Since Der is injec-

tive on π0
1(cusp), we deduce Ḋ = H/π0

1(cusp), and obtain a unique morphism
Ḋ → cusp = H/π1(cusp), which is a cover of the right order. This morphism
makes the right triangle in the diagram commute.

Since the big rectangle commutes, the last bit of the diagram, the lower tri-
angle, commutes too.

Recall that we constructed C by means of manifold covers of Mg. Combining
the lower triangle in the diagram with the Fact 5.1, and taking into account
that N is a manifold, hence a coordinate for Mg, we deduce that the topological
extension of Ḋ → cusp into 0 is an orbifold morphism.

We have proved the following (vaguely formulated) theorem:

Theorem 5.4. In suitable coordinates, the imbedding of the compactified cusp
of a Teichmüller curve in Mg is D → N ⊂ C3g−3, λ 7→ (λn1 , ..., λnk , 0, ..., 0).
The divisor D = Mg \ Mg is defined in N by the equation z1z2 · · · zk = 0. In
particular, a Teichmüller curve intersects the compactification divisor normally.

5.3 Intersection with the compactification divisor

Theorem 5.4 allows us to compute the intersection number of D with the cusp,
and consequently, with the Teichmüller curve. By intersection number we mean,
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as usual, the evaluation of the cohomology class defined by D on the homology
class defined the Teichmüller curve j : C → Mg. In order to avoid interpretation
of intersection numbers on an orbifold, we pass to manifold covers.

Let π : Lg → Mg be a finite normal manifold cover, with covering group G.
Let j : V → Lg be the preimage of C in the sense of fiber products. Then the
following diagram commutes. Moreover, V inherits a G-action from Lg, such that
the diagram is compatible with both G-actions, and V /G = C.

V

C

Lg

Mg

...............................

......
.
.....
......
.

.................................................................................................................
...........

.
j

............................................................................................................
...........

.
j

...............................

......
.
.....
......
.π

Note that some elements of G may act by identity on V . Since Lg is a manifold,
so is V . Let [V ] be the fundamental class of V , and j∗[V ] be its image in H2(Lg, Q).
Then |G|j∗[C] = π∗j∗[V ] ∈ H2(Mg, Q) by definition of the fundamental class of
orbifolds, see Section 1.1. We denote by D ∈ H2(Mg, Q) the cohomology class of
the compactification divisor. Then |G|(D, j∗[C]) = (π∗D, j∗[V ]), and it suffices
to compute the last, which is a usual intersection number on a manifold. Here,
we need to sum up the intuitive intersection numbers of all intersection points.

Let D → N be as in the Fact 5.1. Since Lg → Mg is a manifold cover, there
is an injective lift of N → Mg to Lg. By the definition of V as fiber product and
Corollary 5.3, D → N → Lg factors through V such that the following diagram
commutes:

V

C

D Lg

Mg

N
............................................................................................................................................................................ ......

.....

.

.................................................................................................................
...........

.

..........................................................................................................

......
.
.....
......
.

.......................................................................................................................................................................................................................................................................
...........

.
j

..................................................................................................................................................................................................................................................................
...........

.
j

..........................................................................................................

......
.
.....
......
.

π

................................................................................................................
.

............

...............................................................................................................................................................
.....
.
............

...........

...........

............
............
.............
.............
..............
...............
................
.................

...................
.....................

.........................
................................

............................................................
................................................................................................................................................................................................................................................................................................................................................................................

......
.
.....
......
.

The preimage of the filled cusp of C in V consists of some copies of the image
of D in V , each contributing

∑

ni to (π∗D, j∗[V ]). G acts transitively on the

set of these copies; let m :=
∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣ denote the order of the cover D → cusp,

then there are |G|
m

copies of D in V . Thus the cusp in C contributes |G|
m

∑

ni to

(π∗D, j∗[V ]), and, as a consequence, contributes 1
m

∑

ni to (D, j∗[C]). We have
proved the following theorem.

Theorem 5.5. For a cusp of a Teichmüller curve j : C → Mg, let π1(cusp) and
π0

1(cusp) be as in Section 4. Let ni, i = 1, ..., k be the commensurability numbers
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of the moduli of the cylinders in the decomposition corresponding to the cusp.
Then (D, j∗[C]) =

∑

cusps

∑

ni
∣

∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣

∣

.

In the case of abelian Teichmüller curves, every γi is non-separating. Namely,
we can distinguish between right and left boundaries of Ci’s, and in the critical
graph they are glued together by right → left. A separating γi would cut X
into two subsurfaces; in one of them (containing the left boundary of Ci) the
total length of left boundaries is greater than the length of the right boundaries,
and in the other subsurface vice versa. Hence, an abelian Teichmüller curve
intersects only the D0 component of D. We conclude (Di, j∗[C]) = 0 for i > 0
and (D0, j∗[C]) = (D, j∗[C]).

Remark. The common definition of a Teichmüller curve differs slightly from
ours. Namely, let G(X,ω) be the Veech group of (X,ω). The term “Teich-
müller curve generated by (X,ω)” usually means the (image of the) immersion
H/G(X,ω) → Mg. This definition takes care of isolated special points, ignoring
the trivial action of Aut(X,ω) on H. The homology class arising via this definition
is |Aut(X,ω)| j∗[C], and the intersection number is the |Aut(X,ω)|-multiple of
our intersection number. For more details see the Section 6.4.

5.4 Examples

In some known cases that arise “algebraically”, like McMullen’s L-surfaces,
the computation of the intersection number using the theorem is quite hard.
Indeed, for L-surfaces even the computation of the number of cusps is a task on
its own. In “constructive” examples, however, the theorem can be applied. We
illustrate the result by application to the Teichmüller curves defined by regular
n-gons, as in Section 3.5.

Example 1. In the surface obtained from a regular (4g + 2)-gon by gluing
opposite sides, we have the two cylindrical decompositions shown in the following
figure. In the first we have g cylinders, each of modulus 2 cot α. An affine diffeo-
morphism φ ∈ π1(cusp) preserves the unique shortest horizontal sadle connection
s, which is the horizontal side of the polygon. Then φ is either identity on s, or
φ rotates s around its center by angle π, which is the hyperelliptic involution.

In the first case, φ fixes the endpoints of s, which are the only singularities.
Since φ is orientation preserving, it respects the cyclic order of the horizontal
leaves starting in each singularity. Since s is fixed, φ preserves each horizontal
saddle connection, hence φ ∈ π0

1(cusp). If φ rotates s, then the composition of φ

with the hyperelliptic involution fixes the endpoints of s ⇒
∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣
= 2.

In the second cylindrical decomposition we have g + 1 cylinders, g of which
have modulus 2 cot α, whereas the modulus of the middle cylinder is cot α. Let
φ be in π0

1(cusp), we want to show that, up to composition with the hyperelliptic
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α

α

α

α

involution, φ is identity on the singular leaves. From this we deduce
∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣
= 2

again.
Since the hyperelliptic involution interchanges the both singularities, we can

assume φ to fix them. Since φ permutes the g + 1 cylinders preserving the cir-
cumferences, and the circumference of the middle cylinder is unique, we conclude
that φ preserves the middle cylinder. Different boundary components of this
cylinder contain different singularities, thus, they are preserved too. We give the
boundary curves an orientation, which is preserved by φ, since φ respects the
orientation of the cylinder, and preserves boundary components. The restriction
of φ to each boundary component of the cylinder is an orientation preserving
isometry with a fixed point, hence, the identity. Now we observe that every other
cylinder is preserved too, since the circumferences are unique, and apply the same
arguments to them; alternatively we can apply the argument using cyclic order
of singular leaves at a singularity.

These two decompositions define different cusps, since the numbers of cylin-
ders differ. By [Vo] the Veech group is ∆(2g +1,∞,∞), hence these are the only
cusps. We conclude (D, j∗[C]) = g

2
+ g+2

2
= g + 1.

Example 2. In a regular 4g-gon we see the following decompositions:

The first decomposition has g cylinders with equal moduli; the second has g
cylinders, all but the middle one having equal moduli, and the middle cylinder’s
modulus is the half of the other moduli. Analogously to the previous example,

we compute
∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣ = 2 for both cusps. Again, by [Vo], these decompositions
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define the only two cusps of the Teichmüller curve, and we conclude (D, j∗[C]) =
g
2

+ g+1
2

= 2g+1
2

.
Example 3. Consider now two (2g + 1)-gons as in the following figure. We

identify the opposite sides in the resulting 4g-gon.

By [Vo] the corresponding Teichmüller curve has one cusp, which corresponds
e.g. to the vertical decomposition. We see g cylinder with equal moduli, and
∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣
= 2 by the same arguments. Thus (D, j∗[C]) = g

2
.

Example 4. The last example concerning regular polygons is the Teichmüller
curve generated by the union of two (2g+2)-gons. We identify the opposite sides
in the constructed (4g+2)-gon, as in the previous example. The two cusps ([Vo])
correspond to the following decompositions:

The first decomposition has g cylinders of equal moduli; the second has g + 1
cylinders of equal moduli. The automorphism group Aut(X,ω) is generated
by two elements: the rotation by π around the center of the vertical segment
in the middle, which is the hyperelliptic involution, and the rotation of each
(2g + 2)-gon by π around its center. One shows easily Aut(X,ω) ∼= Z/2 × Z/2.
Using the same arguments with longest/shortest saddle connection, one shows
π1(cusp)

π0
1(cusp)

∼= Aut(X,ω) for both cusps. We deduce (D, j∗[C]) = g
4

+ g+1
4

= 2g+1
4

.

Example 5. Finally, we give an example with π1(cusp)

π0
1(cusp)

≇ Aut(X,ω). By

[HeSch], the Veech group of the “Wollmilchsau” (see Figure 6) is PSL2(Z), hence
we need to concider only one cusp. The moduli of horizontal cylinders in Figure 6
are both 4, however the image of the fundamental group of the cusp in PSL2 R is
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generated by

(

1 1
0 1

)

and not by

(

1 4
0 1

)

, which is the derivative of the Dehn twist

in the horizontal cylinders. More precisely,
∣

∣

∣

π1(cusp)

π0
1(cusp)

∣

∣

∣ = |Aut(X,ω)|

∣

∣

∣

∣

∣

∣

∣

∣

〈



1 1
0 1





〉

〈



1 4
0 1





〉

∣

∣

∣

∣

∣

∣

∣

∣

,

which is 16 · 4 = 64 by [HeSch]. We compute (D, j∗[C]) = 2
64

= 1
32

.

6 Evaluation of κ1 on abelian Teichmüller curves

In this section we evaluate the first Mumford-Morita class on the homology
class defined by an abelian Teichmüller curve. Let (X,α) generate j : C → Mg.

To avoid dealing with orbifolds, we pass to finite manifold covers. Let V ,
V , Lg, D → V → Lg be as in Section 5.3. Let Lg → Lg be the preimage of
Mg in Mg, and V → Lg be the preimage of C in Lg. Let G be the covering
group of Lg → Mg, and hence, of any other cover mentioned. Let X → Mg

be an orbifold morphism. Denote by CX the pullback of the universal curve
C → Mg to X, call it the universal curve over X; if X is a manifold, then CX

is a noded surface bundle in the manifold sense. Recall the definition of the line
bundle B → C, whose square is isomorphic to the cotangent bundle of C via
J : T∗H → B ⊗ B ⊂ T∗Tg = Ω2Tg, A • (−i, dw) 7→ A(X,α2). Let BV be the
pullback of B → C to V .

6.1 Holomorphic section in B and its zeros

Recall that for abelian Teichmüller curves, (X ,A) is a bundle of Riemann
surfaces with holomorphic forms on them. By the Proposition 5.2 A defines a
non-vanishing section in the restriction of BV to the cusp Ḋ of V by A|Ḋ : Ḋ → B,
λ 7→ (Xλ,Aλ). We use this to extend the line bundle BV → V to BV ∪D → V ∪D
as follows:

• Γ(U,BV ∪D) = Γ(U,BV ) for U ⊂ V ,

• Γ(D,BV ∪D) = O(D) · A

Extending BV to every cusp of V in this way, we obtain a line bundle BV → V .
Note that although BV ⊗ BV

∼= T∗V , the analogue for BV does not need to be
true; in fact, it is wrong, as we will see very soon.

Let σ be a global meromorphic section in BV , with no zero or pole in the
cusps of V , i.e. σ|D = φ · A with φ(0) 6= 0,∞. By choosing a smaller D we can
assume that φ has no zeros or poles in D.

For the the computation of the number of zeros of σ we first extend A|Ḋ⊗A|Ḋ,

which is a section in B2
|Ḋ

∼= T∗Ḋ, to T∗D. We can assume to be in the context
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of Proposition 5.2. Let H be the horoball in H, which is a component of the
preimage of the cusp, as in section 4.

Consider the section H → T∗H, w 7→ (w, 1
2i
dw). By Lemmas 3.1 and 3.7,

under the identification B2
H
∼= T∗H it corresponds to H → B2, w 7→ Aw(X,α2).

Under p : H → Ḋ from the Corollary 5.3 this projects to the section Ḋ → B2
|Ḋ

,

λ 7→ (Xλ,Aλ ⊗Aλ).

Recall that p(w) = e
2πi
µ

w− 2π
µ = λ. Under this projection the section H →

T∗H, w 7→ (w, 1
2i
dw) projects to Ḋ → T∗Ḋ, λ 7→ 1

2i
dλ

p′(w)
= 1

2i
dλ

−2πi
µ

p(w)
= µ

4π
dλ
λ

,

whose extension to D → T∗D has a single pole in 0.

Then σ|V ⊗ σ|V corresponds to a section V → T∗V , that extends to a section
V → T∗V with simple poles in the cusps. This extension has −χ(V ) zeros
outside the cusps. By isomorphy BV ⊗ BV

∼= T∗V , σ ⊗ σ has the same number
of zeros. We conclude that σ has −χ(V )

2
zeros. In particular, we can assume σ to

be holomorphic.

6.2 Holomorphic section in the cotangent bundle of the

universal curve

On the other hand, σ defines a holomorphic section Σ in the relative cotangent
bundle of the universal curve over V , since it assigns a holomorphic form to each
fiber, depending holomorphically on the basepoint12. Σ has two types of zeros:

• The fibers over zeros of σ are zeros of Σ with the same multiplicity. We call
these components vertical.

• Let x ∈ V and (X ′, α′) be a very flat surface in the fiber Bx. Then any
other surface in the fiber is (X ′, λα′) for some λ ∈ C. Hence, the zeros
of the differential in the fiber Cx do not depend on the particular choice of
σ(x) ∈ Bx, assuming σ(x) 6= 0. These zeros build up the so-called horizontal
components. The horizontal components of the zero divisor of Σ have the
same multiplicities as the corresponding zeros on the fibers.

Let N be the horizontal zero divisor of Σ. Over V the projection supp(N) →
V is easily seen to be a local homeomorphism; over the cusps it is by the remark
at the end of Section 5.1. Hence, the support of N , which is a submanifold of
CV , is an unbranched cover of V . Let Nk denote the (not necessarily connected)
component of supp(N) consisting of zeros of the order k. The degree of the cover
Nk → V coincides with the number of zeros of order k, which we denote by ak.
Thus we obtain N =

∑

kNk and the relation 2g − 2 =
∑

akk.

12Recall that by the discussion in Section 1.2, the nodes are “very removable” singularities,
so that the definition of such a section outside the nodes is sufficient.
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6.3 Evaluation of κ1 on V and on C

Recall the definition of κ1. Let TC/Mg
be the relative tangent bundle of

the universal curve C → Mg, which is a line bundle on C. Let e ∈ H2(C, Q)
be its Chern class. Then κ1 ∈ H2(V , Q) is the image of e2 under the Gysin
morphism. Then (κ1, j∗[V ]) = (e2, jC∗ [CV ]), where jC : CV → C is the preimage of
j : V → Lg → Mg in C.

Let eV := (jC)∗(e) ∈ H2(CV , Q), then eV is the Chern class of the relative tan-
gent bundle of CV → V , which we denote by TC/V . Then (κ1, j∗[V ]) = (e2

V
, [CV ]),

which we will compute in two steps. First, we compute (eV , [CV ]) ∈ H2(CV , Q) as
a divisor in C and then evaluate the Chern class of the restriction of TC/V to the
divisor.

Observe that Σ as in Section 6.2. is a section in the relative cotangent bundle,
hence, its zero divisor is −(eV , [CV ]). For the first part of the evaluation, we obtain

(eV , [CV ]) = −∑2g−2
k=1 k[Nk] −

∑

[Cxi
], where the second sum is taken over −χ(V )

2

zeros of σ. Now we need to compute (eV , [Cxi
]) as well as (eV , [Nk]).

For the vertical components, we simply note that the restriction of TC/V to
Cxi

is by definition the tangent bundle of Cxi
. Since xi ∈ V , the fibers are surfaces

of genus g and we obtain (eV , [Cxi
]) = χ(Cxi

) = 2 − 2g.
In the horizontal case, we need more care and a technical observation. A point

in the line bundle BV → V corresponds to a pair (complex structure, holomorphic
form); the projection “forgets” the form. Note that the forms in a fiber differ
only by multiplication with complex numbers. Let Nk be a connected component
of the zero divisor in CV as above, consider BNk

→ Nk, the pullback of BV → V
via the cover Nk → V . In other words, a point in BNk

corresponds to the triple
(complex structure, holomorphic differential form (which is a complex multiple
of some fixed form), zero of the differential form of order k), and the projection
forgets the form, remembering the zero.

Consider TNk
→ Nk, the restriction of the universal curve’s relative tangent

bundle TC/V → CV to Nk ⊂ C. A point in this bundle corresponds to (complex
structure, zero of some fixed form, tangent vector with base point in the zero),
the projection forgets the tangent vector. The two bundles over Nk are not dual,
however we can define a kind of pairing, which enables us to compare their Chern
classes. We will need the following lemma:

Lemma 6.1. Let U , V be line bundles over a Riemann surface S such that there
exists a “pairing” < ., . >: U × V → C × S with < λu, v >= λ < u, v > and
< u, λv >= λl < u, v > for λ ∈ C. Then U and V ⊗l are dual.

Proof. We define a bundle morphism m : U⊗V ⊗l → C×S to the trivial bundle
fiberwise. Let v1 ⊗ ...⊗ vl ∈ V ⊗l

s , then there exists v ∈ Vs such that v1 ⊗ ...⊗ vl =
v ⊗ ... ⊗ v. We set m(u ⊗ v1 ⊗ ... ⊗ vl) =< u, v >. We first note that we have
l choices for v, which differ by multiplication with l-th roots of unity. Since the
“pairing” is l-homogeneous in the second argument, the particular choice does not
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matter. To show that m is well-defined we have to prove m((λu)⊗v1⊗ ...⊗vl) =
m(u⊗λ(v1⊗ ...⊗vl)) and equality of this to λm(u⊗v1⊗ ...⊗vl) for the linearity
of m.

From the linearity of the “pairing” in the first argument we conclude
m((λu)⊗ v1 ⊗ ... ⊗ vl) = m((λu) ⊗ v ⊗ ... ⊗ v) =< λu, v >= λ < u, v >. Let λ

1
l

be any l-th root of λ. Then λ(v1 ⊗ ...⊗ vl) = λ(v ⊗ ...⊗ v) = (λ
1
l v)⊗ ...⊗ (λ

1
l v),

and hence m(u ⊗ λ(v1 ⊗ ... ⊗ vl)) =< u, λ
1
l v >= λ < u, v >.

Let v be a non-zero tangent vector on a Riemann surface X, with base point
x, and α a holomorphic form on X having a zero of order k in x. Let ε > 0 be
such that the ε-neighborhood of x in X with respect to the singular euclidean
metric defined by α is a disc containing no singularities other than x. Let v(ε)
be the point at distance ε from x on the line of constant direction tangent to v.

We define < α, v >:= |v|k+1

ε

∫ v(ε)

x
α, where |v| is the hyperbolic length. As one

can see immediately, this notion is independent of ε and hence well-defined. The
“pairing” is C-linear in the first argument, which we let vary over the complex
multiples of α. We let the second argument vary over TxX, which are complex
multiples of v. Then one can show that the “pairing” is (k + 1)-homogeneous in
the second argument by integrating in a coordinate such that α = zkdz.

We denote the first Chern class of a line bundle A → X on a Riemann surface
X by c(A). Now we can apply the previous lemma to BNk

→ Nk and TNk
→ Nk

to obtain c(BNk
) = −(k + 1)c(TNk

) ⇒ (c(BNk
), [Nk]) = −(k + 1)(c(TNk

), [Nk]) =
−(k+1)(eV , [Nk]). On the other hand, in the computation of the number of zeros
of σ we have seen that (c(BV ⊗ BV ), [V ]) = −χ(V ), and hence 2(c(BNk

), [Nk]) =
(c(BNk

⊗BNk
), [Nk]) = −akχ(V ), since Nk → V is a cover of degree ak. Combin-

ing, we obtain −2(k + 1)(eV , [Nk]) = −akχ(V ) ⇒ (eV , [Nk]) = akχ(V )
2(k+1)

.
Now we are ready to complete our evaluation:

Proposition 6.2. For k = 1, ..., 2g − 2 let ak be the number of zeros of order k

in (X,α). Then (κ1, j∗[V ]) = χ(V )
(

1 − g − ∑2g−2
k=1

kak

2(k+1)

)

.

Proof. (κ1, j∗[V ]) = (e2, [C]) = (e, (e, [C])) = (e,−∑

k k[Nk] −
∑

i[Cxi
]) =

= −∑

k k(e, [Nk]) −
∑

i(e, [Cxi
]) = −∑

k k akχ(V )
2(k+1)

− (2 − 2g)(−χ(V )
2

) =

= χ(V )
(

1 − g − ∑

k
akk

2(k+1)

)

Let G be the covering group of Lg → Mg, and hence, of V → C. Then, by the
definitions, χ(V ) = |G|χ(C) and (κ1, j∗[V ]) = (κ1, j∗(|G|[C])) = |G|(κ1, j∗[C]).
We deduce the same expression for the evaluation of κ1 ∈ H2(Mg, Q) on the com-
pactified Teichmüller curve instead of V , with the orbifold Euler characteristic.

Theorem 6.3. Let C → Mg be an abelian Teichmüller curve generated by a
differential form with ak zeros of order k, for k = 1, ..., 2g − 2, let j : C → Mg

be the compactification. Then (κ1, j∗[C]) = χ(C)
(

1 − g − ∑2g−2
k=1

kak

2(k+1)

)

. In
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particular, it is positive and depends only on the orbifold Euler characteristic of
C and the combinatorics of zeros of the generating form.

Example. If the generating differential has one zero of order 2g−2, we obtain

a2g−2 = 1 and ak = 0 for k 6= 2g − 2, hence (κ1, j∗[C]) = χ(C)
(

1 − g − 2g−2
4g−2

)

=

χ(C)2g(1−g)
2g−1

.
Example. If the generating differential has 2g − 2 simple zeros, we obtain

a1 = 2g − 2 and ak = 0 for k 6= 1, hence (κ1, j∗[C]) = χ(C)
(

1 − g − 2g−2
4

)

=

χ(C)1−g
2

.
Since n

n+1
+ m

m+1
≥ n+m

n+m+1
for n, m ∈ N, the two examples are extreme.

Corollary 6.4. Let g ≥ 2 and let c1(g) = g−1
2

, c2(g) = 2g(g−1)
2g−1

. Then the
following inequality holds for an abelian Teichmüller curve j : C → Mg:

−c1(g)χ(C) ≤ (κ1, j∗[C]) ≤ −c2(g)χ(C)

6.4 Weil-Petersson vs. Teichmüller area

As an application of our result, we compare the Teichmüller and Weil-
Petersson areas of abelian Teichmüller curves. Here the following, more common
definition of a Teichmüller curve, which we mentioned in the remark at the end
of Section 5.3, is useful. Let j : C → Mg be an abelian Teichmüller curve de-
fined by (X,α2), let G(X,α2) be the Veech group of (X,α2), which is the image
of the extended Veech group Γ(X,α2) = Aff(X,α2) in PSL2 R. Recall that the
kernel of Aff(X,α2) → G(X,α) is the automorphism group Aut(X,α2). Then
jw : H/G(X,α2) =: Cw → Mg is the object usually called the Teichmüller curve.
Observe that Aut(X,α2) acts trivially on Cw and Cw/ Aut(X,α2) = C, moreover
jw = j ◦ pr with the cover pr : Cw → C of degree Aut(X,α2). Note also that
[Cw] = |Aut(X,α2)|[C] and χ(Cw) = |Aut(X,α2)|χ(C), hence Theorem 6.3 is
valid with Cw instead of C and jw instead of j. Since the restrictions of metrics
to subspaces do not notice trivial actions, this is the right setting to work in.

Since j : H → Tg is an isometry with respect to Poincare and Teichmüller
metrics, we can easily compute the Teichmüller area of the Teichmüller curve to
be the hyperbolic area of Cw, which is −2πχ(Cw). Note that the Gauss-Bonnet
theorem is valid for Cw, as one shows by passing to a finite manifold cover.

In [Wo85] Wolpert constructs a current ωC

WP that extends the Weil-Petersson
Kähler form to Mg. In [Wo83] he shows that ωC

WP is closed and defines a class
in H2(Mg, R), which equals 2π2κ1.

Let j : V → Lg be as above. Since j is a holomorphic immersion of mani-
folds, the evaluation of κ1, and hence of ωC

WP , on V provides the Weil-Petersson

area of V 13. Since the cover V → C is topologically of degree |G|
|Aut(X,α2)|

,

13Although the current ωC

WP
is singular on the compactification divisor, the computation of
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we deduce areaWP (C) = |Aut(X,α2)|
|G|

areaWP (V ) = |Aut(X,α2)|
|G|

(κ1, j∗[V ]) =

Aut(X,α2)(κ1, j∗[C]) = (κ1, jw∗[Cw]). Using Theorem 6.3 we obtain:

Corollary 6.5. Let j : C → Mg be an abelian Teichmüller curve, generated by a
differential form α with ak zeros of order k, for k = 1, ..., 2g− 2. Let c1(g) = g−1

2
,

c2(g) = 2g(g−1)
2g−1

. Then the following holds:

• areaWP (C) = 2π2χ(Cw)
(

1 − g − ∑2g−2
k=1

kak

2(k+1)

)

= 2π areaTM(C)
(

g − 1 +
∑2g−2

k=1
kak

2(k+1)

)

,

• −2π2c1(g)χ(Cw) ≤ areaWP (C) ≤ −2π2c2(g)χ(Cw),

• areaWP (C)
areaTM (C)

= π
(

g − 1 +
∑2g−2

k=1
kak

2(k+1)

)

,

• πc1(g) ≤ areaWP (C)
areaTM (C)

≤ πc2(g).

6.5 Examples

It is easy to apply the results to the flat surfaces with known Veech groups and
automorphism groups, as for the examples in the Section 5.4. In the following
we give explicit results for Example 3 in Section 5.4. For L-surfaces, see [Ba] for
the computation of Euler characteristics.

Let (X,ω) be the flat surface of genus g obtained from the union of two
(2g + 1)-gons. This surface has only one singularity. In Section 5.4 we have seen
that Aut(X,ω) has order 2, the only nontrivial element being the hyperelliptic

involution. Let C
j→ Mg be the Teichmüller curve generated by (X,ω). The

Veech group of (X,ω) equals ∆(2, 2g + 1,∞) by [Vo].
From the Veech group we deduce the hyperbolic area of Cw, which is the Teich-

müller area of C, to be 2(π − π
2
− π

2g+1
) = 2π 2g−1

4g+2
. Applying the Gauss-Bonnet

theorem we obtain χ(Cw) = −2g−1
4g+2

. From this follows χ(C) = χ(Cw)
|Aut(X,ω)|

= −2g−1
8g+4

.

The bracket term in Theorem 6.3 equals −c2(g) = −2g(g−1)
2g−1

. Hence, we obtain
the following results:

• (κ1, j∗[C]) = 2g−1
8g+4

· 2g(g−1)
2g−1

= g(g−1)
4g+2

,

• areaWP (C) = 2π2 2g−1
4g+2

· 2g(g−1)
2g−1

= 2π2 g(g−1)
2g+1

,

• areaTM(C) = 2π 2g−1
4g+2

,

• areaWP (C)
areaTM (C)

= π 2g(g−1)
2g−1

= πc2(g).

the area works, since a Teichmüller curve intersects the divisor normally. For details consult
[Wo85].
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Zusammenfassung

Teichmüllerkurven in der

Deligne-Mumford-Kompaktifizierung

Der Gegenstand der vorliegenden Arbeit sind Teichmüllerkurven. Diese sind
spezielle komplex eindimensionale Unterorbifaltigkeiten von Mg, dem Modul-
raum geschlossener Riemannscher Flächen vom Geschlecht g ≥ 2. Genauer, es
wird ihre Lage in der Deligne-Mumford-Kompaktifizierung Mg des Modulraums
untersucht, indem der Schnitt des Kompaktifizierungsdivisors D = Mg \Mg mit
einer Teichmüllerkurve in geeigneten Koordinaten dargestellt wird. Unter Aus-
nutzung dieser Darstellung wird die Schnittzahl berechnet. Im Falle der abelschen
Teichmüllerkurven wird die erste Mumford-Morita Kohomologieklasse κ1 auf der
durch die kompaktifizierte Teichmüllerkurve definierten Homologieklasse aus-
gewertet. Einerseits vervollständigt dies die homologische Untersuchung der
abelschen Teichmüllerkurven, da κ1 zusammen mit den Komponenten von D die
zweite Kohomologiegruppe von Mg mit Koeffizienten in Q frei erzeugt. Anderer-
seits erlaubt die letzte Auswertung eine Berechnung der Weil-Petersson Fläche
der abelschen Teichmüllerkurven.

Bis auf den Abschnitt 1, in dem die grundlegenden Eigenschaften und Struk-
turen der Orbifaltigkeiten sowie der Modulräume erklärt bzw. zitiert sind, ist
die Arbeit eine im Wesentlichen in sich geschlossene, auch wenn bei weitem
nicht vollständige Darstellung des Forschungsbereichs: naturgemäß werden viele
Aspekte der umfangreichen Theorie der Teichmüllerkurven nicht berücksichtigt.
Das primäre Ziel dieser Arbeit ist ein strenger Beweis der eigenen Ergebnisse,
der eine ebenso strenge Einführung in das Gebiet erfordert. Diese umfasst Ab-
schnitte 2 bis 4 und stellt eine wohlbekannte Sachlage vor; in den letzten beiden
Abschnitten werden dagegen neue Ergebnisse präsentiert.

Ausgehend von einem holomorphen quadratischen Differential ω auf einer
Riemannschen Fläche, definieren wir im zweiten Abschnitt ω-natürliche Karten.
Diese bilden einen Atlas für das Komplement der Nullstellen von ω, so dass die
Kartenwechselabbildungen ±-Translationen sind. Mittels dieses Atlas definieren
wir eine Euklidische Metrik auf dem Komplement der Nullstellen, deren Fort-
setzung auf die gesamte Fläche konische Singularitäten in den Nullstellen hat.
Das Paar (Riemannsche Fläche, holomorphes quadratisches Differential) heißt
flache Fläche. Die Gruppe GL+

2 R wirkt auf dem Raum der flachen Flächen wie
folgt. Indem wir eine Matrix A, als Selbstabbildung von R2 = C, den natürlichen
Karten einer flachen Fläche hinterherschalten, erhalten wir den natürlichen At-
las einer neuen flachen Fläche. Wir bringen im Abschnitt 3 diese Wirkung in
Verbindung mit der Wirkung von GL+

2 R auf dem Kotangentialbündel der un-
teren Halbebenen H durch Pullbacks der Möbius-Transformationen. Dadurch er-



halten wir, ausgehend von einer flachen Fläche (X,ω), eine Abbildung von T∗H

in den Raum der markierten flachen Flächen, der mit dem Kotangentialbündel
des Teichmüllerraums Tg kanonisch identifiziert ist. Diese Abbildung steigt zu
einer Einbettung, genannt Teichmüllerscheibe, H → Tg ab, von der wir zeigen,
dass sie holomorph und isometrisch bezüglich der Teichmüllermetrik ist. Das Bild
einer Teichmüllerscheibe sind alle komplexen Strukturen, die durch die Wirkung
von GL+

2 R aus (X,ω) entstehen können. Die Abbildungsklassengruppe Mapg

operiert auf dem Teichmüllerraum durch holomorphe Isometrien. Die Elemente
von Mapg, die das Bild der von (X,ω) erzeugten Teichmüllerscheibe erhalten,
bilden die Untergruppe Γ(X,ω), die wir erweiterte Veechgruppe nennen. Wir
erhalten eine holomorphe Abbildung von H/Γ(X,ω) in den Modulraum Mg.
Falls Γ(X,ω) durch ein Gitter auf H wirkt, nennen wir die letzte Abbildung
eine Teichmüllerkurve. Das Gitter enthält immer parabolische Elemente, und
im Abschnitt 4 untersuchen wir die parabolischen Enden von C := H/Γ(X,ω).
Wir stellen fest, dass ein solches Ende zu einer Zerlegung der flachen Fläche
in Euklidische Zylinder mit geodätischem Rand und kommensurablen Moduli
korrespondiert.

Im Abschnitt 5 konstruieren wir ein Bündel flacher Flächen über einer Scheibe
D mit folgenden Eigenschaften. Einerseits sind alle bis auf eine Faser Flächen,
die aus (X,ω) durch Wirkung von GL+

2 R entstehen. Die Ausnahmefaser X0

ist eine Fläche mit paarweise angeordneten Spitzen und korrespondiert daher
zu einem Punkt [X0] in der Deligne-Mamford-Kompaktifizierung Mg. Das Bild
der Bündelbasis D in Mg besteht also aus Punkten im Bild der Teichmüller-
kurve und [X0], mit anderen Worten, das Bild von D ist das Bild einer kom-
paktifizierten Spitze von C. Andererseits lässt sich aus der Konstruktion des
Bündels leicht eine Karte N → Mg angeben, deren Bild [X0] enthält und in der
der Kompaktifizierungsdivisor und die Abbildung D → N einfache Darstellung
haben. Wir erhalten das folgende Ergebnis:

Theorem 5.4. Die kompaktifizierte Spitze einer Teichmüllerkurve hat in
geeigneten Koordinaten die Darstellung D → N ⊂ C3g−3, λ 7→
(λn1 , ..., λnk , 0, ..., 0). Dabei sind die Zahlen n1, ..., nk ∈ N die Kommensura-
bilitätszahlen der Moduli der Zylinder in der Zerlegung von (X,ω), die zur Spitze
korrespondiert. Der Divisor D = Mg \ Mg ist in N durch die Gleichung
z1z2 · · · zk = 0 gegeben.

Das Theorem erlaubt uns, die Schnittzahl der Teichmüllerkurve mit dem Di-
visor auszurechnen. Genauer werten wir die Kohomologieklasse des Divisors
auf der durch die kompaktifizierte Teichmüllerkurve definierten Homologieklasse
aus. Eine abelsche Teichmüllerkurve, d.h. erzeugt durch das Quadrat einer holo-
morphen Differentialform, schneidet nur eine Komponente von D, so dass wir die
Kohomologieklassen aller Komponenten auswerten können.

Reduzieren wir die flachen Strukturen auf den Fasern auf die komplexen Struk-



turen, so haben wir die (Überlagerung der) universelle(n) Kurve über einer kom-
paktifizierten Spitze der Teichmüllerkurve konstruiert. Im Falle der abelschen
Teichmüllerkurven erhalten wir auf den Fasern des Bündels holomorphe For-
men anstelle der quadratischen Differentiale. Mit anderen Worten konstruieren
wir einen holomorphen Schnitt im relativen Kotangentialbündel der universellen
Kurve über den Spitzen. Im letzten Abschnitt nutzen wir diesen Schnitt aus,
um den Nullstellendivisor eines Schnitts im relativen Tangentialbündel der uni-
versellen Kurve über einer abelschen Teichmüllerkurve zu berechnen. Da κ1 das
Bild des Quadrats der Eulerklasse des Tangentialbündels der universellen Kurve
unter dem Gysinmorphismus ist, sind wir schließlich in der Lage, κ1 auszuwerten.
Wir erhalten das folgende Theorem:

Theorem 6.3. Sei C → Mg eine abelsche Teichmüllerkurve erzeugt durch
eine holomorphe Differentialform mit ak Nullstellen der Ordnung k, für k =
1, ..., 2g − 2, sei j : C → Mg ihre Kompaktifizierung. Dann gilt

(κ1, j∗[C]) = χ(C)

(

1 − g −
2g−2
∑

k=1

kak

2(k + 1)

)

.

Unter Benutzung Wolperts Ergebnisse, die κ1 in Beziehung zur Weil-
Petersson-Metrik setzen, berechnen wir anschliessend die Oberfläche einer
abelschen Teichmüllerkurve gemessen in dieser Metrik. Da die Oberfläche
bezüglich der Teichmüllermetrik leicht durch die Eulercharakteristik ausgedrückt
wird, können wir die beiden Oberflächen vergleichen. Der Quotient der beiden
hängt überraschenderweise nur von den Nullstellenordnungen der erzeugenden
Form ab:

Korollar 6.5. Sei j : C → Mg eine abelsche Teichmüllerkurve erzeugt durch
eine holomorphe Differentialform mit ak Nullstellen der Ordnung k, für k =

1, ..., 2g − 2. Dann gilt: areaWP (C) = areaTM(C)
(

g − 1 +
∑2g−2

k=1
kak

2(k+1)

)

.

Im Abschnitt 3.5 geben wir fast alle bekannten primitiven Teichmüllerkurven
an. Aufgrund der Beschaffenheit einiger Beispiele ist es leider nicht immer ohne
Weiteres möglich, die Ergebnisse anzuwenden. In anderen Fällen können die
Schnittzahlen und die Weil-Petersson-Oberfläche präzise ausgerechnet werden,
was in den Abschnitten 5.4 und 6.5 exemplarisch gemacht wird.
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