
Bonner Mathematische Schriften

Nr. 393

Juan Wang

Generalized Snaith Splittings

Bonn  2009



BONNER MATHEMATISCHE  SCHRIFTEN

Nr.  393

Gegenwärtige Herausgeber:

S. Albeverio, H. W. Alt, W.  Ballmann, C. - F. Bödigheimer, A.Bovier, S. Conti, 
A. Eberle, J. Franke, J. Frehse, M. Griebel, U. Hamenstädt, D. Huybrechts, 
H. Koch,  P. Koepke,  M. Lesch, W. Müller, F. Otto,  M. Rapoport, M. Rumpf, 

M. Schäl, K. Scherer, J. Schröer, S. Schwede, C. Stroppel, K.-T. Sturm, 
O.Venjakob

 

Begründet von E. Peschl
Fortgeführt von  E. Brieskorn, H. Föllmer, G. Harder, G. Hasenjäger,  
S. Hildebrandt, F. Hirzebruch, H. Karcher, A. Kunoth, W. Klingenberg,  

W. Krull, R. Leis, I.Lieb, F. Pop, E. Sperner, J. Tits, H. Unger, W. Vogel, 
H.Werner

 

Druck: Rheinische Friedrich-Wilhelms-Universität, Bonn
Mathematisches Institut der Universität
Wegelerstr. 10, D-53115 Bonn
email: bibliothek@math.uni-bonn.de 
ISSN 0524-045X



Generalized Snaith SplittingsDissertationzurErlangung des Doktorgrades (Dr. rer. nat.)derMathematish-Naturwissenshaftlihen FakultätderRheinishen Friedrih-Wilhelms-Universität Bonn
vorgelegt vonJuan Wangaus Jiayu, Hubei Provinz, ChinaEmail: wang�math.uni-bonn.deBonn, September 2008



Angefertigt mit Genehmigung der Mathematish-Naturwissenshaftlihen Fakultät der RheinishenFriedrih-Wilhelms-Universität Bonn

1. Referent: Prof. Dr. Carl-Friedrih Bödigheimer (Bonn)2. Referent: Prof. Dr. Ulrike Tillmann (Oxford)Tag der Promotion:



AbstratA Segal Γ-spae A gives a homotopy funtor A(X) and a onnetive homology theory h∗(X ; A) =

π∗(A(X)). The in�nite symmetri produt SP∞(X) and the on�guration spae C(R∞;X) ≃ Q(X)are well-known examples of Segal Γ-spaes; the former giving singular homology H̃∗(X ; Z) and the lat-ter stable homotopy theory as their homotopy groups. Here we are onerned with another importantexample, the Segal Γ-spae K leading to onnetive KO-theory: π∗K(X) = k̃o(X).Like the �rst two examples, suh funtors A ome very often with a �ltration An(X) whih splits afterapplying another suitable homotopy funtor, perhaps even a Segal Γ-spae B; in the �rst two examplesone an take B = A and obtain the well-known Dold-Puppe splitting of SP∞(X) resp. the Snaith splittingof Q(X). Our main result is a splitting of K(X) using the funtor B(X+) ≃ Ω∞−1(MO∧X+) representingunoriented obordism, namely
B(K(X)+) ≃ B(

∞∨

n=0

Kn(X)/Kn−1(X)).
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Chapter 1IntrodutionIn the 1970's Segal [Se2℄ introdued the onept of Segal Γ-spaes and proved they give rise to a homotopyategory equivalent to the usual homotopy ategory of onnetive (i.e. (-1)-onneted) spetra. Todesribe his onstrution, let Γ be the ategory of �nite pointed sets n = {0, 1, · · · , n} with 0 the basepoint and morphisms the based funtions. A Segal Γ-spae is a ovariant funtor A : Γ → Top∗ suhthat pn : A(n) → A(1)n indued by πi : n → 1, πi(j) = δij and p0 : A(0) → A(1)0 = ∗ are homotopyequivalenes. The spae A(1) is alled the underlying spae of A. A Segal Γ-spae A an be extended, byleft Kan-extension, along the inlusion Γ→ Top∗ to a funtor A : Top∗ → Top∗, i.e.
A(X) =

∫
n∈Γ

A(n) ×Xn = (
∐

n∈Γ

A(n)×Xn)/ ∼ .The relation is generated by (a, α∗(x)) ∼ (α∗(a), x) for a ∈ A(n), x ∈ Xm and α : n → m in Γ. Wesay a Segal Γ-spae A is very speial, if π0(A) is a group. A very speial Segal Γ-spae determines an Ω-spetrum by applying it to the sphere spetrum, namely A(S) = {A(S0),A(S1),A(S2), · · · }. Let h∗(−; A)be the assoiated homology theory, i.e. h̃∗(X ; A) := π∗(A(S)∧X) ∼= π∗(A(X)) for X ∈ Top∗. Segal [Se2℄showed that this homology theory is onnetive and every onnetive homology theory arises from a Segal
Γ-spae.Suh funtors ome very often with a �ltration

· · · ⊆ An(X) ⊆ An+1(X) · · · .And in many examples we observe the following splitting phenomenon: there is a homotopy funtor Bwith a weak equivalene
BA(X) ≃ B(

∨

n≥1

An(X)/An−1(X)). (1.0.1)We all suh funtor B a splitting funtor of A. It is natural to ask if an arbitrary Segal Γ-spae A admitssuh a splitting funtor B. Our motivation omes from several well-known homotopy funtors.The historially �rst example is the in�nite symmetri produt SP∞(X) =
⋃

n SPn(X) with SPn(X) =

Xn/Σn. As a Segal Γ-spae A it arises as A(n) = Nn. The juxtaposition Xn × Xm → Xn+m gives aommutative multipliation SPn(X) × SPm(X) → SPn+m(X) making SP∞(X) into an abelian monoid.1



It was �rst proved by Dold and Thom [DoTh℄ that for X a CW-omplex of �nite type, SP∞(X) is aprodut of Eilenberg-MaLane spaes.
SP∞(X) ≃

∏

i

K(H̃i(X ; Z); i).This makes the funtor SP∞ a representative funtor for singular homology. More preisely, they provedthat π∗ SP∞(X) ∼= H̃∗(X ; Z) for any onneted spae X . This is the �rst example in the history that thehomology of a spae has been written as the homotopy of a funtor applied to that spae. Later, Doldand Puppe [DoPu℄ proved that there is a splitting
SP∞(SP∞X) ≃ SP∞(

∨

k≥1

SPk(X)/ SPk−1(X)). (1.0.2)Sine in this example the splitting funtor an be taken to be B = A itself, we all this a self-splitting.An element in SP∞(X) is a formal sum Σkixi of points in X with multipliatives ki ∈ N; written in thisway the identi�ations in SP∞(X) are 0x = 0 = ∗ (base point), k∗ = ∗ and kx+ k′x = (k + k′)x.We an thus identify SP∞(X) as
SP∞(X) ∼=

∐

n

N
n ×Σn

Xn/(0x = ∗, k∗ = ∗, kx+ k′x = (k + k′)x).This de�nition has been generalized in [MC℄. For any abelian monoid G with unit e, we de�ne ageneralized symmetri produt,
SPG(X) :=

∐

n

Gn ×Σn
Xn/(ex = ∗, g∗ = ∗, gx+ g′x = (g + g′)x).We studied two examples, namely A = SP Zn assoiated to G = Zn = Z/n, and A = SP Z assoiatedto G = Z. They are representative funtors for mod-n homology and again for integral homology. Thatis, π∗ SP Zn(X) ∼= H̃∗(X ; Zn) and π∗ SP Z(X) ∼= H̃∗(X ; Z). To desribe their splittings, assume n =

pǫ1
1 · · · p

ǫr
r is the prime deomposition of n ∈ N. Set

N =

{
p1 if r = 1, ǫ1 ≥ 1

1 else.We prove in Chapter 3 that there are weak homotopy equivalenesTheorem 3.4.2.
SP ZN (SP Zn(X)) ≃ SP ZN (

∨

k≥1

Dk SP Zn(X)) (1.0.3)andTheorem 3.5.1.
SP Z(SP Z(X)) ≃ SP Z(

∨

k≥1

Dk SP Z(X)), (1.0.4)where DkA(X) stands always for the �ltration quotients Ak(X)/Ak−1(X). In the last two examples the�ltration is given by the sum of the oe�ients. Note that in ase A = SP Zn, it is not a self-splitting asin the ase A = SP∞ or A = SP Z. 2



The next example is the funtor C(X) = C(R∞;X), the on�guration spae of R∞ with labels in Xde�ned as
C(R∞;X) := (

∐

n≥1

C̃n(R∞)×Σn
Xn)/ ∼ .Here C̃n(R∞) is the spae of ordered on�gurations of n distint points in R∞ and the equivalene relation

∼ is generated by (z1, · · · , zn;x1, . . . , xn) ∼ (z1, . . . , ẑi, · · · , zn;x1, . . . , x̂i, . . . , xn) if xi = x0. There is anobvious �ltration by the length n of a on�guration. It is well-known that C(X) ≃ Ω∞Σ∞X = Q(X),i.e. π∗C(X) = πstab
∗ (X) is the stable homotopy theory of X .The Snaith splitting [Sn℄ asserts

Σ∞C(R∞;X) ≃ Σ∞
∨

k≥1

Dk(R∞;X), (1.0.5)or equivalently
QQX ≃ Q(

∨

k≥1

Dk(R∞;X)). (1.0.6)Before we desribe our main result we digress to desribe related splitting results. Denote by C(M,M0;X)the on�guration spae on a manifold pair (M,M0) with labels in X . HereM0 ⊂M is a odimension-zerosubmanifold of M ; M0 an be empty. Let C̃n(M) denote the spae of ordered on�gurations (z1, · · · , zn)in M . For a spae X with a base point x0 we denote by
C(M,M0;X) := (

∐

n≥1

C̃n(M)×Σn
Xn)/ ∼the spae of on�gurations in M modulo M0 with labels in X ; here Σn is the symmetri group of rank nwith the obvious permutation ation on C̃n(M) and on Xn; and the equivalene relation ∼ is generated bythe anelations (z1, · · · , zn;x1, . . . , xn) ∼ (z1, . . . , ẑi, · · · , zn;x1, . . . , x̂i, . . . , xn) if zi ∈M0 or if xi = x0.Ever sine the work of James, Segal, Cohen, Bödigheimer et., it has beome lear that on�guration spaesan be used to model mapping spaes. A simple but useful onstrution given in terms of on�gurationswith labels and due to Milgram, May and Segal gave very onrete models for iterated loop spaes. Thismodel was later extended by Cohen, Bödigheimer and MDu� to various other mapping spaes by hoosingon�gurations to lie not in disks but other parallelizable manifolds.a) The May-Milgram model [Mi℄ says that the on�gurations on Rm with labels in a based onnetedspae X is homotopy equivalent to the m-fold loop spae of an m-fold suspension on X , that is

C(Rm;X)
≃ //ΩmΣmX .b) In the limit ase this gives C(R∞;X) ≃ Ω∞Σ∞X , used above.) Cohen [Co℄ and Bödigheimer [Bö1℄ also studied the aseM = S1,M0 = ∅ and proved C(S1;X) ≃ ΛΣX ,the free loop spae of a suspension of a onneted spae X .d) Historially the �rst model is the James model J(X) in [Ja℄, the free non-ommutative topologialmonoid generated by X modulo its base point x0. And J(X) ≃ C(R;X) ≃ ΩΣX .e) All these are speial ases of [Bö1℄, where the based mapping spaes Map(K,K0; Σ

mX), here K0 ⊂

K ⊂ Rm are �nite polyhedra in Rm; and X or the pair (K,K0) must be onneted. If W ⊂ Rm is openwith W ⊃M ⊃M0 suh that (M,M0) ≃ (K,K0), then there is a homotopy equivalene
C(M,M0;X) // Map(W\M0,W\M ; ΣmX). (1.0.7)3



One of the most important appliations of on�guration spae models was the stable splitting of mappingspaes into bouquets of simpler spaes. These simpler spaes are the �ltration quotients
Dk(M,M0;X) = Ck(M,M0;X)/Ck−1(M,M0;X)of the �ltration
Ck(M,M0;X) := (

k∐

n=1

C̃n(M)×Σn
Xn)/ ∼ .Note that the spaes Dk(M ; Sq) are Thom spaes of the vetor bundles C̃k(M)×Σk

Rqk −→ Ck(M).Bödigheimer [Bö1℄, [BöMa℄ proved that
Σ∞ Map(K,K0;X) ≃ Σ∞

∨

k≥1

Dk(M,M0;X). (1.0.8)The �rst result of this kind was James unstable splitting [Ja℄ of ΩΣX . He proved in [Ja℄ that there is anunstable splitting of the James model, known as the James splitting,
ΣJ(X) ≃ ΣΩΣX ≃ Σ

∞∨

k=1

X∧k. (1.0.9)We note here that the free loop spae ΛΣX an be split with just two suspensions, see [BöWa℄.We return after this digression to our next example, whih stands in the enter of this work. The spae
K(X), introdued by Segal [Se3℄, is obtained from the Segal Γ-spae K of �nite-dimensional Grassman-nians in R∞. More preisely,

K(1) =
∐

k Grk(R∞),

K(n) = {(V1, · · · , Vn) ∈ K(1)×n|Vi ⊥ Vj , if i 6= j}.So the extension K(X) has the form
K(X) = (

∐

n≥0

K(n)×Σn
Xn)/ ∼,where

(V1, · · · , Vi, · · · , Vn;x1, · · · , xi, · · · , xn) ∼ (V1, · · · , V̂i, · · · , Vn;x1, · · · , x̂i, · · · , xn), if xi = x0;and
(· · · , Vi, · · · , Vj , · · · ; · · · , xi, · · · , xj , · · · ) ∼ (· · · , Vi ⊕ Vj , · · · , V̂j , · · · ; · · · , xi, · · · , x̂j , · · · ), if xi = xj .Its �ltration is given by the sum of dimensions of the vetor spaes

Kn(X) =
{

ΣiVixi ∈ K(X) Σ dimVi ≤ n
}
.Segal proved that K(X) is a representing spae for the onnetive real K-homology theory, namely

π∗K(X) ∼= k̃o(X). 4



Our goal is to onstrut a splitting funtor B for K(X), that is, to �nd a homotopy funtor B and a weakequivalene
B(K(X)+) ≃ B(

∨

n

Kn(X)/Kn−1(X)). (1.0.10)We prove in Chapter 5 that there exists suh a B whih represents the in�nite loop spae of the Thomspetrum MO for the universal real vetor bundles, i.e. it represents unoriented obordism.The main idea to searh for the funtor B is impliit in the work of Randal-Williams [RW℄. He de�ned inase Y = S0 a topology on the set of equivalene lasses:
Bd(M ;Y ) := (

∐

F

Emb(F,M) ×Diff(F ) Map(F, Y ))/ ∼where F varies over smooth d-dimensional manifolds without boundary (not neessarily ompat or on-neted). The equivalene relation anels a omponent of a manifold F if the labeling funtion is trivialon that omponent. He proved that this spae is weakly equivalent to the spae of setions of a ertain�ber bundle. The spae Bd(M ;Y ) is a kind of on�guration spae of d-dimensional manifolds ǫ : F →֒Min M with label funtions ϕ : F → Y .De�ne Bc
d(M ×Rd+1;Y+) to be the subspae of Bd(M ×Rd+1;Y+) where ǫ(F ) ⊂M ×Rd+1 projets intoa ompat subspae of M . We use his idea and de�ne a topology on Bd(M ;Y ) for all Y . Then we applyGromov's h-priniple and prove that there is a weak homotopy equivalene

Bc
d(M × R

d+1;Y+)→ Sectc(Ed(M × R
d+1;Y+),M). (1.0.11)Here Sectc(Ed(M × Rd+1;Y+)) is the spae of ompatly supported setions of the bundle

Ed(M ;Y+) := Vn(TM)×O(n) (Th(U⊥
d,n) ∧ Y+)

π
→M. (1.0.12)

Vn(TM) is the frame bundle of M , U⊥
d,n := {(V, v) ∈ Grd(R

n) × Rn|V ⊥ v}, and Th(U⊥
d,n) is theorresponding Thom spae. As n varies, all the Thom spaes Th(U⊥

d,n) form a spetrum, denoted by
MTOd.We have for M = Rn−1 a weak equivalene

γ : Bc
d(R

n−1 × R
d+1;Y+) ≃ Ωn−1(Th(U⊥

d,n) ∧ Y+). (1.0.13)For the limit ase n→∞, we obtain a weak equivalene
Bc

d(R
∞−1 × R

d+1;Y+) ≃ Ω∞−1(MTOd ∧Y+) (1.0.14)whih is the in�nite loop spae of the Thom spetrum MTOd ∧Y+.By rossing a manifold with R1, we de�ne a map
Bc

d(R
∞−1 × R

d+1;Y+) → Bc
d+1(R

∞−1 × R
d+2;Y+) (1.0.15)

R
∞+d ǫ

←֓ F d ϕ
→ Y+ 7→ R

∞+d+1 ←֓ F d × R
1 ϕ′

−→ Y+.where ϕ′ : F × R1 → Y+, (f, t) 7→ ϕ(f).De�ne
B(Y+) := colim

d
Bc

d(R
∞−1 × R

d+1;Y+).5



This is the splitting funtor we are looking for. Its homotopy type is
B(Y+) ≃ Sect(Y+) ≃ Ω∞−1MO ∧ Y+.The main result of this thesis is the following splitting.Theorem 5.3.6.

B(K(X)+) ≃ B(

∞∨

n=0

Kn(X)/Kn−1(X)). (1.0.16)We should remark that a splitting funtor is in general not unique, as one an see from the example
A = C(R∞;−) whih is split by B1 = A itself and by B2 = SP∞. Whether there is and how to �nd for agiven A the "best" (i.e. universal) splitting funtor B is a di�ult question.Looking bak at our proof we notie, that the funtor B an also be used to split other Segal Γ-spaes A,if some mild hypothesis is satis�ed: the spae A(1) is assumed to be disjoint unions of �nite-dimensionalmanifolds and ertain subspaes of A(n) are �nite-dimensional manifolds. Under these onditions thereis a weak equivaleneTheorem 6.4.1.

B(A(X)+) ≃ B(

∞∨

n=0

An(X)/An−1(X)). (1.0.17)The plan of this paper is as follows.In Chapter 2 the Segal Γ-spaes are de�ned and disussed.Chapter 3 and 4 onentrate individually on the separate ases of Segal Γ-spaes: in�nite symmetriprodut SP∞(X), on�guration spae C(R∞;X). Their homotopy types are well understood and weintrodue the well-known Dold-Thom splitting and Snaith splitting. The work we present in these twohapters is a mixture of previously known results, new results and also previously known results in a newframework.In Chapter 5 we study the example K(X). This is the main part of the thesis. We �nd the splittingfuntor B for K and prove the main result Theorem 5.3.6.Chapter 6 then deals with the splitting of an arbitrary Segal Γ-spae A. The proof is parallel to the proofin Chapter 5.In Appendix A we explain the h-priniple of Gromov; this is ruial for the proof of Theorem 5.3.6.In Appendix B we outline the homotopy alulus of funtors aording to Goodwillie.AknowledgementFirst of all, this thesis would not exist without the mathematial guidane and patiene of my supervisorC. -F. Bödigheimer. I thank him for the time and energy spent during my study at Bonn trying to instillin me some mathematial maturity. He always enouraged me to push my work further and pointed me6
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Chapter 2Segal Γ-SpaesThis hapter is onerned with G. Segal's notion of Γ-spae [Se2℄, in whih he showed that the homotopyategory is equivalent to the usual homotopy ategory of onnetive spetra and therefore gives rise toa onnetive homology theory. Furthermore, every onnetive homology theory an be represented by aSegal Γ-spae.Throughout this hapter Top∗ means the ategory of based ompatly generated Hausdor� spaes andbased maps, and let Ab be the ategory of abelian topologial monoids.2.1 Segal Γ-Spaes - a Covariant VersionLet Γ denote the ategory of �nite pointed sets represented by n = {0, 1, · · · , n} with 0 as base point andthe morphisms are pointed maps. It is isomorphi to the opposite of that ategory whih was also alled
Γ in [Se2℄.For eah i, let πi be the morphism πi : n → 1, πi(j) = δij in Γ. And let pn : A(n) → A(1)n be the mapwhose i-th omponent is indued by πi.De�nition 2.1.1. A Segal Γ-spae is a ovariant funtor A : Γ→ Top∗ suh that(1) A(0) ≃ ∗,(2) pn : A(n)→ A(1)n is a homotopy equivalene.A morphism of Segal Γ-spaes is a natural transformation of funtors F : A→ A′, suh that the diagramis homotopy ommutative,

A(n)
F (n) //

��

A′(n)

��
A(1)n

ΠF (1)// A′(1)nWe denote the ategory of Segal Γ-spaes by Γ Top∗. Analogously, a ontravariant funtor A× : Γop →9



Top∗ whih satis�es (1) and (2) will be alled a Γop-spae, and they are objets in a topologial ategory
Γop Top∗.For a Segal Γ-spae A, π0A(1) is an abelian monoid with multipliation

π0A(1)× π0A(1)
(π1∗×π2∗ )−1

−−−−−−−−→ π0A(2)
µ∗
−→ π0A(1),where µ : 2→ 1 is the fold map de�ned by µ(1) = µ(2) = 1. It also implies that A(1) is an H-spae.Example 2.1.2. Fix an abelian topologial monoid A, written additively with neutral element 0. Itdetermines a Segal Γ-spae A be setting A(n) := An, and by setting for α : n→m in Γ

A(α) = α∗ : An → Am, (a1, · · · , an) 7→ (Σj∈α−1(1)aj , · · · ,Σj∈α−1(i)aj , · · · ,Σj∈α−1(n)aj)and if α−1(k) = ∅, we set a∅ = 0. Note that it also works for the disrete monoid, for example the naturalnumbers N, N(n) := Nn.Example 2.1.3. One interesting example is the on�guration spae. De�ne
C(1) :=

∐

n≥0

C̃n(R∞)to be the disjoint union of ordered on�guration spaes on R∞. De�ne
C(k) :=

{
(ξ1, · · · , ξk) ∈ C(1)k ξi ∩ ξj = ∅ in R∞ for i 6= j

}
.We shall prove in setion 4.4 that this is a Segal Γ-spae. Another example is the Grassmanniann of�nite-dimensional real vetor spaes. More preisely,

K(1) =
∐

k Grk(R∞),

· · ·

K(n) = {(V1, · · · , Vn) ∈ K(1)×n|V1, · · · , Vn pairwise orthogonal}.We shall prove in setion 5.1 that this also de�nes a Segal Γ-spae.Reall the simpliial ategory ∆ whose objets are �nite ordered sets [m] = {0, 1, · · · ,m} and whosemorphisms are non-dereasing maps. Note that the ategory Γ is larger than the simpliial ategory,beause it has more morphisms. A simpliial spae is a ontravariant funtor ∆ → Top∗. There is aontravariant funtor ∆ → Γ taking [n] to the orresponding unordered set n with base point 0 and anorder preserving morphism f : [m]→ [n] to θ : n→m by
θ(i) =

{
j, f(j − 1) < i ≤ f(j);

0, otherwise.Therefore a Segal Γ-spae an be regarded as a simpliial spae and the realization of a Segal Γ-spaemeans the realization of the simpliial spae it de�nes.There is a natural extension of a Segal Γ-spae A : Γ → Top∗ to a funtor whih we also denote by
A : Top∗ → Top∗. Reall the oend onstrution: if A is a Segal Γ-spae, X is a based topologial spaewith x0 as base point, i.e. a Γop-spae, onsider the ontravariant funtor pX : Γ → Top∗, n 7→ Xn, a10



map α : n → m in Γ indues α∗(x1, · · · , xm) = (xα(1), · · · , xα(n)), where all xα(i) with α(i) = 0 are thebase points x0. We let A(X) denote the quotient spae
A(X) :=

∐

n∈Γ

A(n)×Xn/(a, α∗x) ∼ (α∗a, x) =

∫ n∈Γ

A(n)×Xn.where a ∈ A(n), x ∈ Xm. Note that the equivalene relation ∼ inludes the ation of the symmetri group
Σn on A(n)×Xn. In ase pn : A(n)→ A(1)n is an inlusion one an view an element of A(X) as a formalsum [a;x] = Σn

i=1aixi with pn(a) = (a1, · · · , an). We do not distinguish the extention notationally fromthe original Segal Γ-spae. The extended funtor preserves homotopy equivalenes in Top∗. Obviously, if
S is a disrete �nite spae, this new de�nition of A(S) agrees with the old one.Example 2.1.4. In the ase A = N, we have A(n) = Nn, and thus A(X) = SP∞(X), the in�nitesymmetri produt. In the ase A = C, it is C(X) = C(R∞;X), the labeled on�guration spae of R∞.In the ase A = K, it is the spae K(X). This was mentioned in the introdution, whih will be givenmore details in Chapter 5.2.2 Segal Γ-Spaes Arising From CategoriesSegal [Se2℄ demonstrated that the Segal Γ-spaes an be obtained naturally from ategories with ompo-sition laws. In this setion we are going to reformulate it in a ovariant version. As in [Se1℄, "ategory"means that the set of objets and the set of morphisms have topologies for whih the strutural maps areontinuous.First we reall the nerve NA of a small ategory A [Se1℄. It is a simpliial set with n-simplex NAn =

homcat([n],A ), set of funtors from [n] to A . That is, an n-simplex is a string
a0

α1−→ a1
α2−→ · · ·

αn−−→ anof omposable arrows of length n in A . The geometri realization of this simpliial set, denoted by
BA := |NA | = |A | is alled the lassifying spae of A .Here are some elementary properties:(i) |A ×A ′| ≃ |A | × |A ′|.(ii) Equivalene of ategories A → A ′ indues a homotopy equivalene |A | → |A ′|.Example 2.2.1. Fix an a topologial group G, one an assoiate a topologial ategory G with one objet
∗ and one morphism g : ∗ → ∗, for eah g ∈ G, then ob(G ) = ∗,mor(G ) = G,NGk = Gk, thus

BG = |NG | = (
∐

k

∆k ×Gk)/ ∼= BG,whih is the Milnor onstrution.De�nition 2.2.2. ([Se2℄, De�nition 2.1.) A Γ-ategory is a ovariant funtor A : Γ→ ategories, whihsatis�es(i) A (pt) is equivalent to the ategory with one objet and one morphism;(ii) for any n, the funtor pn : A (n)→ A (1)n indued by the morphisms πi : n→ 1 de�ned in De�nition2.1.1. is an equivalene of the ategories. 11



Proposition 2.2.3. ([Se2℄, Corollary 2.2.) If A is a Γ-ategory, then |A | is a Segal Γ-spae. �Here |A | means the funtor S 7→ |A (S)|.Let C be a ategory in whih sums exist. For eah objet S ∈ Γ, assoiate a ategory P(S) whoseobjets are pointed subsets of S and inlusions as morphisms, an objet of the ategory C (S) is a funtor
P(S) → C whih takes wedge produt of sets to sums in C . Morphisms are isomorphisms of funtors.Now onsider the objet of C (2), it is a diagram A1 → A12 ← A2 with the universal property thatregarding A12 as a oprodut of A1 and A2, i.e. A12 := A1 + A2. The morphisms are de�ned that themorphisms S → T ∈ Γ orrespond to funtors P(S) → P(T ) whih preserves wedge produts. Then
S 7→ C (S) is a ovariant funtor from Γ to ategories. And sine the forgetful funtor

C (2) −→ C × C

(A1 → A12 ← A2) 7→ (A1, A2)is an equivalene of ategories, we obtain a Γ-ategory as de�ned.Example 2.2.4. ([Se2℄, page 299) Consider the ategory S of pointed �nite sets under wedge produt
∨ as the sum operation, hoose a model for S in whih there is one objet n for eah natural number.For example, S (1) is a ategory with objets F : P(1)→ S , F ({0}) = 0, F ({0, 1}) = n and morphismsare pointed automorphism of n, namely Σn. Segal showes that

|S (1)| =
∐

n≥0

BΣn.We denote this Segal Γ-spae |S | by BΣ.One an generalize BΣ as follows: let F be a ontravariant funtor from the ategory of �nite pointed setswith inlusions as morphisms to the ategory Top∗. Let SF be the topologial ategory whose objets arepairs (S, x) with S a �nite set and x ∈ F (S) and whose morphism (S, x)→ (T, y) are injetions θ : S → Tsuh that θ∗(y) = x. One an then onstrut SF (n) in a similar way as S (n). If for eah S, T the map
F (S ∨ T )→ F (S)× F (T ) is a homotopy equivalene, then n 7→ |S (n)| is a Segal Γ-spae.Example 2.2.5. ([Se2℄, Chapter 2) De�ne F : Setop → Top∗, n 7→ Xn for a �xed spae X . Then theategory SF (1) has objets to be funtors P(1) → SF ,1 7→ (S, x) with x = (x1, · · · , xn) ∈ Xn andmorphisms are automorphisms σ∗ : (n, (x1, · · · , xn)) → (n, (xσ(1)

, · · · , xσ(n)
)) for σ ∈ Σn. We all theresulting Segal Γ-spae BΣX , and espeially

BΣX(1) = (
∐

n≥0

EΣn ×X
n)/Σn,whih is the labeled on�guration spae of R∞, i.e. C(R∞;X).2.3 Segal Γ-Spaes and SpetraIn this setion we show the equivalene between the ategory of Segal Γ-spaes and the ategory ofonnetive spetra. To assoiate a spetrum to a Segal Γ-spae, there are two ways: (i) the lassifyingspae onstrution; (ii) applying the extended Segal Γ-spae to the spheres.For a Segal Γ-spae A, we know from last setion that π0A(1) is an abelian monoid.12



De�nition 2.3.1. A Segal Γ-spae A is very speial (or sometimes alled group omplete), if π0A(1) isan abelian group.Now we digress to the general group ompletion theory assoiated to a topologial monoid M . Assume
M is stritly assoiative and has a unit. Consider its lassifying spae BM . It is a based spae, and theadjoint of the inlusion ΣM →֒ BM is a map i : M → ΩBM whih is a weak homotopy equivalene if themonoid of onneted omponents π0(M) is a group. Quillen's group ompletion theorem ([May℄, [MD℄,[Ka1℄) indiates the relationship between M and ΩBM generally.A map f : M1 → M2 between two topologial monoids is a group ompletion if π0(f) : π0M1 → π0M2 isan algebrai group ompletion (i.e. π0(f) is universal with respet to morphisms of monoids from π0(M2)to groups), and if f∗ : H∗(M1) → H∗(M2) is a loalization of the ring H∗(M1) at its multipliativesubmonoid π0(M1) for every ommutative oe�ient ring R.Theorem 2.3.2. (Quillen's group ompletion Theorem, [May℄), the natural inlusion i : M → ΩBM is agroup ompletion whenever M is homotopy ommutative. �Consider the example 1.2.4 in the last setion. The Barratt-Priddy-Quillen theorem tells us that BΣgroup ompletes to QS0.A spetrum onsists of a olletion of pointed spaesX = {Xn}n≥0 together with maps σn : ΣXn → Xn+1.If all σn are weak equivalenes, it is alled a suspension spetrum. If the adjoint maps σ♯

n : Xn → ΩXn+1are weak equivalenes, it is alled an Ω-spetrum. A map of spetra X → Y onsists of maps Xn → Ynstritly ommuting with the suspension maps. We denote the ategory of spetra by Sp. The homotopygroups of a spetrum X are de�ned as
πnX = colimi πn+iXi.A map of spetra is a stable equivalene if it indues isomorphisms on all homotopy groups.Return to our ase when M = A(1) with the disrete topology. Segal ([Se1℄) showed that a Segal Γ-spae

A gives rise to a spetrum. For X,Y ∈ Top∗, denote Map∗(X,Y ) spae of based maps from X into Y ,the ontinuous map
Map∗(X,Y )→ Map∗(A(X),A(Y )), f 7→ A(f)preserves base points. Hene there are natural maps, alled assembly maps

X ∧A(Y ) −→ A(X ∧ Y )whih are the adjuntions of the omposition
X

l // Map∗(Y,X ∧ Y )
A // Map∗(A(Y ),A(X ∧ Y )),where l is given by l(x)(y) = x ∧ y.Given an objet X = {Xn}n≥0 in Sp, we de�ne A(X) ∈ Sp by A(X)n = A(Xn) with the struture map

S1 ∧A(Xn)→ A(S1 ∧Xn)→ A(Xn+1).13



Analogously, forX ∈ Sp, L ∈ Top∗, one has a natural map A(X)∧L→ A(X∧L) in Sp. A Segal Γ-spae de-termines a spetrum by applying A to the sphere spetrum S, namely A(S) = {A(S0),A(S1),A(S2), · · · }.Let h∗(−; A) be the assoiated homology theory, i.e. h̃∗(X ; A) = π∗(A(S) ∧X) for X ∈ Top∗.An alternative onstrution of h̃∗(X ; A) is given as follows:We �rst need to reall the onept of quasi�bration, introdued by Dold and Thom [DoTh℄, whih is madeexatly in order to obtain the homotopy exat sequene whih we have for the Serre �brations.De�nition 2.3.3. (Dold-Thom) A map p : E → B is alled a quasi-�bration, if for every b ∈ B and forevery e ∈ p−1(b) we have that
p∗ : πn(E, p−1(b), e)→ πn(B, b)is an isomorphism for all n ≥ 0.It is equivalent to say that the �ber p−1(b) is weakly equivalent to the homotopy �ber of p over b. Thus,quasi-�brations behave for homotopy theory very muh like other types of �brations sine we have thefollowing:If p : E → B is a quasi-�bration, b ∈ B and e ∈ p−1(b) = F , then there is a long exat homotopy sequene

· · · //πn(F, e)
i∗ //πn(E, e)

p∗ //πn(B, b)
∂ //πn−1(F, e) // · · ·Proposition 2.3.4. If Y is a path onneted losed subspae of X with a well-based base point x0 ∈

Y ⊂ X , then the o�bration Y →֒ X → X/Y indues a quasi-�bration A(X) → A(X/Y ) with all its�bres homeomorphi to A(Y ).We will give the proof in Setion 6.1.Theorem 2.3.5. ([Se2℄, [Wo℄) If A is a Segal Γ-spae, then h̃n(X ; A) := πn(A(X)) is a homology theoryfor onneted spae X . �Example 2.3.6. (1) When A = N, then A(X) = SP∞(X), by the Dold-Thom Theorem, the induedhomology theory is h̃n(X ; A) ∼= H̃n(X ; Z), the singular homology theory.(2) If A = G a disrete abelian group, then A(X) = SPG(X), and h̃n(X ; A) ∼= H̃n(X ;G), singularhomology with oe�ients in G.(3) When A = C the on�guration spae,
A(X) ∼= C(R∞;X) ∼= lim

−→m
C(Rm;X) ≃ lim

−→m
ΩmΣmX =: Ω∞Σ∞X = Q(X),then h̃n(X ; A) = πstab

n (X), the stable homotopy theory.Lemma 2.3.7. ([BoFr℄,[Wo℄) If A is a Segal Γ-spae and X ∈ Top∗, then the map A(S)∧X → A(S ∧X)is a weak equivalene, and thus h̃∗(X ; A) ∼= colimn π∗+nA(Sn ∧X). �The Segal Γ-spae Φ(S,−) assoiated to a spetrum X is de�ned
n 7→ HomSp(S×n, X) =: Φ(S,X)(n).This indeed de�nes a Segal Γ-spae, beause

Φ(S,X)(n) = Hom(S × · · · × S,X) ≃ Hom(S ∨ · · · ∨ S,X) ∼= Hom(S,X)n ∼= Φ(S,X)(1)n.14



The funtor Φ(S,−) : Sp → Γ Top∗, X 7→ Φ(S,X) is atually right adjoint to the funtor Γ Top∗ →

Sp,A 7→ A(S), so it implies thatProposition 2.3.8. ([Se2℄) The homotopy ategory of very speial Segal Γ-spaes is equivalent to thehomotopy ategory of onnetive spetra. �
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Chapter 3In�nite Symmetri Produts andSingular Homology
3.1 De�nitionThe in�nite symmetri produt was �rst studied by Dold and Thom in the 1950s [DoTh℄. It is the �rstexample that a homology theory an be desribed as the homotopy group of a funtor. It is also usedto onstrut the lassifying spaes for monoids, and to generalize the de�nition of Eilenberg-MaLanespaes of ertain type. Furthermore, the in�nite symmetri produt SP∞(X) of a topologial spae Xis a homotopially simpler spae whih re�ets the topologial properties of X , sine SP∞(X) has theproperty of being an abelian topologial monoid.We assume in this setion that all spaes are pointed, onneted and all maps are base-point preserving.De�nition 3.1.1. The n-th symmetri produt SPn(X) of a based spae X is the quotient Xn/Σn of
n-th artesian produt of X by the permutation ation of the symmetri group Σn on the oordinates.We denote the equivalene lass of (x1, · · · , xn) by [x1, · · · , xn]. Sometimes we use the formal sum notation
Σxi. Note that these xi are not neessarily distint. Then there is a natural inlusion by adding the basepoint ∗,

SPn(X) →֒ SPn+1(X), [x1, · · · , xn] 7→ [x1, · · · , xn, ∗].The union SP∞(X) =
⋃

SPn(X) with the weak topology is alled the in�nite symmetri produt of X .Remark 3.1.2. • The elements of SP∞(X) an be viewed as unordered tuples [x1, · · · , xn] inM for somen( repetition is allowed). There is a unique smaller n ≥ 0 with xi 6= ∗. We denote the base point [∗] = 0,represented by ∗ or 0.
• If X is a CW-omplex, one an give the CW-struture to Xn suh that eah σ ∈ Σn is either the identityon a ell or a homeomorphism of the ell onto some other ell. Hene the quotient spae SPn(X) has alsoa CW-struture. SPn−1(X) is a sub-omplex, and the olimit SP∞(X) is also a CW-omplex.17



• The juxtaposition of points Xn ×Xm → Xn+m indues a ommutative diagram
Xn ×Xm //

Σn×Σm

��

Xn+m

Σn+m

��
SPn(X)× SPm(X) // SPn+m(X)It follows that SP∞(X) is an abelian monoid with neutral element 0.

• A pointed map f : X → Y indues a map SP∞(f) : SP∞(X) → SP∞(Y ). This onstrution has thefollowing funtorial properties:1) SP∞(idX) = idSP∞(X) .2) Given f : X → Y and g : Y → Z,then SP∞(g ◦ f) = SP∞(g) ◦ SP∞(f).3) If f ≃ g, then SP∞(f) ≃ SP∞(g). In partiular if X is ontratible, so is SP∞(X).Example 3.1.3. (1) SP2(S1) ∼= Möbius band. By de�nition, SP2(S1) = (S1 × S1)/(x, y) ∼ (y, x), byutting and pasting along the retangle, we get the Möbius band.(2) SPn(S2) ∼= CPn.View S2 = C
⋃
{∞} as the Riemann sphere CP1. The element of CPn an be thought of as a homogeneouspolynomial of degree n by its oe�ients. So assume given [z1, · · · , zn] ∈ SP(S2) = SP(C

⋃
{∞}), thereexists a nonzero polynomial ∏1≤i≤n(z − zi), unique up to a nonzero omplex fator, of degree ≤ n whoseroots are preisely z1, · · · , zn. If the degree is k < n, then there are only k omplex roots and the remainingentries will be assigned the point at in�nity, we an view ∞ as a root of the polynomial. Consider theoe�ients of the polynomial as homogeneous oordinates on the omplex projetive spae CPn, we getthe homeomorphism by onstruting the inverse map diretly by

[a0 : a1 : · · · : an]→ [z1, · · · , zk,∞, · · · ,∞]where zi are the roots of anz
n + · · · a1z1 + a0. The map is well-de�ned and bijetive, hene a homeomor-phism. Thus we an regard SPn(S2) as the spae of nonzero polynomials∑n

i=0 aiz
i of degree ≤ n.(3) SPn(S1) ≃ S1 for all n ≥ 1.View S1 ≃ S2−{0,∞} = C∗ as the Riemann sphere puntured in its poles. Let H be the spae of nonzeropolynomials with nonzero roots. By looking at the oe�ients H is homeomorphi to Cn−1 × C∗ ≃ S1.Sine SPn(S1) ≃ SPn(C∗), and the map

SPn(C∗)→ H,
∑

zi 7→
∏

1≤i≤n

(z − zi) (3.1.1)is a homeomorphism, so it follows that SPn(S1) ≃ S1.
18



3.2 Dold-Thom Theorem and Dold-Puppe SplittingMost of the proofs in this setion are omitted sine they are either well-known or trivial. Good referenesfor muh of the materials are [AGP℄, [Ka1℄, [DoTh℄, [DoPu℄.The following theorem is a key point in showing that the funtor SP∞ indues a homology theory, sineit is a homotopy funtor onverting o�brations into quasi�brations.Theorem 3.2.1. (Dold-Thom) Suppose that X is a Hausdor� spae with a losed path-onneted sub-spae A and A→ X is a losed o�bration. Then the quotient map p : X → X/A indues a quasi�bration
p̂ : SP∞(X)→ SP∞(X/A) with the �ber homotopy equivalent to SP∞(A). �Corollary 3.2.2. For a pointed map f : X → Y , the o�bration sequene

X
f
−→ Y → Cf

ρ
−→ ΣXindues a quasi�bration ρ̂ : SP∞(Cf )→ SP∞(ΣX) with �bre ρ̂−1(x̄) ≃ SP∞(Y ). �Partiularly, from the o�bration sequene

X
id
−→ X →֒ CX → ΣXwe obtain the quasi�bration SP∞(CX)→ SP∞(ΣX) with �bre SP∞(X).Corollary 3.2.3. If X is Hausdor� and path-onneted, for every n ≥ 0, we have an isomorphism

πn+1(SP∞(ΣX)) ∼= πn(SP∞(X)). �Suppose that X is a onneted spae, the anonial inlusion i : X →֒ SP∞(X) indues the Hurewizhomomorphism π∗(X)→ H∗(X), it also indues thatTheorem 3.2.4. (Dold-Thom Theorem, [AGP], A.3.) π∗(SP∞(X)) ∼= H̃∗(X ; Z). �The following theorem shows that SP∞(X) is an generalized Eilenberg-Ma Lane spae.Theorem 3.2.5. (Dold-Thom [DoTh℄) For a onneted CW-omplex X , there is a homotopy equivalene
SP∞(X) ≃

∏

i

K(H̃i(X ; Z), i). (3.2.1)
�We are interested in the splitting property of symmetri produt. Denote the �ltration quotient by

Dn(X) := SPn(X)/ SPn−1(X) = X∧n/Σn,where X∧n = X ∧ · · · ∧X is the n-fold smash produt. The following Dold-Puppe splitting shows that
SP is a self-splitting funtor.Theorem 3.2.6. (Dold-Puppe splitting, [DoPu℄, setion 10) For a onneted spaeX , there ia a homotopyequivalene

SP∞(SP∞(X)) ≃ SP∞(

∞∨

n=1

Dn(X)). (3.2.2)
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Proof. For eah n and k, we �rst need to onstrut the map hn
k : SPn(X) → SP∞(Dk(X)). Given

ξ = [x1, · · · , xn], let I = j1, · · · , jk ⊂ n = {1, · · · , n} with ardinality ♯I = k. Let − : SPk(X)→ Dk(X)be the quotient map. So we an de�ne
hn

k (ξ) =
∑

I⊂n
♯I=k

xj1 · · ·xjk
. (3.2.3)And these maps make the following triangle ommutative

SPn+1(X)
hn+1

k

''OOOOOOOOOOO

SPn(X)
?�

in

OO

hn
k

// SP∞(Dk(X))where in : SPn(X) →֒ SPn+1(X) is the standard base point adjuntion. Thus they indue a map hn :

SPn(X) → SP∞(
∨n

k=1D
k(X)) =

∏n
k=1 SP(Dk(X)). By taking the olimit of all hn, we obtain the"power" map

h : SP∞(X)→ SP∞(
∞∨

k=1

Dk(X)).The natural inlusion X = SP1(X) →֒ SP∞(X) indues the inlusion ι : SP∞(X) →֒ SP∞(SP∞(X)).The extension h̄ of h is de�ned by h̄ : SP∞(SP∞X)→ SP∞(
∨∞

k=1D
k(X)), ξ1 · · · ξn 7→ h(ξ1) · · ·h(ξn).It is easy to hek that this map makes the triangle ommutative:

SP∞(SP∞(X))

h̄

))SSSSSSSSSSSSSS

SP∞(X)
?�

ι

OO

h
// SP∞(

∨
k≥1D

k(X)).Moreover, we laim that the following diagram is also ommutative:
SP∞(Dn(X)) SP∞(Dn(X))

SP∞(SPn(X))

OO

h̄n

// SP∞(
∨n

k=1D
k(X))

OO

SP∞(SPn−1(X))

OO

h̄n−1
// SP∞(

∨n−1
k=1 D

k(X))

OO

This is beause in the ase n = 1, SP1(X) = D1(X), so h̄1 = id : SP∞(SP1(X)) → SP∞(D1(X)). Forany ξ ∈ SPn(X) and also ξ ∈ SPn−1(X), h̄n(ξ) = h̄n−1(ξ) lies in the (n− 1)-th �ltration. So if we projetthem to the n-th �ltration quotient Dn(X), they are the base point. Therefore we only need to onsiderthe nontrivial ase. In this ase, given ξ1 · · · ξm ∈ SP∞(SPn(X)), then it means eah ξi ∈ SPn(X). So bythe onstrution of h̄n, we have to take all possible n subtuple of points out of an n-tuple. Then there isonly one hoie, namely eah ξi itself. Thus h̄n(ξ1 · · · ξm) = h(ξ1) · · ·h(ξm) = ξ1 · · · ξm, whih proves theommutativity of the top diagram. 20



Sine SPn−1(X) → SPn(X) → Dn(X) and ∨n−1
k=1 D

k(X) →
∨n

k=1D
k(X) → Dn(X) are o�brations, sotwo olumns are quasi-�brations. By indution and Five-lemma it follows that h̄ is a weak equivalene.

3.3 Generalized Symmetri ProdutThe symmetri produt onstrution is the �rst example whih gives rise to a homology theory. Now weare going to see other similar onstrutions whih also have this property.De�nition 3.3.1. For any abelian monoid G with identity 0, de�ne the generalized symmetri produton a onneted spae X with base point x0 to be the abelian topologial monoid with ∗ as base point,
SPG(X) :=

∐

n≥1

Gn ×Σn
Xn/(∼).We use the formal sum ∑

gixi to denote an element of SPG(X) with gi ∈ G, xi ∈ X . So ∼ is generatedby 0x = ∗, gx0 = ∗, gx+ g′x = (g + g′)x.It is easy to see that SPG(X) ∼= SP(G ∧X)/(∼), here the identi�ation ∼ is
(gi ∧ x) + (gj ∧ x) = (gi + gj) ∧ x, 0 ∧ x = ∗, g ∧ x0 = ∗.And it is a homotopy funtor in the �rst variable and a funtor of monoids and monoids of maps in theseond variable. It was MCord who �rst studied this onstrution [MC℄.Example 3.3.2. When G = N, then SP N(X) = SP∞(X). When G = Zn, we get the trunated symmetriprodut. It also an be represented by SP Zn(X) = SP∞(X)/(nx ∼ ∗). By [BCM℄, it is a funtor thatrepresents mod − n homology theory. In the next setion we mainly fous on this example.

SPG(−) is a homotopy funtor of pointed spaes, and onverts o�brations into �brations, we skip theproof here, it is similar as the proof for SP∞. Indeed for a o�bration sequene X →֒ Y
f
−→ Y/X , theextension SPG(Y )

f̂
−→ SPG(Y/X) is a homomorphism of groups with �bre f̂−1(∗) = SPG(X). Note thatfor the o�bration sequene X →֒ CX → ΣX , one an get an equivalene

Ω(SPG(ΣX)) ≃ SPG(X)given by h : SPG(X)→ Ω(SPG(ΣX)), h(Σgixi)(t) = Σgi[t ∧ xi]. This indiates SPG(ΣX) is a deloopingof SPG(X), or equivalently a lassifying spae of SPG(X). In partiular, one has SPG(S0) = G, thus
SPG(S1) ∼= B SPG(S0) = BG. It follows that SPG(Sn) ≃ K(G,n) for disrete abelian group G. Beausefor an abelian G, BG is also abelian, so SPG(Sn) ≃ BnG is an n-fold lassifying spae for G, hene anEilenberg-MaLane spae of type K(G,n).The above statement implies that π∗(SPG(−)) represents a redued homology theory h̃∗. When G isdisrete, this homology beomes ordinary in the sense that h̃n(S0) = 0, n > 0 and hene h̃∗ is in fat thesingular homology with oe�ients in h̃0(S

0) = G.
21



3.4 Splitting of SP ZnAssume given an element Σgixi ∈ SP Zn(X), we write Σg̃ixi to denote its redued representative suhthat g̃i ∈ {0, 1, · · · , n− 1}.De�ne the m-th �ltration of SP Zn(X) by
SP Zn(X)m :=

{ ∑r
i=1 gixi ∈ SP Zn(X)

∑r
i=1 g̃i ≤ m ∈ N

}
.and we regard the unique element of SP Zn(X)0 as the base point ∗. In fat this is an in�nite �ltration,sine the sum ∑r

i=1 g̃i an be greater than n.One sees immediately that SP Zn(X)m−1 ⊆ SP Zn(X)m, and we write
Dk SP Zn(X) := (SP Zn(X)m)/(SP Zn(X)m−1)as the �ltration quotient.De�nition 3.4.1. For n = pǫ1
1 · · · p

ǫr
r , the prime deomposition of n ∈ N. We de�ne
N =

{
p1 if r = 1, ǫ1 ≥ 1

1 else.as a funtion N = N(n) of n. Note that gcd(
(
n
1

)
, · · · ,

(
n

n−1

)
) = N .Here is a table of the �rst few numbers of N and the binomial oe�ients (n

k

).
n N0 0 01 1 1 12 1 2 1 23 1 3 3 1 34 1 4 6 4 1 25 1 5 10 10 5 1 56 1 6 15 20 15 6 1 17 1 7 21 35 35 21 7 1 78 1 8 28 56 70 56 28 8 1 29 1 9 36 84 126 126 84 36 9 1 310 1 10 45 120 210 252 210 120 45 10 1 1Theorem 3.4.2. There is a weak homotopy equivalene

SP ZN (SP Zn(X)) ≃ SP ZN (
∨

k≥1

Dk SP Zn(X)).In other words: The funtor B = SP ZN splits the funtor A = SP Zn. In partiular, SP Zp is a self-splitting if p is a prime.Note that SP Z1(X) is a point, thus this splitting is only of value if n = pǫ is a prime power (and thus
N = p).Proof. First for eah m, k ≥ 1, we onstrut a map

fm,k : SP Zn(X)m → SP ZN (Dk SP Zn(X))∑r
i=1 gixi 7→ 1 ·

∑
(
P

g̃i
k )(

∑
(∗) aixi).22



Where the sum Σ(∗)aixi mean all the formal sums Σiaixi suh that eah ai is not greater than the reduedrepresentative g̃i of gi, i.e. 0 < ai ≤ g̃i and Σai = k. Here (P g̃i

k

) gives the ardinality of all the possibilitiesof these ai's.All the fm,k together indues a map
f : SP Zn(X)→ SP ZN (

∞∨

k=1

Dk SP Zn(X))Now we are going to extend this map to a map f̄ as follows:
ξ
_

��

SP Zn(X)
f //

� _

��

SP ZN (
∨∞

k=1Dk SP Zn(X))

1 · ξ SP ZN (SP Zn(X))

f̄
44iiiiiiiii

f̄ :

r∑

i=1

gi · ξi 7−→
r∑

i=1

gi · f(ξi), where ξi ∈ SP Zn(X).This extension makes the above triangle ommutative. To show that f̄ is a homotopy equivalene, onsiderthe following ommutative diagram
SP ZN (Dm SP Zn(X))

f̃m

=
// SP ZN (Dm SP Zn(X))

SP ZN (SP Zn(X)m)

q∗

OO

f̄m // SP ZN (
∨m

k=1Dk SP Zn(X))

OO

SP ZN (SP Zn(X)m−1)

OO

f̄m−1 // SP ZN (
∨m−1

k=1 Dk SP Zn(X))

OO

where q∗ and f̃m are the indued maps of the quotients.We prove it by indution. For m = 1, we have SP Zn(X)1 = D1 SP Zn(X). So it implies that f̄1 = id :∑
gi(1 · xi) 7→

∑
gi(1 · xi).For the top arrow, we laim that f̃m = id. Beause for any ξ ∈ SP ZN (Dm SP Zn(X)) and in partiular if

ξ ∈ SP ZN (SP Zn(X)m−1), then f̄m(ξ) = f̄m−1(ξ) lies in the (m−1)-th �ltration. So if we projet them tothe m-th �ltration quotient Dm SP Zn(X), they are the base point. Therefore we only need to onsider thenontrivial ase, in whih ξ an be represented by ξ =
∑r

i=1 gi(
∑r′

j=1 g
′
ijxij) suh that ∑r′

j=1 g̃
′
ij = m. Bythe onstrution of f̄m, one need to �nd the oe�ients aij suh that the sum adds up exatly to m. Sine(P

g̃′
ij

m

)
=
(
m
m

)
= 1, so there is only one unique hoie of the equivalene lass, namely aij = g′ij , beauseotherwise all the other hoies would projet to the trivial element in Dm SP Zn(X). Hene f̃m = id.Moreover notie that the two sequenes

SP Zn(X)m−1 → SP Zn(X)m → Dm SP Zn(X),

m−1∨

k=1

Dk SP Zn(X)→
m∨

k=1

Dk SP Zn(X)→ Dm SP Zn(X)

23



are o�brations. Therefore, the vertial sequenes in the diagram are both quasi�brations. Passing to thehomotopy groups, we know that f̃m∗
is an isomorphism, so by indution and the Five-Lemma we get f̄m∗is an isomorphism, for all m. This proves the Theorem 3.4.2.Corollary 3.4.3.

H̃∗(K(Zn, ℓ); ZN ) ∼=
⊕

k≥1

H̃∗(DkK(Zn, ℓ); ZN ).

�Example 3.4.4. In the ase X = S1, n = 2 thus N = 2, the Corollary beomes
H̃∗(K(Z2, 1); Z2) ∼=

⊕

k≥1

H̃∗DkK(Z2, 1); Z2).In fat there is a diret way to see it:
LHS ∼= H̃∗(RP

∞; Z2) ∼= Z2 < u >, |u| = 1.On the RHS, we laim that Dk SP Z2(S
1) ∼= Sk, beause by identifying S1 ∼= I/(0 ∼ 1),

Dk SP Z2(S
1) = (SP Z2(S

1)k)/(SP Z2(S
1)k−1) ∼= ∆k/∂∆k−1 ∼= Sk.It implies that

RHS =
⊕

k≥1

H̃∗(DkK(Z2, 1); Z2) ∼=
⊕

k≥1

H̃∗(S
k; Z2) ∼=

⊕

k≥1

Z2 < uk >, |uk| = kThe funtor SP Z2 has been studied by [MiLö℄ and [BCM℄. In [BCM℄ they showed thatTheorem 3.4.5. ([BCM℄, Theorem 2.9.) Let Y be a loally �nite based CW-omplex, then there is anisomorphism
H∗(SP Z2(Y )n; Z2)) ∼=

⊕

r≤n

H∗(SP Z2(Y )r, SP Z2(Y )r−1; Z2).

�So if we take the olimit in both sides, we get the speial ase of Corollary 3.4.2. for n = 2, namely
H∗(SP Z2(Y ); Z2)) ∼=

⊕

r≥1

H∗(SP Z2(Y )r, SP Z2(Y )r−1; Z2).This �ltration quotient on the right hand side an be desribed as follows. For a ompat manifold Ywith base point ∗,
Dk SP Z2(Y ) = SP Z2(Y )k/ SP Z2(Y )k−1

∼= (Ck(Y, ∗)/Ck−1(Y, ∗))∞,the one-point ompati�ation of the �ltration quotient of the relative on�guration spae.And sine SP Z2 represents the mod -2 homology theory, there is a similar Dold-Thom theorem for
SP Z2.Theorem 3.4.6. ([BCM℄, Theorem 2.6.) If Y is a based, loally �nite CW-omplex, then

SP Z2(Y ) ≃
∏

i

K(H̃i(Y ; Z2), i).

�
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3.5 Splitting of SP ZNow we onsider the example SP Z(X), whih is the group ompletion of SP N(X). First note that anelement ξ = Σgi ·xi ∈ SP Z(X) an be written as ξ = Σg′i ·xi +Σg′′j ·xj , where g′i ≥ 0, g′′j < 0, and xi 6= xj .De�ne a double-�ltration SP Z(X)p,q by
SP Z(X)p,q =

{
Σg′i · xi + Σg′′j · xj ∈ SP Z(X) Σg′i ≤ p,Σ|g

′′
j | ≤ q, xi 6= xj

}
.Let the m-th �ltration of SP Z(X) be

SP Z(X)m :=
⋃

p+q≤m

SP Z(X)p,qand the double �ltration quotient be
Dp,q SP Z(X) := SP Z(X)p,q/(SP Z(X)p−1,q ∪ SP Z(X)p,q−1).So we have the m-th �ltration quotient

Dm SP Z(X) := SP Z(X)m/ SP Z(X)m−1
∼=

∨

p+q=m

Dp,q SP Z(X).Then in a similar way, we have a self-splitting of SP Z(X).Theorem 3.5.1. There is a weak homotopy equivalene
SP Z(SP Z(X)) ∼ SP Z(

∨

k≥1

Dk SP Z(X)).Proof. Similar as in Theorem 3.4.2., we �rst onstrut a map restriting to the m-th �ltration,
hm,k : SP Z(X)m −→ SP Z(Dk SP Z(X)) ∼=

∏

p+q=k

SP Z(Dp,q SP Z(X))

∑
g′i · xi +

∑
g′′j · xj 7−→ 1 ·

∑

ℓij

(
∑

(∗)

aixi +
∑

(∗∗)

ajxj)Here ℓij =
(
Σg′

i

p

)(
Σ|g′′

j |
q

). And Σ
(∗)

means the formal sum of all aixi suh that 0 < ai ≤ g′i and Σai = p.Also Σ
(∗∗)

means the formal sum of all ajxj suh that g′′j ≤ aj < 0 and Σ|aj | = q.All the hm,k together indues a map h : SP Z(X)→ SP Z(
∨∞

k=1Dk SP Z(X)).Then one an extend this map to h̄:
ξ
_

��

SP Z(X)
h //

� _

��

SP Z(
∨∞

k=1Dk SP Z(X))

1 · ξ SP Z(SP Z(X))

h̄

55jjjjjjjj

h̄ : Σizi · ξi 7−→ Σizi · h(ξi) = Σizi · (Σjtij · ζj) = ΣiΣj(zitij) · ζj ,25



where h(ξi) = Σjtij · ζj .And this extension gives us the following ommutative diagram
SP Z(Dm SP Z(X)) SP Z(Dm SP Z(X))

SP Z(SP Z(X)m)

OO

h̄m // SP Z(
∨m

k=1Dk SP Z(X))

OO

SP Z(SP Z(X)m−1)

OO

h̄m−1 // SP Z(
∨m−1

k=1 Dk SP Z(X))

OO

Again we prove by indution and the �ve-lemma, passing to the homotopy groups we get the requiredweak homotopy equivalenes.
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Chapter 4Con�guration Spaes and StableHomotopy Theory
4.1 Properties of Con�gurations and ExamplesDe�nition 4.1.1. The ordered on�guration spae of a spae M is C̃n(M) := {(x1, · · · , xn) ∈Mn|xi 6= xjfor i 6= j}. It is an open subspae of the artesian produt. The unordered on�guration spae Cn(M) :=

C̃n(M)/Σn is the quotient spae of C̃n(M) by the ation of the symmetri group Σn.Example 4.1.2. Here are some well known examples whih have some nie homotopy types (see forexample [Ka1℄, 3.1.1.).(1) C̃n(R1) ∼= C̃n(]0, 1[) ∼=
∐

n!

◦
∆n has n! ontratible omponent, one for eah permutation of Σn, i.e.eah σ ∈ Σn de�nes a omponent ontaining the on�guration (σ(1), · · · , σ(n)), and obviously Cn(R1) ≃ ∗.(2) The map C̃2(Rn) → Rn × (R \ {0}) : (x1, x2) 7→ (x1 + x2, x1 − x2) is a homeomorphism, hene

C̃2(Rn) ≃ Sn−1 and C2(Rn) ≃ RPn−1.(3) C̃3(Sn) an be identi�ed with the unit tangent bundle τSn of Sn. There is a deformation retrat of
C̃3(Sn) into the subspae onsisting of on�gurations (x1,−x1, x2) with x1 6= −x1 6= x2. Then one an�x x1, and projet x3 stereographially from x1 onto the tangent plane of −x1.(4) If G is a (Lie)-group, ating transitively on itself, then the map

C̃n(G)→ G× C̃n−1(G \ {1}) : (g1, · · · , gn) 7→ (g1, (g
−1
1 g2, · · · , g

−1
1 gn))is a homeomorphism, for example C̃n(Rm) ∼= Rm × C̃n−1(Rm \ {0}), and C̃n(S1) ∼= S1× C̃n−1(S1 \ {1}),thus C̃n(S1) has (n − 1)! ontratible omponents all of the form S1 × C̃n−1(]0, 1[), one also obtains

C̃3(R2) ≃ S1 × (S1 ∨ S1).(5) C2(RPn) = {(ℓ1, ℓ2)| distint lines in Rn+1}, there is a �bration of C2(RPn) into the Grassmanian
Gr2(R

n+1), namely the �bration
C2(RPn)→ Gr2(R

n+1) : (ℓ1, ℓ2) 7→ 〈ℓ1, ℓ2〉 = 2-plane spanned by ℓ1, ℓ227



with �bre homeomorphi to C2(RP 1) ≃ S1.4.2 Braid GroupsTheorem 4.2.1. (Fadell-Neuwirth Theorem) Let M be a onneted manifold of dimension at least 2,and let Qr = {x1, · · · , xr} be any set of r distint points of M . Then for r ≤ n, there are �brations
C̃n−r(M\Qr)→ C̃n(M)

π
−→ C̃r(M),where π is any oordinate projetion.Take M to be a onneted surfae, one an iterate this onstrution as follows:

C̃n(M)

��

C̃n−1(M\Q1)

��

oo C̃n−2(M\Q2)

��

oo · · ·oo C̃2(M\Qn−2)

��

oo M\Qn−1
oo

M M\Q1 M\Q2 M\Qn−2Then use the fat that πn(M\Qr) = 0, for n ≥ 2, r ≥ 1 (note if M 6= S2,RP 2, then πn(M\Qr) = 0, for
n ≥ 2, r ≥ 0) and that M\Qr has as fundamental group a free group F on r generators. It follows thatthe �bration M\Qn−1 → C̃n(M)→ C̃n−1(M) yields a short exat sequene

0→ F → PBrn(M) := π1(C̃
n(M))→ PBrn−1(M)→ 0and we have the following propositionProposition 4.2.2. If M is a surfae without boundary and 6= S2,RP 2, then C̃n(M) is an Eilenberg-MaLane spae of type K(π1C̃

n(M), 1). �Note when M = R2, Br(n) := π1C
n(R2) is the lassial Artin's braid group and PBr(n) := π1C̃

n(R2)the pure braid group.There is a natural �bration from ordered into unordered on�gurations,
Σn → C̃n(M)→ Cn(M)Now we fous on the ases M = Rn, whih derives the Barratt-Quillen-Priddy Theorem ([Ka1℄, Lemma3.23.).Lemma 4.2.3. For n ≥ 2, k ≥ 1, we have

π1(C
k(Rn)) =

{
Σk, n > 2

Br(k), n = 2where Br(k) is Artin's braid group on k-strings. In partiular,
Ck(R∞) = BΣk and Ck(R2) = B Br(k)28



Proof. Note that when n > 2, π1C̃
k(Rn) = 0 and more generally

πrC̃
k(Rn) = 0, r ≤ n− 2. (4.2.1)This is beause C̃k(Rn) is the omplement of the fat diagonal of odimension n in Rkn. Then one getsthat for n ≥ 3, C̃k(Rn) is a universal over of Ck(Rn) with fundamental group Σk. We have the shortexat sequene

0→ Σk → PBr(k)→ Br(k)→ 0where Σk ats by permuting the end points of strings. When n = ∞, it follows from (4.2.1) that
πrC̃

k(R∞) = 0, for all r, hene ontratible. Sine the permutation ation by Σk is free we thereforeobtain that Ck(R∞) is a model for BΣk and C̃k(R∞) = EΣk.4.3 Snaith Splitting and Stable Homotopy TheoryIn this setion we show that one an stably split the labeled on�guration spae C(M,M0;X) ([Bö1℄,[BCT℄).De�nition 4.3.1. Let M be a manifold with M0 a losed submanifold, X a spae with base point x0,the labeled on�guration spae of manifold M is
C(M,M0;X) =

∞∐

n=0

C̃n(M)×Σn
Xn/(∼)where ∼ is generated by

(z1, · · · , zn;x1, · · · , xn) = (z1, · · · , ẑi, · · · , zn;x1, · · · , x̂i, · · · , xn) if zi ∈M0, or xi = x0.There is a natural �ltration of C(M,M0;X) by the losed subspaes:
Cn(M,M0;X) :=

n∐

k=0

C̃k(M)×Σk
Xk/(∼)Denote the �ltration quotient by

Dn(M,M0;X) := Cn(M,M0;X)/Cn−1(M,M0;X)for example D0 = ∗, D1 = (M/M0)+ ∧X,Dn(R∞;X) = C̃n(R∞)+ ∧Σn
X∧n.In the aseM0 = ∅, X = Sn we have the following geometri desription of Dk(M ;X) ([BCT℄, 1.6., [Ka1℄).Consider the bundle projetion

τn : C̃k(M)×Σk
(Rnk)→ Ck(M)with �bre Rnk. By onstrution τn is the n-fold Whitney sum τ⊕n

1 . It turns out that Dk(M ;Sn) is theThom spae of the vetor bundle τn.By the Thom isomorphism,Corollary 4.3.2. If τn is an orientable vetor bundle, H̃i(Dk(M ;Sn); Z) ∼= H̃i−kn(Ck(M); Z); if τn isnot orientable, the isomorphism still holds by replaing the oe�ients to be Z/2. �29



Remark 4.3.3. This indiates one way to ompute the homology of lassial on�guration spae with
Z/2-oe�ients, that is

H̃i(C
k(M); Z/2) ∼= H̃i+kn(Dk(M ;Sn); Z/2).Theorem 4.3.4. ([Bö1℄, [MD℄) Let M be a smooth ompat manifold and let M0 and N be the smoothompat submanifolds of M with codimN = 0. If N/M0 ∩N or X is path-onneted, then

C(N,N ∩M0;X)→ C(M,M0;X)→ C(M,N ∪M0;X)is a quasi�bration. �Let M be an m-dimensional manifold and let W be an m-dimensional manifold without boundary whihontains M , e.g. W = M if M is losed, or W = M ∪ ∂M × [0, 1) if M has boundary. Let ξ be theprinipal O(m)-bundle of the tangent bundle of W . Let Γξ[SmX](B,B0) be the spae of ross setions of
ξ[SmX ] whih are de�ned on B and take values at ∞ ∧ X on B0 for eah subspae pair (B,B0) in W ,where ξ[SmX ] is the assoiated bundle and O(m) ats trivially on X and anonially on Sm ∼= Rm∪{∞},i.e.

E := ξ ×O(m) S
m ∧X →W.Example 4.3.5. Assume W is parallizable, i.e. TW ∼= W ×Rm, then ξ ∼= W ×O(m)⇒ E ∼= W ×ΣmX ,whih implies that

Γξ[SmX](W −M0,W −M) ∼= Map(W −M0,W −M ; ΣmX,∞).Proposition 4.3.6. ([BCT℄, 2.5.) LetM be a smooth ompat manifold and letM0 be a smooth ompatsubmanifold of M . If M/M0 or X is path-onneted, then there is a (weak) homotopy equivalene
C(M,M0;X)→ Γξ[SmX](W −M0,W −M).

�Remark 4.3.7. (1) By Proposition 4.3.4, there is a homotopy equivalene
C((M,M0; )× R

n;X) ≃ ΩnC(M,M0;S
nX)if M/M0 or X is path-onneted.(2) The interesting ases of Proposition 4.3.6 are:i) the m-fold loop spae of an m-fold suspension (take W = Rm, M = Dm, M0 = ∅, X path-onneted)([May℄):

C(Rm;X)
∼ //ΩmΣmXii) free loop spae of a suspension(take W = M = S1, M0 = ∅, X path-onneted) ([Bö1℄):

C(S1;X)
∼ //ΛΣXThe �rst example is alled May-Milgram Model ([Ka1℄, 3.6.1.), we an realize the map

αm : C(Rm;X)→ ΩmΣmX30



as follows: a point [v1, · · · , vn;x1, · · · , xn] ∈ C(Rm;X) determines a map
ϕ : Sm ∼= Rm ∪ {∞} → ΣmX = Dm/∂Dm ∧X

v 7→

{
T−1

vi
(v) ∧ xi, if v ∈ B1(vi)

∗, otherwisewhere B1(vi) ⊂ Rm denotes the ball of radius 1 entered at vi, and Tvi
: Dm → B1(vi) is the translation by

vi. Moreover ∗ ∈ Dm/∂Dm ∧X is the basepoint. One an hek that this map is well-de�ned and a weakhomotopy quivalene for path-onneted X . This example is speial and builds up other on�gurationspaes in a natural way.The �rst splitting result in the history was James unstable splitting [Ja℄ of ΩΣX using the James model
J(X), the free non-ommutative topologial monoid generated by X modulo its base point x0. Its element
(x1, x2, · · · , xn) are �nite sequenes of points in X with possible repetitions, 1 := ∗ = base point of X andorder matters; the topology on J(X) is indued by the topology on X, and one an regard it equivalentlyas a quotient spae of artesian produt of X , namely

J(X) =
∐

n≥1

Xn/ ∼,

(x1, · · · , xi−1, x̂i, xi+1, · · · , xn) ∼ (x1, · · · , xi−1, ∗, xi+1, · · · , xn).It was known that the James model J(X)→ ΩΣX is atually a weak homotopy equivalene, and Puppe[Pu℄ showed that under ertain onditions on X, they are genuinely homotopy equivalent. There is anintermediate spae C(R;X) between them making the diagram homotopy ommutative,
x1x2 · · ·xn

� ℓ // ωx1 ∗ · · · ∗ ωxn J(X)
ℓ

≃
// ΩΣX

ξ =
∑

t1<···<tn
tixi

_

OO

C(R;X)

≃ π

OO

γ

::uuuuuuuuuuHere ωxi
: I → ΣX, t 7→ [t, xi]. The homotopy inverse of π is x1x2 · · ·xn 7→

∑n
i=1 ixi. And γ(ξ) =

ω
′

x1
∗ · · · ∗ ω

′

xn
, where ω′

xi
is de�ned by

ωxi
: S1 ∼= R ∪ {∞} → ΣX

t 7→

{
t−ti

ǫ
∧ xi, if t ∈ Bǫ(ti),

∗, otherwise.Here ǫ := mini{
ti−ti−1

2 }, and Bǫ(ti) is the ball of radius ǫ entered at ti, 1 ≤ i ≤ n.I. James [Ja℄ proved that there is an unstable splitting of this spae, known as James splitting (see also[Mil℄),
ΣJ(X) ≃ ΣΩΣX ≃ Σ

∞∨

k=1

X∧k. (4.3.1)Theorem 4.3.8. (Snaith-splitting, [Sn℄, [Bö1℄) There is a stable homotopy equivalene for any pair
(M,M0) and X ,

C(M,M0;X)
∼s−−→

∨

k≥1

Dk(M,M0;X)
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This theorem an be reformulated in the following equivalent statements:Proposition 4.3.9. The following are equivalent:(i) the suspension spetra are stably equivalent, i.e.
Σ∞C(M,M0;X) ≃ Σ∞

∨

k≥1

Dk(M,M0;X).(ii) the in�nite loop spaes are homotopy equivalent, i.e.
Ω∞Σ∞C(M,M0;X) ≃ Ω∞Σ∞

∨

k≥1

Dk(M,M0;X).(iii)
C(R∞;C(M,M0;X)) ≃ C(R∞;

∨

k≥1

Dk(M,M0;X)).In the ase M = R∞,M0 = ∅, reall that C(R∞;X) ≃ Ω∞Σ∞X , hene we obtainCorollary 4.3.10. The on�guration funtor is self-splitting, namely
C(R∞;C(R∞;X)) ≃ C(R∞;

∨

k≥1

Dk(R∞;X)).Or equivalently,
QQ(X) ≃ Q(

∨

k≥1

Dk(R∞;X)).Therefore simultaneously we have,
πstab

q QX ∼=
⊕

k≥1

πstab
q (Dk(R∞;X)).Before proving the Snaith splitting Theorem 4.3.8., we introdue a notion of �ag on�guration spae.De�nition 4.3.11. The �ag on�guration spae is

Cn,k(M) = {(ξ, ξ′) ∈ Cn(M)× Ck(M))|ξ′ ⊆ ξ}.Proof. We demonstrate here an elegant proof, whih is known to speialists of on�guration spaes ([Ka1℄,Theorem 3.74., [Bö1℄).Let ξ = Σzixi ∈ Cn(M,M0;X) be a labeled on�guration, denote by ξ̄ its image in Dk(M,M0;X). Wedivide the proof into several steps.First step: We de�ne a "power" map h as follows:
h : C(M,M0;X)→ C(R∞;

∨

k

Dk(M,M0;X))Set I = {1, · · · , n}, and for eah subset J ⊆ I with ♯(J) = k, we let ξJ =
∑

i∈J zixi ∈ Ck(M,M0;X) bethe orresponding subterms, and ξ̄J its image under the omposition
Ck(M,M0;X)→ Dk(M,M0;X)→

∨

k

Dk(M,M0;X).
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Note that the �ag on�guration spae is an (n
k

)-fold overing spae of Cn(M), namely Cn,k(M)→ Cn(M) :

(ζ, ζ′)→ ζ.We write ζ := (z1, · · · , zn). Choosing J means to pik a ζJ := {zi|i ∈ J ⊂ I} ∈ Ck(M), then (ζ, ζJ ) ∈

Cn,k(M). By summing over all subsets J ⊂ I, we onstrut a map
C(M,M0;X)→ C(

∐

k

Ck(M);
∨

k

Dk(M,M0;X)).Seond step: Sine for eah k ≥ 0, Ck(M) is a �nite dimensional manifold, ∐k C
k(M) an be embeddedinto R∞. Pik any embedding e :

∐
k C

k(M) →֒ R∞. We obtain a map by ompositions
hn : Cn(M,M0;X) // C(R∞;

∨
k Dk(M,M0;X))

ξ =
∑

i∈I zixi
� //

∑
k

∑
J⊂I

♯(J)=k

(e(ζJ ); ξ̄J ).Note that the following diagram is ommutative
Cn(M,M0;X)

hn // C(R∞;
∨n

k=1Dk(M,M0;X))

Cn−1(M,M0;X)
hn−1 //

� ?

ι

OO

C(R∞;
∨n−1

k=1 Dk(M,M0;X))

OO

where ι(ξ) has one partile zn ∈M0 or xn = x0. Now for J ⊂ I = {1, · · · , n} with ♯(J) = k there are onlytwo possibilities:(i) n /∈ J =⇒ then ek(ζJ ) and ξ̄J agree on level n−1 and level n(here ek is the restrition of e on Ck(M)).(ii) n ∈ J =⇒ the ξ̄J is the base point in Dk(M,M0;X) ⊂
∨

k Dk(M,M0;X).Thus we get the map
h : C(M,M0;X)→ C(R∞;

∨

k

Dk(M,M0;X)).This map is well-de�ned (disjointness, equivariane and base point onditions are preserved).Third step: extend this map to h̄,
a ∈_

��

C(M,M0;X))
h //

��

C(R∞;
∨

k Dk(M,M0;X))

(0; a) ∈ C(R∞;C(M,M0;X))

h̄

44iiiiiiiiiGiven (z1, · · · , zn; a1, · · · , an) ∈ C(R∞;C(M,M0;X)), we write
h(a1) = (z11, · · · , z1ℓ1 ; b11, · · · , b1ℓ1),...
h(an) = (zn1, · · · , znℓn

; bn1, · · · , bnℓn
),33



then we de�ne
h̄(
∑
ziai) = ((z11, z1), · · · , (z1ℓ1 , z1), · · · , (zn1, zn), · · · , (znℓn

, zn);

b11, · · · , b1ℓ1 , · · · , bn1, · · · , bnℓn
)One remark is that here one uses (zik, zi) ∈ R∞ × {zi} ⊆ R∞ × R∞ ∼= R∞.Fourth step: We will show that h̄ is a weak homotopy equivalene, Prove it by indution, to this end, weonsider the ommutative square for eah n,

C(R∞;Dn(M,M0;X))
h̃n // C(R∞;Dn(M,M0;X))

C(R∞;Cn(M,M0;X))

OO

h̄n // C(R∞;
∨n

k=1Dk(M,M0;X))

OO

C(R∞;Cn−1(M,M0;X))

OO

h̄n−1 // C(R∞;
∨n−1

k=1 Dk(M,M0;X))

OO

where h̄n is just the restrition of h̄ on Cn(M,M0;X).Sine for n = 1, C1(M,M0;X) = D1(M,M0;X) = (M/M0)+ ∧X , e1 : M = C1(M) →֒ R∞, we have that
C1(M,M0;X) → C(R∞;D1(M,M0;X))

ξ = (m;x) 7→ (e1(m); ξ).

· · · // πp−1C(R∞;Dn)

h̃n∗

��

// πpC(R∞;Cn−1) //

h̄n−1∗

��

πpC(R∞;Cn) //

h̄n∗

��

πpC(R∞;Dn) //

h̃n∗

��

· · ·

· · · // πp−1C(R∞;Dn) // πpC(R∞;
∨n−1

Dk) // πpC(R∞;
∨n

Dk) // πpC(R∞;Dn) // · · ·It follows that h̄1 ≃ id. Also on the top arrow, a similar omputation shows that h̃n ≃ id, for eah n.Then a theorem of Bödigheimer [Bö1℄ says that C has the property onverting the o�brations to quasi-�brations, and sine
C(R∞;Cn−1)→ C(R∞;Cn)→ C(R∞;Dn)

C(R∞;
∨

1≤k≤n−1

Dk)→ C(R∞;
∨

1≤k≤n

Dk)→ C(R∞;Dn)are o�brations, we obtain the long exat sequenesFor brevity, we omit (M,M0;X) in the notation of this diagram.By the indution and 5-lemma, it follows that h̄ is a weak homotopy equivalene, whih �nishes the proof.We remark in the end that the splitting funtor for the on�guration spae C(R∞;X) is not unique. Thein�nite symmetri produt SP∞ is also a splitting funtor for C. Its proof is left to the reader. Moreover,34



we have a ommutative diagrams of these two splittings
C(R∞;C(R∞;X))

≃ //

hur

��

C(R∞;
∨

k Dk(R∞;X))

hur

��
SP∞(C(R∞;X))

≃ // SP∞(
∨

k Dk(R∞;X))given by the Hurewiz map:
hur : (z1, · · · , zn; ξ1, · · · , ξn) 7→ ξ1 · · · ξn.We all it so beause the indued map in homotopy groups is the Hurewiz homomorphism

hur∗ : πstab
∗ C(R∞;X)→ H∗(C(R∞;X); Z).4.4 Γ-spaes arising from C̃(R∞)Denote

C(1) :=
∐

n≥0

C̃n(R∞) = C̃(R∞).It has a partial monoid struture: all ξ, ξ′ ∈ C(1) omposable, if they are disjoint, then delare thedisjoint union ξ ⊔ ξ′ to be their "omposition".De�ne
C(k) :=

{
(ξ1, · · · , ξk) ∈ C(1)k ξi ∩ ξj = ∅ in R∞ for i 6= j

}
.We have a omposition

⊔ : C(k) → C(1)

(ξ1, · · · , ξk) 7→ ξ = ξ1 ⊔ · · · ⊔ ξk.Note that this ⊔ is assoiative, and the unique point ∅ ∈ C(0) = C̃(R∞)0 is the neutral element.A map α : m→ n in Γ indues a map
α∗ : C(m) → C(n)

(ξ1, · · · , ξm) 7→ (⊔j∈α−1(1)ξj , · · · ,⊔j∈α−1(n)ξj).We laim that the natural inlusion pk : C(k) →֒ C(1)k is a homotopy equivalene by using the followingtrik: endow R∞ with the weak topology, then we have a homeomorphism
h : R∞ × R → R∞

((x1, · · · , xn, · · · ), y) 7→ (y, x1, x2, · · · ).Also for i = ±1 there is a homeomorphism R∞ → R∞×{i}, (x1, · · · , xn, · · · ) 7→ (i, x1, · · · , xn, · · · ). Theyindue a homeomorphism C̃(R∞) ∼= C̃(R∞×{i}). Given an arbitrary on�guration ξ ∈ C̃(R∞), we denoteits image under this homeomorphism by ξi. 35



It su�es to look at the p2:
(ξ, ξ′) ∈

_

��

C̃(R∞)× C̃(R∞) = C(1)2

∼=

��
(ξ−1, ξ

′
+1) ∈_

��

C̃(R∞ × {−1})× C̃(R∞ × {+1})

��

⊂ C̃(R∞ × R)2

h∗×h∗

��
(h(ξ−1), h(ξ

′
+1)) ∈ C(2) ⊂ C̃(R∞)2One an show that this ompostion is homotopy inverse to the inlusion, whih implies that the funtor

C is a Γ-spae. To ompare its extension
C(Y ) := (

∐

k

C(k)× Y k)/ ∼with the original on�guration spae
C(R∞;Y ) = (

∐

k

C̃k(R∞)×Σk
Y k)/ ∼,one an see diretly that C(Y ) is just a reformulation of C(R∞;Y ). Namely in the seond ase, itselements are distint points x1, · · · , xn in R∞ with labels y1, · · · , yn in Y . And in C(Y ) its elements arepoints y1, · · · , ym in Y with on�gurations ξ1, · · · , ξm in C(m) as oe�ients of eah yi. The natural�ltration of C(R∞, Y ) gives rise to a �ltration of C(Y ). Namely, denote by |ξi| the sum of ardinalitiesof all the on�gurations represented by ξi, and de�ne

Cn(k) :=
{

(ξ1, · · · , ξk) ∈ C(k)
∑

i |ξi| ≤ n
}
.The �ltration

Cn(Y ) :=
∐

k

Cn(k)× Y k/(∼)orresponds to
Cn(R∞;Y ) =

∐

k≤n

C̃k(R∞)×Σk
Y k/(∼).Remark 4.4.1. For an arbitrary manifold M , the on�guration funtor C(M × R∞;−) is a Γ-spae aswell, the proof is similar.
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Chapter 5Grassmannians and ConnetiveK-TheoryIn this hapter following an idea of G. Segal [Se3℄ we introdue a Γ-spae K, built out of Grassmannians,and use it to model onnetive KO-theory. We then exhibit a funtor B whih splits K in the sense of theintrodution (1.0.9). This funtor B relates to the work of [GMTW℄ and [RW℄ and represents the in�niteloop spae of the Thom spetrum MO. Whereas in previous hapters we have split spaes with disretelabels, the main novelty here is that the splitting "spae" is not a �nite disrete set but a topologialspae. We will have a spae of hoies of the splitting "spae".5.1 Connetive K-Homology TheoryLetGrk(R∞) = colimn Grk(Rn) denote the Grassmannian of k-planes in R∞ andGr(R∞) =
∐

k≥0 Grk(R∞)the disjoint union of all these Grassmannians. This is a partial abelian monoid under diret sum.De�ne a funtor K : Γ→ Top∗ as follows:
K(0) = ∗,
K(1) = Gr(R∞), and in general
K(n) =

{
(V1, · · · , Vn) ∈ K(1)n Vi ⊥ Vj , if i 6= j

}
.Lemma 5.1.1. K is a Segal Γ-spae.Proof. We need to show that the inlusion K(n) →֒ K(1)n is a homotopy equivalene. We prove this for

n = 2. Let an arbitrary (V1, V2) ∈ K(1)×K(1) be given. For eah i = 1, 2, let pi be the omposite
pi : Vi →֒ R

∞ ιi→ R
∞ × R

∞ τ
→ R

∞.where ιi : R∞ → R∞ × R∞ is the inlusion into the i-th fator. And τ is de�ned by
τ : R

∞ × R
∞ → R

∞, ((x1, x2, · · · ), (y1, y2, · · · )) 7→ (x1, y1, x2, y2, · · · ). (5.1.1)37



Obviously p1(V1) ⊥ p2(V2) beause their inner produt is 0. So we obtain a map
µ : K(1)×K(1)→ K(2), (V1, V2) 7→ (p1(V1), p2(V2)).

µ is a homotopy inverse to the inlusion. To see this, we are going to onstrut a homotopy rotating p1(V1)ontinuously into V1. In order to get the general formula, we �rst show what we do at time t ∈ [0, 1
2 ].Denote an arbitrary element of R∞ by (x1, x2, x3, · · · ). We de�ne a rotation map ρ2,3 : R∞× [0, 1

2 ]→ R∞whih exhanges x2, x3 and keeps the other vetors �xed.
ρ2,3((x1, x2, x3, · · · ), t) = (x1, x2 cos(

π

2
·2t)+x3 sin(

π

2
·2t), x2 cos(

π

2
·2(

1

2
− t))+x3 sin(

π

2
·2(

1

2
− t)), x4, . . . )At time t ∈ [12 ,

3
4 ], we an apply ρ3,5 (resp. ρ2,4) to exhange x3 and x5 (resp. x2 and x4). So a generalformula for the i-th step ρi+1,2i+1 : R∞ × [1− 1

2i−1 , 1−
1
2i ]→ R∞ will be

ρi+1,2i+1((· · · , xi+1, · · · , x2i+1, · · · ), t) = (· · · , xi+1 cos(
π

2
· 2i(t− 1 +

1

2i−1
))+

x2i+1 sin(
π

2
· 2i(t− 1 +

1

2i−1
)), · · · , xi+1 cos(

π

2
· 2i(1−

1

2i
− t)) + x2i+1 sin(

π

2
· 2i(1−

1

2i
− t)), · · · ).(5.1.2)The omposition of all the ρi+1,2i+1's de�nes a ontinuous homotopy

ρodd : R
∞ × I → R

∞, ((x1, x2, x3, · · · ), t) 7→ ρi+1,2i+1((x1, x2, x3, · · · ), t) for t ∈ [1−
1

2i−1
, 1−

1

2i
] (5.1.3)whih moves all the odd-indexed vetors forwards. One needs to do in�nite many rotations in this proess,but sine all the vetor spaes are of �nite dimensions, so for i big enough, xi+1 = x2i+1 = 0. Therefore

ρi+1,2i+1 = id, as i ≫ 0. In partiular, after �nitely many rotations, p1(V1) is mapped into V1. One ande�ne a similar funtion ρi,2i to exhanges xi and x2i at eah step and �x other vetors, therefore p2(V2)is sent to V2. So this proves that K is a Γ-spae.Let X be well pointed in the sense that the inlusion from the base point x0 →֒ X is a o�bration. Theextended Γ-spae K has the following form:
K(X) = (

∐

n≥0

K(n)×Σn
Xn)/ ∼where

(V1, · · · , Vi, · · · , Vn;x1, · · · , xi, · · · , xn) ∼ (V1, · · · , V̂i, · · · , Vn;x1, · · · , x̂i, · · · , xn), if xi = x0;and
(· · · , Vi, · · · , Vj , · · · ; · · · , xi, · · · , xj , · · · ) ∼ (· · · , Vi ⊕ Vj , · · · , V̂j , · · · ; · · · , xi, · · · , x̂j , · · · ), if xi = xj .As usual, we write an equivalene lass ξ = [V1, · · · , Vr;x1, · · · , xr] ∈ K(X) as ξ = ΣiVixi.Segal ([Se3℄) desribed this model and proved that the funtorK onverts o�brations into quasi�brations.In the ase X = S0,

K(S0) =
∐

m≥0

BO(m) =
∐

m

Grm(R∞) = Gr(R∞).
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De�ne the m-th �ltration of K(X) to be
Km(X) =

{
ΣiVixi ∈ K(X) Σ dimVi ≤ m

}
.We now assume given ξ = [V1, · · · , Vr;x1, · · · , xr] ∈ Km−1(X) with ∑r

i=1 dimVi = ℓ ≤ m− 1. There is anatural inlusion
ιm−1 : Km−1(X)→ Km(X), ξ 7→ ξ + (Vr+1, x0)with some Vr+1 suh that Vr+1 is the orthogonal omplement of V1 ⊕ · · · ⊕ Vr in Rm̄, where m̄ is thesmallest k with V1 ⊕ · · · ⊕ Vr ⊂ Rk.De�ne Km(n) := {(V1, · · · , Vn) ∈ K(n)|

∑
i dimVi ≤ m}.Lemma 5.1.2. Let X be well pointed, then ιm−1 : Km−1(X)→ Km(X) is a o�bration.Proof. Let σq the natural inlusion

σq : Xn−1 → Xn : (x1, · · · , xn−1) 7→ (x1, · · · , xq−1, x0, xq, · · · , xn−1).So we have a push out diagrams with σXn−1 = ∪n−1
q=0σqX

n−1:
Km(n)×Σn

σXn−1 //
_�

��

Km−1(X) =
∐

nKm−1(n)×Σn
Xn/ ∼

��
Km(n)×Σn

Xn // Km(X) =
∐

nKm(n)×Σn
Xn/ ∼Sine X is well pointed and the left inlusion in this diagram is a o�bration, so is the right map, beausepush out preserves o�brations.Remark 5.1.3. There is a natural map

K(X)→ SP∞(X) : ΣVixi 7→ Σ(dimVi)xi. (5.1.4)It indues the Hurewiz map π∗K(X)→ π∗ SP∞(X).A theorem of Segal asserts thatTheorem 5.1.4. ([Se3℄) If X is onneted, then π∗(K(X)) ∼= k̃o∗(X). �Here ko∗ is the onnetive K-homology theory assoiated to periodi real K-theory KO∗. The following isa table of the Ω-spetrum KO, where BO,BSp are the lassifying spaes of the orthogonal group O andthe sympleti group Sp. KO ful�lls Bott periodiity: KOn = KOn+8.
q mod 8 0 1 2 3 4 5 6 7

KOq BO×Z Ω3 BSp Ω2 BSp Ω BSp BSp×Z Ω3 BO Ω2 BO Ω BOBy de�nition,
K̃O

0
(X) = [X,BO×Z] ∼= K̃O(X),

KO−q(X) = KO(ΣqX) = [ΣqX,KO0] = [X,Ωq KO0] = [X,KO−q].39



The spetrum ko is onnetive means there is a natural transformation ko∗ → KO∗ suh that koq(pt)→

KOq(pt) is an isomorphism for q ≥ 0, and koq(X) = 0 for all X when q < 0. More preisely, the q-thspae in the spetrum ko is the following
koq =

{
KOq q ≤ 0;

KOq < q > q > 0.

KOq < q > is the (q − 1)-fold onnetive over of KOq, that is
πi(KOq < q >) =

{
0 i < q;

πi(KOq) i ≥ q.However KO∗ is fully determined by ko∗ beause KO∗(X) is the diret limit of the sequene koq(X) →

koq+8(X)→ koq+16(X)→ · · · , here the maps are Bott periodiity. In the ase X = pt, we have
// koq(pt) //

q<0

koq+8(pt) //

∼= q+8≥0

koq+16(pt) //

∼=

��

· · ·

0 // 0 // KOq+8(pt)
∼= // KOq+16(pt) // · · ·Let X be a onneted spae, we reall how to get the onnetive over of X via the Postnikov towers.Denote Ks = K(πs(X), s), we have a tower of the form

X

f1

��

X2
oo

f2

��

X3
oo

f3

��

X4
oo

f4

��

· · ·oo

K1 K2 K3 K4

fs is a map induing an isomorphism in the bottom homotopy group. Xs+1 is the �ber of fs, and Xs+1is the s-th onnetive over of X .Take BO for example. We have two overings Z/2 → SO → O and Z/2 → Spin → SO. Note that
π1(SO(k)) = Z/2, k ≥ 3 and Spin(k) is simply onneted for k ≥ 3. So Spin is the universal overof SO, whih implies that B Spin is the 2-onnetive over of B SO. We an identify B Spin with thetotal spae of the �bration over B SO indued from the path-loop �bration over K(Z/2, 2) via the map
f : B SO→ K(Z/2, 2) realizing ω2 ∈ H2(B SO; Z/2), the seond Stiefel-Whitney lass.

K(Z/2, 1)
≃ //

��

ΩK(Z/2, 2)

��
B Spin //

π

��

PK(Z/2, 2)

��
B SO

f // K(Z/2, 2)We obtain an interesting tower of �brations
BO

��

B SO = BO < 2 >oo

f

��

B Spin = BO < 4 >oo

f ′

��

BO < 8 >oo

K(Z/2, 1) = RP∞ K(Z/2, 2) K(Z, 4)40



Here f ′ realizes p1 ∈ H4(B Spin; Z), the �rst Pontrjagin lass.This tower haraterizes di�erent group strutures (O, SO, Spin) on manifolds, hene it gives a orrespond-ing Thom spetra MO < 8 >→ MSpin→ MSO→ MO.The signi�ane of Theorem 5.1.4. and the desription of ko in terms of labeled on�gurations is that ityields an obvious Hurewiz homomorphism between onnetive K-theory and singular homology theoryby the map (5.1.1). Passing to homotopy groups of this map yields a map
k̃o∗(X)→ H̃∗(X ; Z).5.2 The Sheaf of Parameterized Embeddings5.2.1 Topology on the Sheaf Bd(−; Y )The �avor of the topology de�ned here is due to Galatius [Ga℄ and Randal-Williams [RW℄ presented inthe ases of graphs and manifolds with tangential strutures. We applied their ideas and generalized it tothe ase of manifolds with labels.Let M be an n-dimensional manifold (possibly with boundary), and Y a onneted spae with base point

∗. We de�ne a lass Fd of manifolds F whih are smooth d-dimensional manifolds without boundary(not neessarily ompat or onneted). Note that the dimension n is arbitrarily large and n ≫ d. Let
Emb(F,M) be the spae of all smooth embeddings ǫ : F →֒M of a manifold F ∈ Fd into M with losedimage in M . And ǫ(F ) needs to be disjoint from ∂M if ∂M 6= ∅.We then de�ne a sheaf of sets of equivalene lasses on M by setting for any open U ⊆M ,

Bd(U ;Y ) := (
∐

F∈Fd

Emb(F,U)×Diff(F ) Map(F, Y ))/ ∼ (5.2.1)Denote at moment elements of Bd(U ;Y ) by (ǫ, F, ϕ) with ǫ : F →֒ U an embedding and ϕ : F → Yontinuous. We say (ǫ, F, ϕ) is equivalent to (ǫ′, F ′, ϕ′), if F = F ′ ⊔ F ′′, ϕ(F ′′) = ∗ and there is aommutative diagram:
U F?

_ǫoo ϕ // Y

U F ′? _
ǫ′oo ϕ′

//?�

OO

YDenote by ξ = [ǫ, F, ϕ] the equivalene lass of (ǫ, F, ϕ).Let V ⊆ U be open subsets of M . There exists a restrition map rest : Bd(U ;Y ) → Bd(V ;Y ) that weshall explain later in Lemma 5.2.8.. We wish to assign a topology to the sheaf making these restritionmaps ontinuous. Throughout this setion we will use dashed arrows for partially de�ned maps. That is,the notation f : X 99K Y means that f is a funtion f : U → Y for some subset U ⊆ X . The followingnotion of morphisms between elements of Bd(U ;Y ) is important for de�ning the topology on Bd(U ;Y ).41



De�nition 5.2.1. For ξ = [ǫ, F, ϕ], ξ′ = [ǫ′, F ′, ϕ′] ∈ Bd(U ;Y ), a morphism is a triple
λ = (L,L′, D) : ξ 99K ξ′where

(i) L ⊆ F is an open subset that is the interior of its ompat losure L̄ in F , where F is the minimalrepresentative, i.e. no omponent has the onstant trivial label. And L′ similarly for F ′.
(ii) D : L →֒ L′ is a smooth embedding.De�nition 5.2.2. Given a ξ = [ǫ, F, ϕ], we say a quintuple α = (K,L,W,N,Q) is ξ-allowable if
(i) K is a ompat subset of U .
(ii) L ⊂ F is as above, ǫ(F ) ∩K ⊆ ǫ(L).
(iii) W ⊆ Emb(L,U) is a neighborhood of ǫ|L in the strong C∞-topology.
(iv) N ⊆ Map(L, Y ) is a neighborhood of ϕ|L in the ompat-open topology.
(v) Q ⊂ Y is a neighborhood of the base point ∗.De�nition 5.2.3. For a ξ-allowable quintuple α, we say a morphism λ = (L,L′, D) is α-small if
(i) ǫ′(F ′) ∩K ⊆ ǫ′(L′).
(ii) L

� � D //L′ � � ǫ′|L′ //U is in W .
(iii) L

D
→֒ L′ ϕ′|L′

−→ Y is in N .
(iv) ϕ′(L′\D(L)) ⊆ Q.De�nition 5.2.4. Given a ξ-allowable α, de�ne a subset Nα(ξ) ⊆ Bd(U ;Y ) by

Nα(ξ) :=
{
ξ′ = [ǫ′, F ′, ϕ′] ∈ Bd(U ;Y ) there exists an α− small morphism λ : ξ 99K ξ′

}
.We use the olletion

N (ξ) :=
{
Nα(ξ) α is ξ − allowable }to generate the topology of Bd(U ;Y ).Lemma 5.2.5. For a �xed ξ = [ǫ, F, ϕ], the olletion N (ξ) forms a neighborhood basis at ξ.Proof. We shall show the 3 axioms a neighborhood basis needs to satisfy.1) Note that ξ ∈ Nα(ξ) beause (L,L, id) is α-small for all α.2) For any α = (K,L,W,N,Q) and β = (K̃, L̃, W̃ , Ñ , Q̃), letN ′ = {(ϕ′ : L′ → Y ) ∈ N∩Ñ | ϕ′(L′\D(L)) ⊆

Q∩ Q̃} and Ñ ′ = {(ϕ′ : L′ → Y ) ∈ N ∩ Ñ | ϕ′(L′\D(L)) ⊆ Q∩ Q̃}. Write γ = (K ∪ K̃, L∪ L̃,W ∩W̃ ,N ′∩

Ñ ′, Q ∩ Q̃). We laim that Nγ(ξ) ⊆ Nα(ξ) ∩ Nβ(ξ). Assume given any ξ′ = [ǫ′, F ′, ϕ′] ∈ Nγ(ξ), in otherwords (L ∩ L̃, L′, D) : ξ 99K ξ′ is γ-small. That is, ǫ′(F ′) ∩ (K ∪ K̃) ⊆ ǫ′(L′), L ∪ L̃ D
→֒ L′ ǫ′

−→ U is in
W ∩W̃ , L∪ L̃ D

→֒ L′ ϕ′

−→ Y is in N ′∩ Ñ ′, ϕ′(L′\D(L∪ L̃)) ⊆ Q∩ Q̃. So it implies that ǫ′(F ′)∩K ⊆ ǫ′(L′),
L →֒ L ∪ L̃

D
→֒ L′ ǫ′

−→ U is in W . L →֒ L ∪ L̃
D
→֒ L′ ϕ′

−→ Y is in N ′, ϕ′(L′\D(L)) ⊆ Q, thus ξ′ ∈ Nα(ξ).Similarly we an show ξ′ ∈ Nβ(ξ). So Nγ(ξ) ⊆ Nα(ξ) ∩ Nβ(ξ).42



3) Let ξ′ ∈ Nα(ξ). Then this onsists of the following data: D : L →֒ L′ is an embedding, ǫ(F ) ∩K ⊆

ǫ(L), ǫ′(F ′) ∩K ⊆ ǫ′(L′), ϕ′(L′\D(L)) ⊆ Q. So D indues a ontinuous map
D∗ : Emb(L′, U)×Map(L′, Y ) → Emb(L,U)×Map(L, Y )

(L′ ǫ′|L′

→֒ U,L′ ϕ′|L′

−→ Y ) 7→ (L
D
→֒ L′ ǫ′|L′

→֒ U,L
D
→֒ L′ ϕ′|L′

−→ Y ).The map D∗ sends (ǫ′|L′ , ϕ′|L′) to an element whih lies in W × N . Thus W ′ ×N ′ := D∗−1

(W × N) isan open neighborhood of (ǫ′|L′ , ϕ′|L′).Denote by W̃ ′ := {(ǫ′ : L′ →֒ U) ∈ W ′|ǫ′(L′\D(L)) ⊆ W} ⊆ W ′ and Ñ ′ := {(ϕ̃ : L′ → Y ) ∈

N ′|ϕ̃(L′\D(L)) ⊆ Q} ⊆ N ′.Let α′ = (K,L′, W̃ ′, Ñ ′, Q) and ξ′′ = [ǫ′′, F ′′, ϕ′′] ∈ Nα′(ξ′), so we get D′ : L′ →֒ L′′ is an embedding,
ǫ′′(F ′′) ∩K ⊆ ǫ′′(L′′). Consider the omposite

(L,L′′, D′ ◦D) : ξ 99K ξ′′.The pair
L

D
→֒ L′ D′

→֒ L′′ ǫ′′|L′′

→֒ U︸ ︷︷ ︸
∈W ′

, L
D
→֒ L′ D′

→֒ L′′ ϕ′′|L′′

→֒ Y︸ ︷︷ ︸
∈Ñ ′is in the image of W × Ñ ′ under D∗, so in W ×N and ϕ′′(L′′\D′ ◦D(L)) ⊆ Q.Thus the omposite morphism (L,L′′, D′ ◦D) is α-small, so ξ′′ ∈ Nα(ξ). In partiular, if we take ξ′ = ξ,it follows that

Nα′(ξ) ⊆ Nα(ξ).is a subneighborhood of ξ. Moreover, for any ξ′′ ∈ Nα′(ξ), we laim Nα′(ξ) ∈ N (ξ′′). Take an arbitrary
ξ̃ = [ǫ̃, F̃ , ϕ̃] ∈ Nα′(ξ), we need to show that λ : ξ′′ 99K ξ̃ is α′-small. Sine ξ̃ ∈ Nα′(ξ), so we have
ǫ̃(F̃ ) ∩ K ⊆ ǫ̃(L̃), L →֒ L̃ → U is in W̃ ′. Sine ξ′′ ∈ Nα′(ξ), so L →֒ L′′ → U is also in W̃ ′. It impliesthat L′′ →֒ L̃ → U is in W̃ ′. Similarly we have L′′ →֒ L̃ → Y is in Ñ ′ and ϕ̃(L̃\D(L′′)) ⊆ Q. Thus
Nα′(ξ) ∈ N (ξ′′). Hene the result follows.Example 5.2.6. This topology is easily understood in the ase d = 0. In hapter 4 we explained therelative on�guration spae C(M,M0;Y ) with labels in Y . Let V ⊆ U ⊆ M be open subsets, we laimthat B0(U ;Y ) ∼= C(M,M\U ;Y ) and the diagram is ommutative (The map rest will be de�ned below inLemma 5.2.8.):

B0(U ;Y )
rest //

f

��

B0(V ;Y )

f

��
C(M,M\U ;Y ) // C(M,M\V ;Y ).Proof of the laim. Given an arbitrary ξ = [z1, z2, · · · , zn; y1, y2, · · · , yn] ∈ C(M,M\U ;Y ). The map

f : B0(U ;Y ) → C(M,M\U ;Y ) : ξ → ξ as a map of sets is an isomorphism. We assume it is a minimalrepresentative, whih means there is no zi ∈ M\U and no yi = ∗. Reall that a neighborhood basis at ξwas indexed by a natural number k and µ = (W1, · · · ,Wn,W0;N1, · · · , Nn, N0) suh that Wi ∩Wj = ∅,where Wi ⊆ M is a neighborhood of zi, W0 ⊂ M is a neighborhood of M\U , Ni ⊆ Y is a neighborhoodof yi and N0 ⊆ Y is a neighborhood of the base point ∗.43



Write z′ = (z′1, · · · , z
′
n, · · · , z

′
n+k), y′ = (y′1, · · · , y

′
n, · · · , y

′
n+k). Set Wk,µ(ξ) :=

{
(z′; y′) ∈ C̃n+k(M)× Y n+k either z′ ∈ W1 × · · ·Wn ×Mk, y′ ∈ N1 ×Nn ×Nk

0 ;or z′ ∈W1 × · · ·Wn ×W0, y
′ ∈ N1 ×Nn × Y k

}
.Then the family {Wk,µ(ξ)} is a neighborhood basis at ξ. Let K ⊂ M\W0 be a ompat subset of Uontaining z1, z2, · · · , zn. Take L = n, ǫ ∈ Emb(L,M) is the map assigning eah i to zi. Atually wean identify ǫ with (z1, · · · , zn) and set W = W1 × · · · × Wn, N = N1 × · · · × Nn, Q = N0. Denote

α = (K,L,W,N,Q), then f(Nα(ξ)) ⊂ Wk,µ(ξ). It follows that f is ontinuous. Vie versa, given aneighborhood Nα(ξ) of ξ ∈ B0(U ;Y ) with α = (K,L,W,N,Q). Write L = n, then W ⊂ Emb(n, U)is a neighborhood of ǫ|n. That is, W is a neighborhood of (z1, · · · , zn) ∈ Cn(U) where zi = ǫ(i). Sothere exists a neighborhood W1 × · · · × Wn ⊂ W of (z1, · · · , zn) suh that Wi is a neighborhood of
zi. By hoosing eah Wi small enough, we an assume that Wi ∩Wj = ∅. Similarly, N ⊆ Map(n, Y )is a neighborhood of ϕ|n. That is, N is a neighborhood of (y1, · · · , yn) ∈ Y n where yi = ϕ(i). Sothere exists a neighborhood N1 × · · · × Nn ⊂ N of (y1, · · · , yn). Let W0 = M\K,N0 = Q and write
µ = (W1, · · · ,Wn,W0;N1, · · · , Nn, N0), thenWn,µ(ξ) is a neighborhood of ξ in C(M,M\U ;Y ). Moreover
f−1(Wn,µ(ξ)) ⊂ Nα(ξ),whih implies that f−1 is ontinuous. Thus the homeomorphism follows. Theommutativity of the diagram is left to the reader. �Example 5.2.7. The base point in Bd(U ;Y ) is represented by

ξ∅ = [U
ǫ∅
←֓ ∅

ϕ∅−→ Y ] = [U ←֓ F ′ → ∗],where ∗ is the base point in Y and F ′ is arbitrarily hosen. We disuss this example whih will illustratethe role of the ompat set K in its neighborhood basis.Any morphism (L,L′, D) : [ǫ, F, ϕ] 99K [ǫ∅, ∅, ϕ∅] must have L = L′ = ∅ beause L′ ⊆ ∅ and D : L→ L′ isa smooth embedding. Then W = ∅, N = ∅. A neighborhood of ξ∅ is indexed by a ompat set K. Andthe morphism (L,L′, D) is K-small if and only if ǫ(F ) ∩K = ∅. That is,
NK(ξ∅) := {[ǫ, F, ϕ]|[ǫ, F, ϕ] is the minimal representative and ǫ(F ) ∩K = ∅}.In partiular
• If X is a topologial spae and a map f : X → Bd(U ;Y ) is ontinuous at a point x ∈ X with
f(x) = ξ∅ if and only if for all ompat subsets K ⊆ U there exists a neighborhood H ⊆ X of xsuh that ǫ(F ) ∩K = ∅ for all y ∈ H , where f(y) = [ǫ, F, ϕ] is the minimal representative.
• If (ξn)n∈N is a sequene of elements of Bd(U ;Y ) with ξn = [ǫn, Fn, ϕn], then ξn → ξ∅ if and only iffor all ompat subsets K ⊆ U , there exists N0 ∈ N suh that ǫn(Fn) ∩K = ∅ for all n > N0.Lemma 5.2.8. Let V ⊆ U ⊆M be open subsets. Then the restrition map

rest : Bd(U ;Y )→ Bd(V ;Y ) (5.2.2)
[ǫ, F, ϕ] 7→ [ǫ|, ǫ−1(ǫ(F ) ∩ V ), ϕ|] (5.2.3)is ontinuous (For reasons of brevity, we write ǫ| for the map ǫ restrited on ǫ−1(ǫ(F ), that is ǫ|ǫ−1(ǫ(F )∩V ) :

ǫ−1(ǫ(F ) ∩ V )→ V . And similarly for ϕ|).Proof. Given an arbitrary ξ = [ǫ, F, ϕ] ∈ Bd(U ;Y ), denote its image [ǫ|, ǫ−1(ǫ(F )∩ V ), ϕ|] by rest(ξ). Let
Nα(rest(ξ)) be an open neighborhood of rest(ξ) with α = (K,L,W,N,Q). It onsists of the following44



data: K ⊆ V is ompat, L ⊂ ǫ−1(ǫ(F )∩V ) is an open subset, (ǫ(F )∩V )∩K ⊆ ǫ(L), W ⊆ Emb(L, V ) isa neighborhood of ǫ|L, N ⊆ Map(L, Y ) is a neighborhood of ϕ|L, and Q is a neighborhood of ∗. Choosea metri on U , let δ := dist(ǫ(L), U\V ) > 0. There is a neighborhood W of ǫ|L in Emb(L,U) suh that
e ∈W ⇒‖ e(x)− ǫ(x) ‖<

1

2
δ, for all x ∈ L.then it follows that e(L) ⊆ V .So we have a ontinuous map θ : W → Emb(L, V ), e 7→ e. Denote by W ′ := θ−1(W ), it is an openneighborhood of ǫ|L in Emb(L,U).Set α′ = (K,L,W ′, N,Q), and take an arbitrary ξ′ = [ǫ′, F ′, ϕ′] ∈ Nα′(ξ). There exists the following data

(i) D : L →֒ L′ ⊆ F ′ is an embedding,
(ii) ǫ′(F ′) ∩K ⊆ ǫ′(L′),

(iii) L
D
→֒ L′

ǫ′|
→֒ U is in W ′, in partiular ǫ′ ◦D(L) ⊆ Vonstituting an α′-small morphism λ = (L,L′, D) : ξ 99K ξ′. Thus we obtain ǫ′(L′) ⊆ ǫ′(F ) ∩ V , whihimplies that L′ ⊆ ǫ′−1(ǫ′(F ) ∩ V ). And L D
→֒ L′ ǫ′

→֒ V is in W , ϕ′(L′\D(L)) ⊆ Q.This gives an α-small morphism in Bd(V ;Y )

(L,L′, D) : rest(ξ′) 99K rest(ξ),whih implies rest sends Nα′(ξ) into Nα(rest(ξ)).The sheaf property of Bd(−;Y ) means that the ontinuity of a map f : X → Bd(U ;Y ) is loal in X × Uin the following sense. Let Uα be a over of U , and let T =
∐

α Uα and T ′ =
∐

α6=β Uα ∩ Uβ . There aretwo maps T ′ → T given by inlusion into the �rst and seond terms of eah intersetion
T ′

i1 //

i2

��

T

��
T // Uand U is the pushout of this diagram. Applying the sheaf Bd(−;Y ) we get two restrition maps

Bd(T ;Y )→ Bd(T
′;Y ) and a pullbak diagram

Bd(U ;Y ) //

��

Bd(T ;Y )

i∗1

��
Bd(T ;Y )

i∗2 // Bd(T
′;Y ).In this diagram all the maps involved are restritions and so are ontinuous.Thus if we have a map f : X → Bd(U ;Y ) suh that for any point u ∈ U there is a neighborhood Uu ⊆ Usuh that X f

→ Bd(U ;Y )→ Bd(Uu;Y ) is ontinuous, then taking {Uu} as the over we have a ontinuousmap from X to the diagram Bd(T ;Y )→ Bd(T
′;Y ) and so a ontinuous map to the pullbak. This mapmust be the original f , thus f is ontinuous. In other words, f is ontinuous if for eah x ∈ X and u ∈ Uthere is a neighborhood Vx × Uu ⊆ X × U suh that the omposition

Vx → X
f //Bd(U ;Y )

rest //Bd(Uu;Y )45



is ontinuous. In partiular, U 7→ Map(X,Bd(U ;Y )) is a sheaf for every spae X .The sheaf Bd(−;Y ) is an example of an equivariant, quasi-ontinuous sheaf explained in the Appendix A.This means that Bd(−;Y ) is ontinuously funtorial with respet to embeddings (not just inlusions) ofopen subsets of M .Theorem 5.2.9. Let V ⊆ U be open subsets of M and Emb(V, U) the spae of embeddings of V into Uwith weak C∞-topology, then the ation map
fV : Emb(V, U)×Bd(U ;Y ) → Bd(V ;Y ) (5.2.4)

(e : V →֒ U, [ǫ, F, ϕ]) 7→ [e−1 ◦ ǫ|, ǫ−1(ǫ(F ) ∩ e(V )), ϕ|] (5.2.5)is ontinuous.Proof. We only need to show the ontinuity of fV being loal in V × Emb(V, U) × Bd(U ;Y ). The proofis almost the same as in Theorem 2.4.5. of [RW℄.Choose a point (x ∈ V, e : V →֒ U, [ǫ, F, ϕ]) and a neighborhood V ′
x of x that is a oordinate path, andthat we shall identify V ′

x
∼= Rn. It has a proper subneighborhood Vx ⊂ V ′

x suh that V̄x ⊂ V ′
x. Thus

e(Vx) ⊂ e(V̄x) ⊂ e(V ′
x) and e(V̄x) is ompat beause V̄x is losed and bounded.De�ne U ′ := e(V ′

x) ∼= Rn,K ′ := V̄x = D̄n whih is the losed disk in Rn. There exists an open set
M(K ′, U ′) in the weak topology onsisting of smooth maps sending the ompat K ′ into the open U ′.
M(K ′, U ′) is an open neighborhood of e. For any φ ∈ M(K ′, U ′), φ(Vx) ⊆ φ(K ′) ⊂ U ′. So M(K ′, U ′) ⊂

Emb(Vx, U
′). The following diagram ommutes.

M(K ′, U ′)×Bd(U ;Y )
fK′ //

g

��

Bd(V ;Y )

rest

��
Emb(Vx, U

′)×Bd(U
′;Y )

fVx // Bd(Vx;Y )The horizontal maps fK′ , fVx
are ations maps as in (5.2.4). And g is indued by the inlusion ofM(K,U ′)and the restrition. Then fK is ontinuous if and only if rest ◦fK is ontinuous for any x ∈ V , thus ifand only if fVx

◦ g is ontinuous. Sine restritions are ontinuous by Lemma 5.2.6., the vertial maps areontinuous. Thus fK will be ontinuous if fVx
is ontinuous for any x ∈ V . Therefore we redue to thease where U and V are di�eomorphi to Rn.Let (e, ξ) ∈ Emb(V, U)×Bd(U ;Y ) with ξ = [ǫ, F, ϕ]. Its image is fV (e, ξ) = [e−1◦ǫ|, ǫ−1(ǫ(F )∩e(V )), ϕ|] ∈

Bd(V ;Y ). Let Nβ(fV (e, ξ)) be a neighborhood of fV (e, ξ) with β = (K,L,W,N,Q). This means thefollowing data is given:
(i) K ⊆ V is ompat;
(ii) L ⊆ ǫ−1(ǫ(F ) ∩ e(V )) ⊆ F is an open subset that is the interior of its ompat losure

L̄ of ǫ−1(ǫ(F ) ∩ e(V ));

(iii) e−1(ǫ(F ) ∩ e(V )) ∩K ⊆ e−1ǫ(L);

(iv) W ⊆ Emb(L, V );

(v) N ⊆Map(L, Y );

(vi) Q is a neighborhood of ∗ . 46



The standard metri on Rn gives a metri on U . Use e to determine a metri on V suh that e is an isometry.Choose a ompat ball C ⊆ V suh that K ∪ e−1 ◦ ǫ(L̄) ⊆ C and dist(K ∪ e−1 ◦ ǫ(L̄), V \C) =: α1 > 0.It follows that
dist(e(K ∪ e−1(ǫ(L̄))), U\e(C)) = α1 > 0.So e−1(ǫ(F ) ∩ e(V )) ∩K ⊆ e−1(ǫ(L)) ⊆ V is a ompat subset of an open set.De�ne

K+δ := {v ∈ V | ∃k ∈ K, suh that ‖v − k‖ < δ} ⊃ K, it is an open neighborhood of K,
L−δ := {l ⊆ ǫ−1(ǫ(F ) ∩ e(V ))|for any z ∈ ǫ−1(ǫ(F ) ∩ e(V ))\L, ‖l− z‖ ≥ δ} ⊂ L, a losed subset of L.Sine L−δ is a ompat subset of an open set L, there exists α2 > 0 suh that if δ < α2, then

e−1(ǫ(F ) ∩ e(V )) ∩K+δ ⊆ e−1(ǫ(L−δ)).Let α = min(α1, α2), then
e(K+ 1

3α) ∩ ǫ(F ) = e(K+ 1
3α ∩ e−1(ǫ(F ) ∩ e(V ))) ⊆ ǫ(L− 1

3α).Take an open neighborhood N ′ ⊆ Emb(V, U) of e suh that for any φ ∈ N ′,
(i) φ(K) ⊆ e(K)+

1
3α ⊂ e(C),

(ii) e(C)−
1
3α ⊆ φ(C) ⊆ e(C)+

1
3 α.Let W1 be a strong neighborhood of ǫ in Emb(L,U) suh that

e′ ∈ W1 ⇒ ‖e
′(l)− ǫ(l)‖ <

1

3
α.Then e′(L) ⊆ e(C)−

2
3α ⊆ e(C)−

1
3 α.For φ ∈ N ′ and e′ ∈ W1, note that e′(L) ⊆ e(C)−

1
3α ⊆ φ(V ). Sine e(C)−

1
3α = e(C− 1

3α) ⊂ U a ompatsubmanifold of U , we an apply Lemma 2.4.4. in [RW℄ to obtain the inverse of φ over e(C)−
1
3α. So themap I : N ′ → Emb(e(C)−

1
3α, V ), φ 7→ φ|

e(C)−
1
3

α de�ned in Lemma 2.4.4. of [RW℄ is ontinuous.Now onsider the omposite
comp : W1 ×N

′ id×I
−→ W1 × Emb(e(C)−

1
3α, V )

◦
→ Emb(L, V ), (5.2.6)whih is a omposition of ontinuous maps so ontinuous.Denote W ′ × W̃ := comp−1(W ) ⊂ W1 × N ′. Let β′ = (e(C), L,W ′, N,Q), we laim that W̃ × Nβ′(ξ) issent under the ation map fV into Nβ(fV (e, ξ)).Let φ ∈ W̃ and ξ′ = [ǫ′, F ′, ϕ′] ∈ Nβ′(ξ), then we have an embedding L d
→֒ L′ ⊆ F ′ suh that

e−1 ◦ ǫ′(F ′) ∩ C ⊆ e−1 ◦ ǫ′(L′),

L
D
→֒ L′

ǫ′|
→֒ U in W ′ ⊆W1 ⊆ Emb(L,U).In partiular ǫ′(L′) ⊆ φ(V ).Now onsider

L
D
→֒ L′ ǫ′|

→ ǫ′(L′)
φ−1

−→ φ−1(ǫ′(L′)) →֒ V,47



whih is obtained by applying comp in (5.2.2) to (ǫ′◦D,φ) ∈ W ′×W̃ . And the map comp sends (ǫ′ ◦D,φ)into W .
K ∩ φ−1(ǫ′(F ′)) = φ−1(φ(K) ∩ ǫ′(F ′)) ⊆ φ−1(e(C) ∩ ǫ′(F ′)) ⊆ φ−1(ǫ′(F ′)).Denote fV (φ, ξ′) = [φ−1 ◦ ǫ′|, ǫ′−1(ǫ′(F ′) ∩ φ(V )), ϕ′|]. It follows that (L,L′, D) is a β-small morphism in

Bd(V ;Y )

fV (e, ξ) 99K fV (φ, ξ′),whih �nishes the proof.Lemma 5.2.10. If h : Y × I → Y is a homotopy, then the indued map
H : Bd(U ;Y )× I → Bd(U ;Y )

([ǫ, F, ϕ], t) 7→ [ǫ, F, h ◦ (ϕ× {t})]is ontinuous. Therefore Bd(U ;Y ) is homotopy invariant of Y .Proof. Let Nα[ǫ, F, h◦ (ϕ×{t})] be an open neighborhood of [ǫ, F, h◦ (ϕ×{t})] with α = (K,L,W,N,Q).Thus K ⊆ U is ompat, L ⊆ F is an open subset, ǫ(F ) ∩K ⊆ ǫ(L), W ⊆ Emb(L,U) is a neighborhoodof ǫ|L, N ⊆ Map(L, Y ) is a neighborhood of h ◦ (ϕ × {t}). Let K ′ be a ompat subset of L, and let O′be an open subset of Y , suh that h ◦ (ϕ × {t})(K ′) ⊂ O′. There is an open set M(K ′, O′) onsisting ofontinuous maps in N sending the ompat set K ′ into the open set O′. So h◦(ϕ×{t}) ∈M(K ′, O′) ⊂ N .Sine h is ontinuous, there exists an open subset Õ′ × Ĩ ⊂ Y × I, suh that h(Õ′ × Ĩ) ⊂ O′. Then forany (ϕ′, t′) ∈M(K ′, Õ′)× Ĩ, we have
K ′ ⊂ L

ϕ′×{t}// Y × {t′}
id×{t′}// Y × I

h // Y ⊃ O′.Thus h ◦ (ϕ′ × {t′}) ∈ N .Let β = (K,L,W,M(K ′, Õ′), Q), then Nβ [ǫ, F, ϕ]× Ĩ is sent under H into Nα[ǫ, F, h◦(ϕ×{t})]. Therefore
H is ontinuous.The topology we de�ned on Bd(U ;Y ) is notationally omplex. If we onsider the spae Y+ = Y ⊔+, thedisjoint union of a spae Y and a disrete base point, the topology on Bd(U ;Y+) in De�nition 5.2.1. anbe simpli�ed by Q = {+} and the map d : L → L′ is a di�eomorphism. One an ignore the e�et of
Q. Sine there are no restritions of the onnetivity of Y , all the results in this setion also work for
Bd(M ;Y+). We shall desribe the homotopy type of Bd(M ;Y+) in setion 5.2.3.Lemma 5.2.11. If Y is onneted, then Bd(R

n;Y+) is path onneted.Proof. Let ξ = [ǫ, F, ϕ] ∈ Bd(U ;Y+) be a given minimal representative. We are going to onstrut anexpliit path from ξ to the base point ξ∅ = [U
ǫ∅
←֓ ∅

ϕ∅−→ Y+].Choose a point p ∈ Rn\ǫ(F ) and assoiate the label + to p. Let θt : Rn → Rn, t ∈ [0, 1] be the map givenby θt(x) = (1 − t)x + tp. Then θt is a di�eomorphism for t < 1 and θ1(x) = p for all x. We an identify
[ǫ, F, ϕ] with [inc, ǫ(F ), ϕ ◦ ǫ−1]. That is, regard ǫ(F ) as a submanifold of Rn and the embeddings willalways be inlusions. Let Ft = θ−1

t (ǫ(F )) and ϕt be the omposite ϕt : Ft
θt−→ ǫ(F )

ϕ◦ǫ−1

−→ Y+. This de�nesa map t 7→ [inc, Ft, ϕt] ∈ Bd(R
n;Y+). By Theorem 5.2.8. this map is ontinuous on [0, 1). Continuity at1 an be seen as follows. We need to use the neighborhood of ξ∅ as explained in Example 5.2.6.. For agiven ompat K ⊆ Rn, hoose δ > 0 suh that K ⊆ Bδ−1(p), then Ft ∩K = ∅ for all t > 1− δ.
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5.2.2 Setion Spae Sectd(M ; Y+)Let A be an m−dimensional real vetor spae. De�ne Vk(A) (1 ≤ k ≤ m) to be the Stiefel manifold of
k-frames in A, i.e.

Vk(A) := {(v1, · · · , vk) ∈ Ak| v1, · · · , vk are linearly independent } ∼= LinEmb(Rk, A).LinEmb(Rk, A) denotes the spae of linear embeddings of Rk into A with the ompat-open topology.The homeomorphism is given by f 7→ (f(e1), · · · , f(ek)), where ei is the i-th standard basis vetor of Rm.In the ase k = m, Vm(A) = LinIsom(Rm, A) ∼= LinIsom(Rm,Rm) ∼= GL(Rm).What we did for a single vetor spae A, an be generalized to an m-dimensional vetor bundle A→ E
π
→

B. De�ne Vk(π)(1 ≤ k ≤ m) to be the spae of k-frames in a �bre, i.e.
Vk(π) :=

{
(b; v1, · · · , vk) ∈ B × Ek (v1, · · · , vk) is a k-frame in the �bre π−1(b)

}
.Remark 5.2.12. We obtain a new vetor bundle alled the frame bundle Vk(π) → B. The total spae

Vk(π) an be desribed as the spae of bundle maps of the trivial bundle Rk into π, namely Vk(π) ∼=

Emb(Rk, π).Example 5.2.13. (i) k = 1, V1(π) = E\E0, where E0 is the zero setion;
(ii) Vm(π) = Prin(π), the prinipal bundle of π with struture group O(m).Assume W is an n-dimensional manifold without boundary and ontaining M . For example, W = M if
M is losed, or W = M ∪ (∂M × [0, 1)) if M has boundary.Let Grd(R

n+d) be the Grassmannian of d-dimensional vetor spaes in Rn+d. We are interested in theorthogonal omplement of the tautologial bundle Ud,n → Grd(R
n+d), namely

U⊥
d,n = {(V, v) ∈ Grd(R

n+d)× R
n+d| V ⊥ v}.The diret sum Ud,n⊕U⊥

d,n is the trivial bundle Grd(R
n+d)×Rn+d. Sine U⊥

d,n+1 restrits over Grd(R
n+d)to the diret sum of U⊥

d,n and a trivial line bundle R1, there is an indued map
Th(U⊥

d,n) ∧ S1 → Th(U⊥
d,n+1). (5.2.7)For a �xed d, the Thom spaes Th(U⊥

d,n) de�ne a spetrum MTOd, where the n-th spae is Th(U⊥
d,n). Theassoiated in�nite loop spae is

Ω∞ MTOd = colim
n→∞

Ωn Th(U⊥
d,n),where the maps in the olimit

Ωn Th(U⊥
d,n)→ Ωn+1 Th(U⊥

d,n+1)are the n-fold loops of the adjoint of (5.2.7). Note that our notation is di�erent from those in [GMTW℄,where they denote the Thom spetrum to be MTO(d) and the (n+ d)-th spae in MTO(d) is Th(U⊥
d,n).Let Vn(TW ) be the frame bundle of W . Replae the �bre O(n) by Th(U⊥

d,n). We obtain a new bundleover W , namely
Ed(W ) := Vn(TW )×O(n) Th(U⊥

d,n)
π
−→W. (5.2.8)49



The ation of O(n) on the new �bre Th(U⊥
d,n) has a �xed point, namely the in�nite setion s∞ : M →

Ed(M) sending w ∈W to ∞ in the �bre Th(U⊥
d,n) over w.De�ne Sectd(W,W\M) to be the spae of setions s : W → Ed(W ) suh that s agrees with s∞ on W\M .This setion spae has the ompat-open topology.Example 5.2.14. Assume W is parallalizable, i.e. TW ∼= W × Rn. Then Vn(TW ) ∼= W × O(n) and

Ed(W ) ∼= W × Th(U⊥
d,n). Therefore, Sectd(W,W\M) ∼= Map∗(W,W\M ; Th(U⊥

d,n),∞).Next we want to amplify this onstrution by a label spae Y . Let Y be a onneted spae. We replaethe �bre of Vn(TW )→W by Th(U⊥
d,n)∧Y+. The ation of O(n) on Y+ is trivial. Denote this new bundleby

Ed(W ;Y+) := Vn(TW )×O(n) (Th(U⊥
d,n) ∧ Y+)

π
→W. (5.2.9)De�ne Sectd(W,W\M ;Y+) := Sectd(Ed(W ;Y+),M), spae of setions of the �ber bundle Ed(W ;Y+) →

W .In the next setions we are mainly fousing on the ase that M is open and has no boundary. In this ase
W = M . So we shall abbreviate Sectd(W,W\M ;Y+) by Sectd(M ;Y+).5.2.3 A Sanning Constrution for the Thom Spetrum MTOdThere exists a map

γ : Bd(M ;Y+)→ Sectd(M ;Y+).This map is the so alled "sanning map" introdued by G. Segal. It appears in some other forms as wellas in the h-priniple onstrution of Gromov. We indiate the onstrution of this map:(i) Assume M has a Riemannian metri. Given ξ = [ǫ, F, ϕ] ∈ Bd(M ;Y ) with M F? _
ǫoo ϕ //Y , takean "observer" z ∈ M . Let D(TMz) be the unit dis in the tangent spae TMz to M at z. Suppose that

ρ > 0 is small enough so that for eah z ∈ M the exponential map expz : D(TMz) → Bρ(z) = {z′ :

d(z, z′) ≤ ρ} ⊂ M is a di�eomorphism. We "san" with respet to this hosen family of neighborhoods
Bρ(z) in the ground manifold M as follows.(ii) Write N = {z ∈ M |Bρ(z) ∩ ǫ(F ) 6= ∅}, it is a tubular neighborhood of ǫ(F ). Identify N with thenormal bundle ν(ǫ(F )) of ǫ(F ). If the point z lies in N , it is mapped to the orresponding point in ν(ǫ(F )),denote this point again by z. Let ν(z) be the image of z under the bundle projetion ν : ν(ǫ(F ))→ ǫ(F ).If z is outside of N , it is mapped to ∞ ∈ Th(U⊥

d,n).We �rst hoose a frame −→v = (v1, · · · , vn) ⊂ T (M)z. Then de�ne the setion γ(ξ) by the formula:
γ(ξ)(z) := [(v1/ρ(z), · · · , vn/ρ(z); (Tν(z)(ǫ(F )), ν−1(ν(z))) ∧ ϕ(ǫ−1(ν(z))].

γ(ξ) is ontinuous, beause the exponential map exp is ontinuous on D(T (M)z). And γ is ontinuous aswell, beause its adjoint
γ♯ : Bd(M ;Y+)×M → Ed(M ;Y+)is the Thom-Pontrjagin onstrution, whih is ontinuous.50
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Bρ(z)Figure 5.1: sanningProposition 5.2.15. Let M be a n-dimensional open manifold (i.e. no omponent of M is ompat),
n ≥ d, then

γ : Bd(M ;Y+)→ Sectd(M ;Y+)is a weak homotopy equivalene.The rest of this setion is dediated to the proof of Proposition 5.2.15.. First we do not laim any originalityfor this proof. The main work has been done in [RW℄ by Randal-Williams in the ase Y = pt and in[Ga℄ by Galatius in the ase of graph spaes. We applied their ideas and generalized it to an arbitraryspae Y+. We use the h-priniple as stated in Appendix A. Namely we need to show Bc
d(M ×Rd+1;Y+) isboth Diff(M × Rd+1)-invariant and miro�exible. That Bc

d(M × Rd+1;Y+) is Diff(M × Rd+1) -invariantis implied by Theorem 5.2.9.. So it remains only to show the sheaf is miro�exible. The proof is based onthe following lemmas and propositions.Lemma 5.2.16. Let U ⊆ V be an open subset of V , let X be a smooth k-dimensional manifold and Y+ atopologial spae with disrete base point +. For a smooth (d+ k)-dimensional submanifold Γ ⊂ X × U ,losed as a subspae, onsider the smooth projetion π1 : Γ → X and a ontinuous map ϕ : Γ → Y+.Set Γ0 = Γ\ϕ−1(+) and assume that π1|Γ0 is a submersion. Then there is a ontinuous map f : X →

Bd(U ;Y+) suh that Γ0 is the adjoint graph Γf of f , i.e. Γf = {(x, u) ∈ X × U |u ∈ ǫ(F ) if f(x) =

[ǫ, F, ϕ] the minimal representative}.Proof. Note that [ǫ, F, ϕ] and [inc, ǫ(F ), ϕ ◦ ǫ−1] represent the same equivalene lass, where inc meansthe inlusions and ǫ(F ) is a submanifold of U . We shall not distinguish them. Now de�ne
f : X → Bd(U ;Y+)

x 7→ [U
inc
←֓ Ax

ϕ|Ax−→ Y+]where Ax := π−1
1 (x) ∩ Γ0 ⊂ {x} × U . We identify {x} × U with U and regard Ax as a submanifold of U .We need to show that f is ontinuous. Let an arbitrary (x, u) ∈ Γ0 ⊆ X × U be given, by loality, weonly need to show f is ontinuous at (x, u) . Sine Γ0 is a manifold and π1 : Γ0 → X is a submersion,51



there are neighborhoods Vx ⊆ X of x and Uu ⊆ U of u suh that
π1| : Γ0 ∩ (Vx × Uu)→ Vx (5.2.10)has �bers di�eomorphi to Rd, and it is surjetive. We may assume Vx is ontratible. Like in Lemma4.2.5. of [RW℄, we know that π1| in (5.2.10) is a trivial vetor bundle. Choose a bundle di�eomorphism

D : Γ0 ∩ (Vx × Uu)→ Vx × Rd.Consider
ξ = [Uu

inc |
←֓ Ax ∩ Γ0 ∩ Uu

ϕ|
→ Y+] ∈ Bd(Uu;Y+),and let Nα(ξ) be a neighborhood of ξ with α = (K,L,W,N). The trivilization D gives a di�eomorphism

ty : Ax ∩ Γ0 ∩ Uu → Ay ∩ Γ0 ∩ Uu, for all y ∈ Vx.Sine L ⊆ Ax ∩ Γ0 ∩ Uu is an open subset, we may restrit ty to L and obtain ty : L → ty(L) → Uu.Therefore we have a ontinuous map t : Vx → Emb(L,Uu).Sine W ⊆ Emb(L,Uu) is a neighborhood of inc |L, let W1 := t−1(W ) ⊆ Vx. There is a subneighborhood
W2 ⊆ Vx of x suh that Ay∩inc−1(K) ⊆ ty(L). For eah y ∈ Vx, we also obtain a map L→ ty(L)

ϕ|ty(L)

−→ Y+.Thus we obtain a ontinuous map s : Vx → Map(L, Y+).Note that N ⊆ Map(L, Y+) is an open neighborhood of ϕ|L, denote N1 := s−1(N) ⊆ Vx and W̄ :=

W1 ∩W2 ∩N1. So if y ∈ W̄ , then ty : L→ ty(L) ⊆ Ay ∩Γ0 ∩Uu and inc(Ax)∩K ⊆ inc(L), inc(Ay)∩K ⊆

inc(ty(L)), L ty

−→ ty(L) →֒ Uu is in W , L ty

−→ ty(L)→ Y+ is in N . So it implies that
[Uu

inc |
←֓ Ay ∩ (Γ0 ∩ Uu)

ϕ|
−→ Y+] ∈ Nα(ξ).whih means f(W̄ ) ⊆ Nα(ξ). Thus we have ontinuity at (x, u).We should remind the reader, if spae Y has a non-disrete base point, this lemma will not be true. Itmight happen that π1| : Γ ∩ Vx ×Uu → Vx is not a vetor bundle. The advantage of a disrete base point

+ is that if any point of a omponent in Γ has the trivial label +, then the entire omponent must havethe trivial label +. So we an remove this entire omponent. The resulting submanifold of Γ0 an bedesribed as an adjoint-graph of some funtion f .We ollet some de�nitions from [RW℄.De�nition 5.2.17. For a smooth manifold X , we say a ontinuous map f : X → Bd(U ;Y+) is smoothnear (x, u) if there are neighborhoods x ∈ Vx ⊆ X and u ∈ Uu ⊆ U suh that the omposite
Vx →֒ X

f
→ Bd(U ;Y+)

rest
−→ Bd(Uu;Y+)has a Γ that satis�es the onditions of Lemma 5.2.15: Γ is a smooth (k + d)-dimensional manifold,

π1 : Γ→ X is smooth, Γ0 → X is a submersion and ϕ : Γ→ Y+ is ontinuous.For a losed submanifold A ⊆ X × U , we say f is smooth near A if it is smooth near eah point of A.Our fundamental problem is to �nd onditions when one an deform this adjoint-graph and still obtainan adjoint-graph of a new funtion.Let τ : X ×U → [0, 1] and Fτ : [0, 1]×X × U × Y+ → [0, 1]×X ×U × Y+, (t, x, u, y) 7→ (tτ(x, u), x, u, y).If f : [0, 1] × X → Bd(U ;Y+) is a homotopy, then Γf ⊆ [0, 1] × X × U × Y+. Let Γ := F−1
τ (Γf ) ⊂52



[0, 1] × X × U × Y+. There exists a map ϕf : Γ → Y+ indued by f and Fτ . Beause f and Fτ areontinuous, so is ϕf .The following lemma gives a riterion for Γ0 = Γ\ϕ−1
f (+) to be the adjoint-graph Γfτ

for some ontinuousmap fτ : [0, 1]×X → Bd(U ;Y+).Lemma 5.2.18. Γ0 is the adjoint graph Γfτ
for fτ , if one of the two onditions holdsi) τ is independent of u, orii) f is smooth and Fτ |{t}×X×U×Y+

is transversal to Γf for all t.Proof. In ase i), write τ(x, u) = σ(x). De�ne
fτ : [0, 1]×X → [0, 1]×X

f
→ Bd(U ;Y+).where the �rst map is (t, x) 7→ (tσ(x), x). Note for eah [ǫ, F, ϕ] ∈ Bd(U ;Y+), we identify F with ǫ(F ) asa submanifold of U and the embedding to be inlusion sine F and ǫ(F ) are of the same di�eomorphismtype. Let (t, x, u) ∈ Γ0 and ϕf (t, x, u) = y, so (tσ(x), x, u, y) ∈ Γf , thus (u, y) ∈ f(tσ(x), x). It impliesthat (u, y) ∈ fτ (t, x), so (t, x, u, y) ∈ Γfτ

. The reverse inlusion holds similarly.In ase ii), by transversality, F−1
τ (Γf ) = Γ0 is a smooth manifold. Γ0 an be identi�ed with the oremanifolds of Γf , that is, all the manifolds without the trivial label +. This ompletely haraterizes themap f . So we an identify Γ0 with Γf via Fτ . And Γ0 → [0, 1]×X is also a submersion. Γ→ Y+ is givenby the omposition Γ→ Γf → Y+, thus Γ0 = Γfτ

.Proposition 5.2.19. Let K ⊆ U be ompat and P be a polyhedron. Let f : [0, 1]× P → Bd(U ;Y+) beontinuous. Then there exists an ǫ > 0 and a ontinuous map g : [0, ǫ]× P → Bd(U ;Y+) suh thati) f |[0,ǫ]×P agrees with g on a neighborhood of K. Namely, f = g : [0, ǫ] × P → Bd(U ;Y+) →

Bd(N (K);Y+).ii) g|{0}×P = f |{0}×P ;iii) there exists a ompat subset C ⊆ U suh that
[0, ǫ]× P

g
−→ Bd(U ;Y+)

rest
−→ Bd(U\C;Y+)fators through the projetion pr : [0, ǫ]× P → P , i.e. the following diagram ommutes

{0} × P

++WWWWWWWWWWWWWWWWWWWWWW

[0, ǫ]× P
g //

pr

OO

Bd(U ;Y+)
rest // Bd(U\C;Y+).Proof. Choose τ : P × U → [0, 1] with ompat support and onstant to 1 on a neighborhood P × B of

P ×K. Let A ⊆ U\K be a losed set suh that τ is loally onstant on P × (U\A). Assume B ⊆ U\A isa losed neighborhood of K. By lemma 4.2.8. in [RW℄, we may assume that f is smooth near P ×A andunhanged near P ×B.Let Fτ : [0, 1] × P × U × Y+ → [0, 1] × P × U × Y+, (t, p, u, y) → (tτ(p, u), p, u, y). The transversalityondition is satis�ed on P ×A at t = 0, and so it is satis�ed for t ∈ [0, ǫ] for some ǫ > 0, as transversalityis an open ondition. On P × (U\A), τ is loally onstant, so the �rst ondition of Lemma 5.2.19. issatis�ed. Thus (F−1
τ (Γf )\ϕ−1

f (+)) ∩ [0, ǫ]× P × U × Y+ = Γfτ
for ontinuous fτ .53



Choose g = fτ : [0, ǫ] × P → Bd(U ;Y+). Part i) is satis�ed sine τ(p, u) = 1, for all (p, u) ∈ P × B. Itfollows that Fτ |[0,1]×P×B×Y+
= id, so f |[0,ǫ]×P and fτ agree on B ⊇ K.Part ii) is also true, beause Fτ (0, p, u, y) = (0, p, u, y), so f |{0}×P = g|{0}×P .For part iii), take C to be suh that supp(τ) ⊆ P ×C, then τ |P×(U\C) = 0. For any u /∈ C, Fτ (t, p, u, y) =

(0, p, u, y), so Γ
fτ
∩ ([0, ǫ]× P × (U\C)× Y+) = [0, ǫ]× Γfτ (0,p,u,y), so the fatorization is satis�ed.Miro�exibility. Let K ′ ⊆ K ⊆ V be ompat subsets of V . A sheaf on a losed set is de�ned by

Bd(K;Y+) := colimK⊂U Bd(U ;Y+), the olimit is taken over all open sets ontaining K, partially orderedby inlusion.It su�es to show that for all open sets U ⊃ K,U ′ ⊃ K ′ with U ′ ⊆ U and for all the squares of the form
{0} × P

h0 //

��

Bd(U ;Y+)

rest

��
[0, ǫ]× P � � //

ℓ

33hhhhhhhhhh
[0, 1]× P

h // Bd(U
′;Y+)there is an ǫ > 0, and a lifting ℓ : [0, ǫ]× P → Bd(U ;Y+) extending h0 over h|[0,ǫ]×P .Sine K ′ ⊆ U ′ is ompat and h : [0, 1]×P → Bd(U

′;Y+) is ontinuous, there is an ǫ > 0 and a ontinuousmap g : [0, ǫ]×P → Bd(U
′;Y+) satisfying the properties of Proposition 5.2.20.. Let C ⊆ U ′ be the ompatset given in this proposition. We have the ommutative diagram
{0} × P

h0 // Bd(U ;Y+) //

���
�
�

Bd(U\C;Y+)

rest

��
[0, ǫ]× P

pr

OO

g //

ℓ

88p
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Bd(U

′;Y+)
rest // Bd(U

′\C;Y+)Regard Bd(U ;Y ) as the pull bak of Bd(U
′;Y+) → Bd(U

′\C;Y+) ← Bd(U\C;Y+) in the diagram. Byuniversal property, we obtain a ontinuous map ℓ : [0, ǫ]× P → Bd(U ;Y+) and its restrition to U ′ is g.Sine g agrees with h|[0,ǫ]×P near K ′, we an pass to a smaller K ′ ⊂ Ũ ′ ⊂ U ′ on whih they agree. Then
ℓ is a lifting extending h0 and overing [0, ǫ]× P → Bd(U

′;Y+)→ Bd(Ũ
′;Y+).We are interested in manifolds of the form M × Rd+1. We will see that the homotopy type of Bd(M ×

Rd+1;Y ) is onneted to the Thom spetrum MTOd.Let p : E →M ×Rd+1 be a �ber bundle with a "zero" element in eah �ber, so we an de�ne the supportof setions. If a setion s : M × Rd+1 → E is supported in K × Rd+1 for some ompat K ⊂M , then itsrestrition i∗(s) : M × {0} → i∗(E) is supported in K.
i∗(E)

��

// E

p

��
M × {0} �

� i // M × Rd+1Thus the map Sectd(M ×Rd+1)
i∗

−→ Sectd(M) is a homotopy equivalene. A homotopy inverse is induedby the projetion to the enter. 54



Let M be an arbitrary (n− 1)-dimensional manifold, n ≥ d, let Bc
d(M × Rd+1;Y+) ⊆ Bd(M × Rd+1;Y+)onsist of those d-dimensional submanifolds suh that the projetion to Rd+1 is proper, i.e.

Bc
d(M×R

d+1;Y+) =

{
(M × Rd+1 ǫ

←֓ F
ϕ
→ Y+) ∈ Bd(M × Rd+1;Y+) there exists a ompat set K ⊂Msuh that ǫ(F ) ⊆ K × Rd+1

}
.Let Sectc

d(M × Rd+1;Y+) ⊆ Sectd(M × Rd+1;Y+) onsist of all the ompatly-supported setions, i.e.
Sectc

d(M × R
d+1;Y+) =

{
s : M → Ed(M × Rd+1;Y+) s agrees with s∞ on M\K for aompat subset K ⊂M }

.Corollary 5.2.20. The sanning map
Bc

d(M × R
d+1;Y+)→ Sectc

d(M × R
d+1;Y+)is a weak homotopy equivalene. �Here we write Bc

d(M ×M
′;Y+) and Sectc

d(M ×M
′;Y+) to mean that the ompatness ondition onlyrefers to the �rst variable M . If we take M = Rn−1, we haveCorollary 5.2.21. γ : Bc

d(R
n−1×Rd+1;Y+)→ Sectc

d(R
n−1×Rd+1;Y+) ≃ Ωn−1(Th(U⊥

d,n)∧Y+) is a weakhomotopy equivalene. �The natural inlusions Rn−1 →֒ Rn indue maps
Bc

d(R
n−1 × R

d+1;Y+)→ Bc
d(R

n × R
d+1;Y+).We de�ne the olimit of this sequene to be

Bc
d(R

∞−1 × R
d+1;Y+) := lim

n
Bc

d(R
n−1 × R

d+1;Y+).By orollary 5.2.21. we obtain
Bc

d(R
∞−1 × R

d+1;Y+) ∼ Sectc
d(R

∞−1 × R
d+1;Y+) ≃ Ω∞−1 MTOd ∧Y+whih is the in�nite loop spae of the Thom spetrum MTOd ∧Y+.5.3 Splitting of the Funtor K5.3.1 Homotopy Type of the Splitting Spae B(Y+)[GMTW℄ identi�es the homotopy type of the obodism ategory for a �xed d. We are interested inunderstanding some further properties as d varies. Namely, in our ase, the dimension d is not �xed andan tend to in�nity.We now ollet some fats from setion 3.1 in [GMTW℄. For two vetor bundles E1 and E2 over the samebase spae X , let p : S(E2) → X be the bundle projetion of the unit sphere bundle. There is a o�bersequene

Th(p∗E1)→ Th(E1)→ Th(E1 ⊕ E2). (5.3.1)55



Apply this to X = Grd(R
d+n), E1 = U⊥

d,n, E2 = Ud,n. Then the o�ber sequene indues a diret systemof spetra
MTO0 → MTO1 → · · · → MTOd−1 → MTOd → · · · (5.3.2)whose diret limit MTO is weakly equivalent to the Thom spetrum MO, beause U⊥

d,n
∼= Un,d and thefollowing diagram is ommutative:

Grd(R
n+d)

��

∼= // Grn(Rn+d)

��
Grd(R

n+d+1)
∼= // Grn+1(R

n+d+1)The diret system an be thought of as a �ltration of MTO, with �ltration quotient the suspensionspetrum Σ(Σd BO(d)+). In partiular, the maps in the diret system indue an isomorphism, namelythe homotopy groups π∗ MTOd an be omputed by the homotopy groups of MO, the unoriented bordismring ΩO. That is, π∗ MTOd = ΩO
∗ , for ∗ < d.Reall that the Pontrjagin-Thom onstrution gives a geometri desription of the homotopy groups

πn MTOd, whih agrees with πn(Ω∞ MTOd), for n > 0. And πn MTOd is isomorphi to the group of thebordism lasses of pairs (M,φ), where M is a losed smooth (n− d)-dimensional manifold, φ is a map ofstable vetor bundles
νM

φ //

��

U⊥
d,∗

��
M // Grd(Rd+∗).Let E∗ = {E0 ⊆ E1 ⊆ · · · } be a sequene of topologial spaes and E∗ → B∗ be a stable vetor bundle ofdimension d, i.e. a sequene En → Bn of real vetor bundles of dimension n+d together with isomorphisms

ǫn : En ⊕R ∼= En+1|Bn
. The stable normal bundle νM of a losed m-dimensional manifold is an example.On the other hand, the sequene (5.3.2) indues a sequene of in�nite loop spaes

Ω∞−1 MTO0 → Ω∞−1 MTO1 → · · · → Ω∞−1 MTOd → Ω∞−1 MTOd+1 → · · · (5.3.3)We would like to understand this sequene in the geometri point of view.An element of Ω∞−1 MTOd is represented by some loop ω : Sn−1 × Rd+1 → Th(U⊥
d,n). Note that

ω is homotopi to a map that is transverse to the zero setion; denote this loop again by ω. And
F d = ω−1(Grd(Rn+d)) ⊂ Sn−1 × Rd+1 is a submanifold of odimension n. So we have the followingommutative diagram

F d ⊂_

��

Sn−1 × Rd+1 ω //

��

Th(U⊥
d,n)

��

⊃ V_

��
F d × R ⊂ Sn−1 × Rd+2 // Th(U⊥

d+1,n) ⊃ V ⊕ R.

(5.3.4)
Therefore we obtain the following geometri stabilization

Bc
d(R

∞−1 × R
d+1;Y+) → Bc

d+1(R
∞−1 × R

d+2;Y+) (5.3.5)
R

∞+d ǫ
←֓ F d ϕ

→ Y+ 7→ R
∞+d+1 ←֓ F d × R

1 ϕ′

−→ Y+.56



where ϕ′ : F × R1 → Y+, (f, t) 7→ ϕ(f).This stabilization is ompatible with its algebrai orrespondene. Namely for d ≥ 0, (5.3.4) and (5.3.5)ombined together, we obtain a ommutative diagram
Bc

d(R
∞−1 × Rd+1;Y+) //

��

Bc
d+1(R

∞−1 × Rd+2;Y+)

��
Ω∞−1 MTOd ∧Y+

// Ω∞−1 MTOd+1 ∧Y+.

(5.3.6)
De�ne

B(Y+) := colim
d

Bc
d(R

∞−1 × Rd+1;Y+),

Sect(Y+) := colim
d

Sectc
d(R

∞−1 × Rd+1;Y+).Consequently it follows that there is an indued map B(Y+)→ Sect(Y+) ≃ Ω∞−1 MO∧Y+,
Bc

0(R
∞−1 × R;Y+) //

≃

��

· · · // Bc
d(R

∞−1 × Rd+1;Y+) //

≃

��

· · ·
colim // B(Y+)

��
Sectc

0(R
∞−1 × R;Y+) //

≃

��

· · · // Sectc
d(R

∞−1 × Rd+1;Y+) //

≃

��

· · ·
colim // Sect(Y+)

≃

��
Ω∞−1 MTO0 ∧Y+

// · · · // Ω∞−1 MTOd ∧Y+
// · · · colim // Ω∞−1 MO∧Y+.The levelwise weak equivalenes imply that the indued map on olimits is a weak equivalene.Proposition 5.3.1. B(Y+) ≃ Sect(Y+) ≃ Ω∞−1 MO∧Y+.5.3.2 Proof of the Main TheoremOur goal in this setion is to de�ne a splitting of the Grassmannian funtor K. This asserts that thefuntor B we onstruted in the last setion splits K. The proof may shed light on the understanding ofthe splitting problem for arbitrary Γ-spaes.De�nition 5.3.2. We all a topologial spae Z a B-module if there exists a olletion of maps

ρF : Emb(F,R∞)× ZF → Zsuh that
• 1) for any F ′, F lie in some Fd and any di�eomorphism s : F → F ′, the diagram

Emb(F,R∞)× ZF
ρF // Z

Emb(F ′,R∞)× ZF ′

s∗×s∗

OO

ρF ′

88pppppppppppppommutes. 57



• 2) in the ase F = {pt}, the diagram
Emb(pt,R∞)× Zpt

ρpt //

∼=

��

Z

R∞ × Z

proj

77ooooooooooooo

.

ommutes.There exists a natural inlusion ι : Y+ → B(Y+) by taking F to be the one-point spae {∗}, namely
ι : Y+ →֒ B(Y+)

y 7→

(
R∞ ← {∗} → Y+

0 ←[ ∗ 7→ y

)
.One an see diretly ι is well-de�ned and ontinuous.Lemma 5.3.3. Let Y be an arbitrary spae and Z a B-module. Then any map f : Y+ → Z an beextended to a map f̄ : B(Y+)→ Z making the following diagram homotopy ommutative.

Y+
f //

ι

��

Z

B(Y+)

f̄

<<z
z

z
z

z

(5.3.7)
Proof. Given [ǫ, F, ϕ] with R∞ F? _

ǫoo ϕ //Y+ , f̄ is de�ned by f̄([ǫ, F, ϕ]) = ρF (ǫ, f ◦ ϕ). This map iswell-de�ned beause of the �rst ondition in De�nition 5.3.2. and therefore also ontinuous. The seondondition implies the homotopy ommutativity.Lemma 5.3.4. B(W+) is a B-module.Proof. De�ne Ed(W+) := (
∐

F∈Fd
Emb(F,R∞−1 × Rd+1)×Diff(F ) Map(F,W+)× F )/ ∼ .Two elements

(M F?
_ǫoo ϕ // W+, z) ∼ (M F1

? _
ǫ1oo ϕ1 // W+, z

′),are equivalent, if F = F1 ⊔ F2, ϕ(F2) = + and z = z′ ∈ F1. One an analogously de�ne a subspae
Ec

d(W+) ⊆ Ed(W+) by onsidering all the embeddings ǫ : F → R∞−1 ×Rd+1 suh that ǫ(F ) ⊆ K ×Rd+1for some ompat subset K ⊂ R∞−1.Similar to B(W+), we denote E(W+) := colim
d

Ec
d(R

∞−1 × Rd+1;W+), de�ne the map
ζ : E(W+)→ B(W+), [ǫ, F, ϕ, z] 7→ [ǫ, F, ϕ].For the given ontinuous map θ : F ′ → B(W+), let F̂ be the pull-bak of the diagram

F̂ //

��

E(W+)

ζ

��
F ′ θ // B(W+)58



By omposing with the evaluation map ev : E(W+) → W+, [ǫ, F, ϕ, z] 7→ ϕ(z), we obtain a ontinuousmap ϕ̂ : F̂ → W+. Set F̂0 := F̂\ϕ̂−1(+). Note that F̂0 → F ′ is a loally trivial �bre bundle, sine ζ inthe right olumn is so. Thus eah omponent of F̂0 is a manifold. The embedding is given by
ǫ̂ : F̂0 →֒ R∞ × R∞

∼=
−→ R∞

(ℓ, ǫF , ϕF , z) 7→ (ǫF ′(ℓ), ǫF (z)).Here the seond homeomorphism is
τ : R

∞ × R
∞ → R

∞, ((x1, x2, · · · ), (y1, y2, · · · )) 7→ (x1, y1, x2, y2, · · · ). (5.3.8)The restrition gives the morphism
ϕ̂| : F̂0 → W+

(ℓ, ǫF , ϕF , z) 7→ ϕF (z).We an now de�ne ρF ′ to be
Emb(F ′,R∞) × Map(F ′,B(W+))

ρF ′

−→ B(W+)

(ǫF ′ : F ′ → R∞ , θ : F ′ → B(W+)) 7→ [R∞ ǫ̂
←֓ F̂0

ϕ̂|
−→W+].It is well-de�ned, sine if given an α ∈ Diff(F ), write ℓ̂ = (ℓ, ǫF , ϕF , z), then

α(ℓ̂) = (ℓ, ǫF ◦ α
−1, ϕF ◦ α

−1, α(z)),whih implies that
ǫ̂(α(ℓ̂)) = (ǫF ′(ℓ), ǫF ◦ α−1(α(z))) = ǫ̂(ℓ̂),

ϕ̂(α)(ℓ̂) = ϕF ◦ α−1(α(z)) = ϕ̂(ℓ̂).The omposite f̄ ◦ ι : Y+ → B(W+) is homotopi to f . Beause for any y ∈ Y+, assume we an write
f(y) = [ǫ, F, ϕ] for some ǫ : F →֒ R∞. By onstrution f̄ ◦ ι(y) = [ǫ′, F × {0}, ϕ′] with ǫ′ : F × {0} →֒

R∞×R∞ → R∞. Sine all the F are of �nite dimensions, we an use the homotopy ρodd de�ned in setion5.1 to rotate ǫ′(F × {0}) by an isotopy into ǫ(F ), beause ρodd is also smooth. So the triangle (5.3.7) ishomotopy ommutative.Corollary 5.3.5. B(
∨

k≥0DkK(X)) is a B-module. �We an now state the main theorem of this hapter.Theorem 5.3.6. There is a weak homotopy equivalene
B(K(X)+) ≃ B(

∨

k≥0

DkK(X)).Proof. For eah m, k, reall �rst the m-th �ltration Km(X) := {ΣiVixi ∈ K(X)|Σ dimVi ≤ m}. Now weonstrut the map
γm : Km(X)+ → B(

m∨

k=0

DkK(X)).
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Given ξ =
∑r

i=1 Vixi ∈ Km(X)+, we set
Fξ =

∐

(k1,··· ,kr)

Grk1(V1)× · · · ×Grkr
(Vr), (5.3.9)with the disjoint union ranging over all ordered partitions of k of any length r ≥ 1. Note that di�erentomponents of Fξ may have di�erent dimensions. We want to thiken those omponents with dimensionslower than the maximal one suh that all the omponents of Fξ have the same dimension.Let

d := max
(k1,··· ,kn)

dim(Grk1(V1)× · · · ×Grkr
(Vr)),

F̃ξ :=
∐

(k1,··· ,kr)

Grk1(V1)× · · · ×Grkr
(Vr)× R

d−α(k1,··· ,kr),where
α(k1, · · · , kr) : = d− dim(Grk1(V1)× · · · ×Grkr

(Vr))

= d−
r∏

i=1

ki × (dimVi − ki).This new manifold F̃ξ has only �nitely many omponents. We now �x an embedding
e :
∐

k

∐

(k1,··· ,kr)

∐

ℓ

Grk1(R
∞)× · · · ×Grkr

(R∞)× R
ℓ →֒ R

∞.De�ne
γm(ξ) =

(
R∞ ←֓

∐
k F̃ξ →

∨m
k=0DkK(X)

e(W1, · · · ,Wr, t) ←[ (W1, · · · ,Wr, t) 7→ ΣWixi

)
.Here Wi ∈ Grki

(Vi) ⊂ Grki
(R∞), t ∈ Rd−α(k1,··· ,kr) and we denote the quotient map by
− : Kk(X)→ DkK(X), ΣWixi 7→ ΣWixi.Furthermore we have a ommutative square
Km−1(X)+

γm−1 //

ιm−1

��

B(
∨m−1

k=0 DkK(X))

��
Km(X)+

γm // B(
∨m

k=0DkK(X)).Here ιm−1 : Km−1(X)+ → Km(X)+ has been de�ned in Setion 5.1 .Thus all γm together indue a map
γ : K(X)+ → B(

∨

k≥0

DkK(X)).Notie that we have already de�ned the inlusion ι : K(X)+ →֒ B(K(X)+) in Lemma 5.3.3. And
B(
∨

k DkK(X)) being a B-module by Corollary 5.3.7. implies that there exists an extension γ̄ of γ:
K(X)+

γ //
� _

ι

��

B(
∨

k≥0DkK(X))

B(K(X)+)

γ̄

66mmmmmmmmmmmm
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And this γ̄ also preserves the �ltration. We denote the following omposite by
γ̄m : B(Km(X)+) →֒ B(K(X)+)

γ̄
−→ B(

∞∨

k=0

DkK(X)).By onstrution, this omposite fators through B(Km(X)+) → B(
∨m

k=0DkK(X)), we will denote thismap by γ̄m as well.Next we laim that the following diagram is weakly homotopy ommutative (i.e. after applying π∗, it isommutative):
Sect(DmK(X)) Sect(DmK(X))

B(Km(X)+)

(∗)

OO

γ̄m // B(
∨m

k=0DkK(X))

OO

B(Km−1(X)+)

ιm−1∗

OO

γ̄m−1 // B(
∨m−1

k=0 DkK(X))

OO

(5.3.10)
The map (∗) is the omposite B(Km(X)+)→ Sect(Km(X)+)→ Sect(DmK(X)).We should emphasize here we atually use the ommutative diagram

Sect(DmK(X)) Sect(DmK(X))

Sect(Km(X)+)

OO

// Sect(
∨m

k=0DkK(X))

OO

Sect(Km−1(X)+)

OO

// Sect(
∨m−1

k=0 DkK(X))

OO

(5.3.11)
Using Proposition 5.3.1. we replae B(Y+) by Sect(Y+) and study instead the diagram (5.3.11) beauseof the ommutativity of the square

π∗ Sect(Km(X)+) // π∗ Sect(
∨m

k=0DkK(X))

π∗B(Km(X)+)

∼=

OO

γ̄m∗ // π∗B(
∨m

k=0DkK(X)).

∼=

OO
(5.3.12)

We shall explain later there exists a splitting map on the top of this square similar to γ̄m∗
.The possible partition (k1, · · · , kr) ⊂ k fall into two ases:(i) kr = 0, then γ̄m−1 and γ̄m in (5.3.10) agree on the level m− 1 and m;(ii) kr 6= 0, then for any (W1, · · · ,Wr) ∈ Grk1(V1)× · · · ×Grkr

(Vr), by the onstrution of γ̄, ∑r
i=1Wixiwith xr = x0 is trivial in DkK(X), whih implies that the lower square is ommutative. For the uppersquare, given a manifold F whih embedds in R∞+d, F →֒ R∞+d, one obtains a setion by the sanning.So we only need to hek the ommutativity in terms of the setions.We assume given a ompatly supported setion s in Sect(Km(X)+)

s : R
∞+d → Th(U⊥

d,∞) ∧Km(X)+.61



Then the omposition
pr1 ◦s : R

∞+d → Th(U⊥
d,∞) ∧Km(X)+ → Th(U⊥

d,∞)is ontinuous. And it is homotopi to a map whih is transverse to the zero setion. Without lossof generality, we may assume s itself transverse to the zero setion BO(d) ⊆ Th(U⊥
d,∞). Let F :=

(pr1 ◦s)
−1(BO(d)), then the projetion F → BO(d) ∧ Km(X)+ → Km(X) is also ontinuous. This isbeause BO(d) is the zero setion of Th(U⊥

d,∞), it will not tend to the base point ∞ ∈ Th(U⊥
d,∞). Thisprojetion means that eah point in F orresponds to a label ξ in Km(X)+.De�ne the multipliation

◦n,n′ : Th(U⊥
d,n) ∧ Th(U⊥

d′,n′) → Th(Ud+d′,n+n′)

((V1, v1), (V2, v2)) 7→ (V1 ⊕ V2, v1 ⊕ v2)The family of all ◦n,n′ indues a natural map
◦ : Th(U⊥

d,∞) ∧ Th(U⊥
d′,∞)→ Th(U⊥

d+d′,∞+∞)
∼=
→ Th(U⊥

d+d′,∞)The seond map is indued by τ : R∞ × R∞ → R∞ whih was de�ned in (5.3.8).Sine γ(ξ) = sξ : R∞+d′

→ Th(U⊥
d′,∞) ∧

∨
k≥0DkK(X) is a setion, we obtain a map γ̄m:

(x, z)
� // (pr1 ◦s(x), sξ(z))

R∞+d × R∞+d′ // Th(U⊥
d,∞) ∧ Th(U⊥

d′,∞) ∧
∨

k≥0DkK(X)

◦∧id

��

R∞+d+d′

∼=

OO

γ̄m(s) //______ Th(U⊥
d+d′,∞) ∧

∨
k≥0DkK(X)

(5.3.13)
Then γ̄m(s) = ∗ for s ∈ Sect(Km−1(X)+). And γ̄m makes the top square in (5.3.11) ommutative.The reason is as follows: assume given a setion s ∈ Sect(DmK(x)), we write ξ = ΣVixi ∈ DmK(X),then Σ dimVi = m. In order to get a nontrivial element in DmK(X), the only hoie of F is F =

Grk1 (V1)× · · · ×Grkr
(Vr) with ki = dim Vi,whih is a one-point spae.We should �rst understand the sanning map for a one-point spae. This is essentially the embedding

ι : K(X)+ → Sect(K(X)+).We now identify SN ∼= RN ∪ {∞} and denote by DN the unit dis in RN . Then we de�ne for eah N asetion determined by ξ, namely
sξ

N : RN → Th(U⊥
0,N ) ∧K(X) ∼= SN ∧K(X)

z 7→

{
z

1−||z|| ∧ ξ, z ∈ DN ;

∞∧ ξ, z ∈ RN\DN .In the following diagram, the two vertial maps are the natural inlusions.
RN

s
ξ

N //

��

Th(U⊥
0,N ) ∧K(X) ∼= SN ∧K(X)

��

RN+1
s

ξ

N+1 // Th(U⊥
0,N+1) ∧K(X) ∼= SN+1 ∧K(X)62



The diagram is ommutative, and we de�ne ι(ξ) = colimN sξ
N . Now we return to the map Sect(DmK(X))→

Sect(DmK(X)) in (5.3.11). We laim that this map is the identity. Given s ∈ Sect(DmK(X)), let sN bethe omposite of the following maps
(x, z) � // (pr1 ◦s(x), γ(ξ)(z))

RN × R∞ // Th(U⊥
0,N) ∧ Th(U⊥

d′,∞−d′) ∧
∨

k≥1DkK(X)

◦∧id

��

RN+∞

∼=

OO

sN // Th(U⊥
d′,∞+N−d′) ∧

∨
k≥1DkK(X)By onstrution of Sect(Km(X)+)→ Sect(

∨m
k=0DkK(X)), the stabilization of sN is the image of s under

γ̃m. Namely on the top γ̄m(s) = colim sN = s, therefore it is the identity. So the diagram (5.3.11) isommutative, thus the top square in (5.3.10) is weakly homotopy ommutative.We prove by indution that γ̄ is a weak equivalene. Note K0(X)+ = K0(X) ⊔ +, D0K(X) =

K0(X)/K−1(X) = K0(X) ⊔ +. For m = 1, K1(X) = D1K(X), the map γ̄1 : B(K1(X)+) →

B(D0K(X) ∧D1K(X)) is the identity. Namely, given
s : R

∞ → Th(U⊥
d,∞−d) ∧K1(X)+, x 7→ pr1 ◦s(x) ∧ ξ.Write ξ = (V, x), then dim V ≤ 1, F = P(V ) = {∗} the projetive spae of a line V , whih is a one-pointspae, so γ(ξ) is the stable map of RN → Th(U⊥

0,N) ∧D1K(X).Thus γ̄1(s) is the stabilization of R∞+N → Th(U⊥
d,∞+N−d) ∧D1K(X), whih is s.Sine B represents an in�nite loop spae of the Thom spetrum, whih is a linear funtor, so it onvertso�brations into quasi-�bration, the assertion now follows by indution on m and the 5-lemma.Corollary 5.3.7. There is a weak homotopy equivalene

Ω∞−1MO ∧K(X)+ ≃ Ω∞−1MO ∧
∨

k≥0

DkK(X).

�Remark 5.3.8. • In the onstrution of the map γ̄ : B(K(X)+) → B(
∨

k≥0DkK(X)), we an seethat the splitting γ̄ fators through
B(K(X)+)→ B(

∐

k

∐

(k1,··· ,kr)

∐

ℓ

Grk1(R
∞)×· · ·×Grkr

(R∞)×R
ℓ;
∨

k≥0

DkK(X))→ B(R∞;
∨

k≥0

DkK(X)).Sine we do not know the homotopy type of B(
∐

k

∐
(k1,··· ,kr)

∐
ℓ Grk1(R

∞) × · · · × Grkr
(R∞) ×

Rℓ;
∨

k≥0DkK(X)), we replae it instead by B(R∞;
∨

k≥0DkK(X)) = B(
∨

k≥0DkK(X))), whosehomotopy type is already studied in the last setions.
• This fatorization phenomenon is already apparent in the ase of on�gurations, namely in the proofof the Snaith splitting we saw a fatorization of the "power" map (in this ase, with a non-disretebase point it is possible to onstrut the splitting map).

C(R∞;C(R∞;X)) // C(⊔nC
n(R∞);

∨
k≥1Dk(R∞;X)) // C(R∞;

∨
k≥1Dk(R∞;X).63



Also in this ase we replae C(⊔nC
n(R∞);−) by C(R∞;−) beause the homotopy type of C(R∞;−)is well understood.

• The proof indiates that if A(1) is well-behaved, for example it deomposes into manifolds of �nite-dimensions, the main theorem might be possibly generalized to an arbitrary Γ-spae A, namely thereis a weak equivalene
B(A(X)+)→ B(

∨

k≥0

DkA(X)).We shall explain this in the next hapter.
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Chapter 6Splitting of Segal Γ-SpaesWe have seen several examples of splittings of Segal Γ-spaes. One might ask if there is a funtor whihsplits an arbitrary Γ-spae. From what we have done, one might get some sort of hint how to generalizethese results to an arbitrary one. In this hapter, we will work with arbitrary Segal Γ-spaes and give ananswer in general.
6.1 Weight Filtration of A(X)The on�guration spae C(M,M0;X) has a natural �ltration given by the losed subspaes

Cn(M,M0;X) := (

n∐

k=0

C̃k(M)×Σk
Xk)/ ∼ .And K(X) has �ltration given by

Kn(X) = {ΣVixi ∈ K(X)|Σ dimVi ≤ n}.The �ltration of these two examples an be generalized to an arbitrary Segal Γ-spae A. We onstrut aweight �ltration of A(X).We assume that there exists a natural transformation ϑ between two Segal Γ-spaes, ϑ : A → N, i.e. foreah n we have maps ϑn : A(n)→ Nn suh that the following diagrams ommutes,
A(n)

ϑn //

≃

��

Nn

=

��
A(1)n

ϑn
1 // Nn.We all this ϑ the weight transformation. By onvention, N0 = 0, so A(0) has weight 0. For example inthe ase when A = SP , ϑn = id, and when A = K, ϑn(V1, · · · , Vn) = (dim V1, · · · , dimVn).65



Note that all the ϑn indue a map ϑ∗:
A(X) := (

∐
n A(n)×Σn

Xn)/ ∼

ϑ∗

��
SP (X) := (

∐
n N(n)×Σn

Xn)/ ∼ .We take the inverse images of all the ordered partitions of k under ϑ∗, and de�ne a subset of A(n)onsisting of all the elements of weight k,
Ak(n) :=

∐

(k1,··· ,kn)∈Nn,0≤Σki≤k

ϑ−1
n (k1, · · · , kn).So A(X) admits a k-th �ltration

Ak(X) := (
∐

n

Ak(n)×Σn
Xn)/ ∼,and the �ltration quotient are denoted by

Dk(A(X)) := Ak(X)/Ak−1(X).Take an arbitrary (a;x1, · · · , xn) ∈ Ak(X), so we have a ∈ Ak(n). In the ase k < n, the map ϑn :

Ak(n)→ Nn has the form ϑn(a) = (k1, · · · , kn). Sine eah ki ≥ 0 and Σki ≤ k < n, so some ki must be0. Assume then ϑn(a) = (kj1 , · · · , kjt
, 0, · · · , 0) with∑ kji

= ℓ ≤ k. The projetion to the �rst k elements
pr : n→ k, k ≥ j 7→ j, k ≤ j 7→ 0 gives a ommutative diagram

A(n) //

pr∗

��

Nn

pr∗

��
A(k) //

Nk.Let a′ = pr∗(a), then there exists (a′;x′1, · · · , x
′
k) ∈ Ak(X), suh that

Ak(n)×Σn
Xn ∋ (a;x1, · · · , xn) ∼ (a′;x′1, · · · , x

′
k) ∈ Ak(k)×Σk

Xk.This means in the ase k < n we an always �nd a representative (a′;x′1, · · · , x
′
k) in the same equivalenelass as (a;x1, · · · , xn), suh that its length is not greater than its weight.Before introduing the funtor B, it is neessary to �rst give the sketh of the proof of Proposition 2.3.4.in Chapter 2.Proof of Proposition 2.3.4. (1) We denote by p the projetion A(X) → A(X/Y ), �lter the base spae

A(X/Y ) by Pk = Ak(X/Y ) as above, and �lter the total spae A(X) by Qk = p−1(Pk). Let R be an openneighborhood deformation retrat of Y in X , i.e. r : X → X is a deformation leaving Y invariant andretratingR into Y . It is learX−Y an be identi�ed with X/Y−∗, so we have Ak(X−Y ) ∼= Ak(X/Y −∗).(2) For eah k ≥ 0, let
pr1 : n + k→ n, i 7→

{
i, i ≤ n;

0, i > n.66



pr2 : n + k→ k, j 7→

{
0, j ≤ 0;

j − n, j > n.They indue a homotopy equivalene pr1∗× pr2∗ : A(n + k)→ A(n)× A(k).The �bre of p : A(X) → A(X/Y ) at c = (a′;x1, · · · , xn) ∈ A(X/Y ) onsists of all the elements
(a;x1, · · · , xn, xn+1, · · · , xn+k) ∈ A(n + k) ×Σn+k

Xn+k for some k ≥ 0 suh that pr1∗(a) = a′ and
xn+1, · · · , xn+k ∈ Y . This �bre an be identi�ed with the set of all (pr2∗(a);xn+1, · · · , xn+k) ∈

A(k)×Σk
Xk, for all k ≥ 0. That is, p−1(c) is homeomorphi to A(Y ).For eah ξ ∈ Qk − Qk−1 = p−1(Pk − Pk−1), assume that ξ is represented by [a;x1, · · · , xi, yi+1, · · · , yn]for some i. Let pr1 : n → i, pr2 : n → n − i be the projetions de�ned similarly as above. Observethat the weight of a satis�es that ϑi ◦ pr1∗(a) = (k1, · · · , ki) and k1 + · · ·+ ki = k. For eah k there is ahomeomorphism

τ : Qk −Qk−1 → (Pk − Pk−1)× A(Y ) ,
[a;x1, · · · , xi, yi+1, · · · , yn] 7→ ([pr1∗(a);x1, · · · , xi], [pr2∗(a); yi+1, · · · , yn]).The inverse of τ is obtained by taking the homotopy inverse of pr1∗× pr2∗ : A(n)→ A(i)× A(n − i).(3) Take U to be the set onsisting of those points in A(X/Y ) that have at least one label in R, thende�ne

Uk := {[a;x1, · · · , xn] ∈ Ak(X/Y )| at least one xi lies in R} ⊆ Pk.for eah k. This is a neighborhood of Pk−1 in Pk, i.e. Pk−1 ⊂ Uk ⊂ Pk. Moreover, r indues a retration
r̄k : p−1(Uk)→ p−1(Pk−1) = Qk−1 and a retration rk : Uk → Pk−1 whih satis�es p ◦ r̄k = rk ◦ p.(4) Let b = [a;x1, · · · , xn] ∈ Pk with x1, · · · , xn ∈ X − Y . Then b ∈ Uk if at least one of the xi is in R.Consider the restrition of r̄k to the �bre:̄

rk : p−1(b)→ p−1(r(b))we write b = [a;x1, · · · , xm, zm+1, · · · , zn] ∈ Uk suh that x1, · · · , xm ∈ X−R and zm+1, · · · , zn ∈ R−Y .Let w ∈ p−1(b) be represented by
w = [α∗(a);x1, · · · , xm, zm+1, · · · , zn, y1, · · · , ys]for some s ∈ N, y1, · · · , ys ∈ Y and α : n→ n + s is the natural inlusion.

r̄k(w) = [α∗(a); r(x1), · · · , r(z1), · · · , r(y1), · · · , r(ys)] sending r(zi) in R to Y . Sine r̄k is homotopi tothe identity, when restriting to �bres, the indued map is also homotopi to identity. It follows that p isa quasi�bration. �6.2 Duality TheoremLet A be a group omplete Segal Γ-spae (i.e.π0A(1) is an abelian) and M be a ompat parallelizablen-dimensional manifold. Let us assume for now that ∂M 6= ∅. Assume W is an n-dimensional manifoldwithout boundary and ontaining M .De�ne A(X,Y ) := A(X/Y ). We have known that h∗(X,X0; A) = π∗(A(X,X0)) is a homology theoryfor all topologial pairs. And reall that the ohomology represented by A is given by hn(X,X0; A) =

colimk[Σk(X,X0),A(Sn+k)]. If A represents an Ω-spetrum, then hn(X,X0; A) = [(X,X0),A(Sn)].67



Theorem 6.2.1. Assume A is a group omplete Segal Γ-spae,M0 ⊆M ⊆W are manifolds of dimension
m, M is ompat and W has no boundary, then there is a homotopy equivalene

s : A(M,M0)→ Sect(W\M0,W\M ; A(Dm, ∂D
m)).Thus we have Poinaré duality:

s∗ : hp(M,M0; A) ∼= hm−p(W\M0,W\M ; A).This is a speial ase of Satz 4.5 in [Bö2℄. The idea is as follows. Suppose that M has a Riemannianmetri d. If ǫ > 0, we write
Aǫ(M,M0) := {(a;x1, · · · , xn) ∈ A(M)| eah xi is at least 2ǫ away from the boundary M0}.By sanning M\M0 using diss of radius ǫ, s(ξ) maps x to the base point for x su�iently nearM0. Thisgives rise to a map Aǫ(M,M0)→ Sect(W\M0,W\M ; A(Dm, ∂Dm)). As ǫ→ 0, one obtains in the limit amap s : A(M,M0)→ Sect(W\M0,W\M ; A(Dm, ∂Dm)).Sine A onverts o�brations to quasi-�brations, h∗(X ; A) := π∗(A(X)) is a homology theory for anyonneted X . By Theorem 2 in [MD℄, we have

A(M,M0)
≃
→ Sect(W\M0,W\M ; A(Dm, ∂D

m)).In the ase W is parallelizable, the diagram is ommutative, and we have the isomorphism
πpA(M,M0)

∼=

��

// πp Map(W\M0,W\M ; A(Dm, ∂Dm))

∼=

��
[Sp ∧ (W\M0,W\M),A(Sm)]

∼=

��
hm(Sp ∧ (W\M0,W\M); A)

∼=

��
hp(M,M0; A)

∼= // hm−p(W\M0,W\M ; A).Example 6.2.2.
πpK(M)

∼= //

∼=

��

πp Map(M,K(Sm))
∼= // [Sp ∧M,K(Sm)]

∼=

��
kop(M)

∼= // kom−p(M)The left hand side is the onnetive real K-homology theory, the right hand side is the real onnetive
K-ohomology theory.6.3 Splitting SpaesConsider the addition map µ and the projetion map p:68



µ : 2→ 1 : 0 7→ 0, 1 7→ 1, 2 7→ 1;

s : 2→ 1 : 0 7→ 0, 1 7→ 1, 2 7→ 0.They indue the following maps µ2n := s−1
n ◦ A(µ)n ◦ s2n, p2n := s−1

n ◦ A(p)n ◦ s2n de�ned by theompositions in the diagrams
A(2n)

µ2n //

≃s2n

��

A(n)

≃sn

��

A(2n)
p2n //

≃s2n

��

A(n)

≃sn

��
A(2)× · · · × A(2)

A(µ)n

// A(1)× · · · × A(1) A(2)× · · · × A(2)
A(s)n

// A(1)× · · · × A(1)For eah a ∈ A(n), we de�ne the splitting spae of a to be spl(a) := µ−1
2n (a) ⊆ A(2n) and the projetivesplitting spae of a to be pspl(a) := p2n spl(a).In ase of A(2) = A(1)× A(1), for example when A is an abelian group, we have the equation

(a1, · · · , an) = a ∈ A(n)

((b′1, b
′′
1), · · · , (b′n, b

′′
n)) = b ∈

_

OO

_

��

A(2n)

µ2n

OO

p2n

��
(b′1, · · · , b

′
n) = b′ ∈ A(n)where eah ai an be regarded as the "sum" of b′i and b′′i , partiularly in most examples b′i and b′′i areuniquely determined by eah other.Example 6.3.1. Typial examples of this very good ase are A = N or K. For A = K, given b =

((V ′
1 , V

′′
1 ), · · · , (V ′

n, V
′′
n ) ∈ spl(a), then a = µ(b) = (V ′

1 ⊕ V
′′
1 , · · · , V

′
n ⊕ V

′′
n ) and b′ = (V ′

1 , · · · , V
′
n).6.4 Splitting of Segal Γ-SpaesLet B be the funtor de�ned in Chapter 5. Our main theorem in this hapter now goes as follows.Theorem 6.4.1. Assume A(n) is a manifold for eah n and pspl(a) ⊂ A(n) is a �nite-dimensionalmanifold for eah a ∈ A(n). Then for any onneted spae X , B splits the Segal Γ-spae A, i.e. there isa weak homotopy equivalene

B(A(X)+)→
∨

k≥0

B(DkA(X)).Proof. As before, we are going to onstrut the inlusion map ι and the "power" map f suh that thefollowing diagram is homotopy ommutative:
A(X)+� _

ι

��

f // B(
∨∞

k=0DkA(X))

BA(X)+

f̄
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First we have the inlusion
ι : A(X)+ →֒ B(A(X)+)

(a;x1, · · · , xn) 7→

(
R∞ ← F = {∗} → A(X)+
0 ←[ ∗ 7→ (a;x1, · · · , xn)

)We �x an embedding e :
∐

n A(n)→ R∞. For eah s, we de�ne fs on the s-th �ltration As(X)+,
fs : As(X)+ −→ B(

∨s
k=0DkA(X))

(a;x1, · · · , xn) 7→

(
R∞ ǫ

←
∐

k F
ϕ
−→

∨s
k=0DkA(X)

e(a′) ←[ a′ 7→ (a′;x1, · · · , xn)

)Here F varies over all the pspl(a) ⊆ Ak(n) ⊂ A(n) for all n. That is, F has weight k for 0 ≤ k ≤ s.And (a′;x1, · · · , xn) is the image of (a′;x1, · · · , xn) under the quotient Ak(X)→ DkA(X). So all the fsindues a map
f : A(X)+ → B(

∞∨

k=0

DkA(X)).To onstrut f̄ : BA(X)+ → B(
∨∞

k=0DkA(X)), we shall apply the similar idea as above to de�ne
f̄s : B(As(X)+)→ B(

s∨

k=0

DkA(X)).Assume given β = (R∞ F ′ǫoo ϕ //As(X)) ∈ B(As(X)). For the given ontinuous omposition fs ◦ ϕ :

F ′ → As(X)→ B(
∨s

k=0DkA(X), we let F̂ be the pull-bak of the diagram
F̂ //

��

E(
∨s

k=0DkA(X))

��
F ′ // B(

∨s
k=0DkA(X)).Denote the omposite map by ϕ̂ : F̂ → E(

∨s
k=0DkA(X))→

∨s
k=0DkA(X), where the seond map is theevaluation map ev : E(

∨s
k=0DkA(X)) →

∨s
k=0DkA(X), [ǫF , F, ϕF , z] 7→ ϕF (z). Set F̂0 := F̂\ϕ̂−1(+).The morphisms are given by

f̄s(β) =

(
R∞ ∼= R∞ × R∞ ǫ̂

← F̂0
ϕ̂
−→

∨s
k=0DkA(X)

(ǫ(ℓ), ǫF (z)) ←[ (ℓ, ǫF , F, ϕF , z) 7→ ϕF (z)

)It is straightforward to hek f̄s is a well-de�ned map and hene indues the required map f̄ .Consider the following homotopy ommutative diagram
Sect(DmA(X)) Sect(DmA(X))

B(Am(X)+)

OO

f̄m // B(
∨m

k=0DkA(X))

OO

B(Am−1(X)+)

OO

f̄m−1 // B(
∨m−1

k=0 DkA(X))

OO
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We laim that eah f̄m is a homotopy equivalene. When m = 1, the bottom map f̄1 ≃ id, sine in thisase A1(X) = D1A(X), given
β = (R∞ F ′ǫoo ϕ //A1(X)+) ∈ B(A1(X)+)

F̂ ≃ F ′×R∞×D1A(X)+, we write ϕ(ℓ) = (a;x1, · · · , xn) ∈ A1(X), by onstrution, F = pspl(a) ⊆ A1(n).For eah (a;x1, · · · , xn) ∈ A1(X)+, we know from the last setion that there is an equivalene lass
(a′;x′) ∈ A1(X) of length 1. Therefore F ≃ pspl(a′) = a′ ∈ A1(1) whih is ontratible, similar as theproof in the last hapter, it follows that f̄1 ≃ id.It is almost the same argument as in the proof of Theorem 5.3.6., so we skip the rest of the proof.Remark 6.4.2. (i) In the onstrution of the map f̄ : BA(X)+ → B(

∨∞
k=0DkA(X)), it is lear for eah

m ≥ 1, the omposite BAm(X)+ →֒ BA(X)+
f̄
→ B(

∨∞
k=0DkA(X)) fators up to homotopy through theinlusion

B(

m∨

k=0

DkA(X)) →֒ B(

∞∨

k=0

DkA(X)).This is equivalent to say that the omposite is null-homotopi,
BAm(X) →֒ BA(X)

f̄
→ B(

∞∨

k=1

DkA(X))→ B(

∞∨

k=m+1

DkA(X)).(ii) If we denote f̄k the omposite map
f̄k : BA(X)+ → B(

∞∨

k=0

DkA(X))→ BDkA(X),where the seond map is the projetion onto the k-th wedge summand, then the omposite BAk(X)+ →֒

BA(X)+
f̄k

→ BDkA(X) is homotopi to the natural projetion
BAk(X)+ → B(Ak(X)+/Ak−1(X)+) = BDkA(X).6.5 Homotopy Calulus of Segal Γ-SpaesWe generalize Segal Γ-spae and investigate Goodwillie's Taylor tower of the generalized Γ-spaes A : Γ→

Top∗. Note we denote its extension also by A : Top∗ → Top∗. And we try to �nd examples of quadrati
Γ-funtors. Reall that a funtor is of degree n if it sends a strongly oartesian (n+1)-ube to a artesianube, more details see Appendix B.Lemma 6.5.1. Segal Γ-spaes are linear.Proof. Regard Γ as a subategory of Top∗ and its objets as disrete spaes. For the original Γ spae, weonsider �rst the seond ross e�et cr2A,

cr2A(n1,n2) = thofib




A(n1 ∨ n2) → A(n1)

↓ ↓

A(n2) → A(0)
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Sine A(0) ≃ ∗, we have A(n1 ∨ n2) ≃ A(n1) × A(n2). It implies that cr2A ≃ ∗, and analogously
crkA ≃ ∗, for k ≥ 3. So we see that A is linear.To show its extension A : Top∗ → Top∗ is linear orresponds to show that A(X) is of the form Ω∞(E∧X)for some spetrum E. From Proposition 1.3.4. in Chapter 1 we know that A(X) has the weak homotopytype of ΩA(ΣX), whih implies that A(X) ≃ Ω∞A(Σ∞X) ≃ Ω∞(A(S) ∧X).Note that this results only works for onneted X or group omplete A. Now we want to generalize Segal'snotion of Γ-spaes by removing from now on the ondition A(n) ≃ A(1)n. Assume only that A is redued,namely A(0) ≃ ∗. And assume the generalized Γ-spae A takes value in the ategory of spaes whih havethe homotopy type of �nite CW omplexes and the π0 are groups. Then the following proposition tellsus the relationship between the degree of Γ-spaes and that of their extensions generally, i.e. the abovelemma works as well for higher degrees of A.Proposition 6.5.2. If A is a Γ-spae of degree k, its extension is also of degree k.Proof. Assume deg(A) ≤ k, it follows that crkA(n1, · · · ,nk) : Γk → Top∗ is symmetri multi-linear.In ([Wo℄, Theorem 1.5.), Woolfson proved that if X has the homotopy type of �nite CW-omplex, A(X) ishomeomorphi to A′(X), where A′(X) is the realization of the simpliial spae whose spae of k-simpliesis ∐

Si∈Γ

A(S0)×Mor(S0, S1)× · · · ×Mor(Sk−1, Sk)×XSk .By ([Wo℄, Lemma 1.9.), if X is the simpliial spae [k] 7→ Xk and A(X) the simpliial spae [k] 7→ A(Xk),then A(|X |) = |A(X)|.Sine A lands in the ategory of spaes with π0 being groups, A is a π∗-Kan funtor in the sense of Oats([Oa℄, De�nition 4.4., Lemma 4.8.), hene crk Ext A ≃ Extk(crkA).It follows that we an alulate the ross e�ets dimensionwise. By the o-end onstrution, the extensionof crkA(n1, · · · ,nk) on spaes has the form crkA : Topk
∗ −→ Top∗:

(X1, · · · , Xk) 7→

∫ (n1,··· ,nk)∈Γk

crkA(n1, · · · ,nk)× (Xn1
1 × · · ·X

nk

k )

=

∫ nk∈Γ

Xnk

k × · · ·

∫ n1∈Γ

crkA(n1, · · · ,nk)×Xn1
1 .We �rst �x (X2, · · · , Xk), and let X1 vary, then the n-fold integral an be written as the n-fold iterationof a 1-fold integral. And sine crkA(n1, · · · ,nk) is multi-linear, in partiular it is linear with respet to

n1, by the same trik as lemma 6.5.1., crkA(X1, · · · , Xk) is linear with respet to X1, and analogouslyfor Xi's. Therefore crkA(X1, · · · , Xk) is also symmetri multi-linear, whih implies that the extension Ais of degree k.Example 6.5.3. Our motivating example derives from the generalization of on�guration spaes. De�ne
T (0) := {+1,−1}, a single-point spae of a pair,

T (1) :=
∐

n

C̃n(C2(R∞)) =
∐

n

C̃n(BΣ2), ordered on�guration spae of pairs in R∞,...
T (k) :=

{
(ξ1, · · · , ξk) ∈ T (1)k ξi ∩ ξj = ∅ for i 6= j

}
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One an hek this is a Segal Γ-spae and we laim that T is a polynomial funtor of degree 2:
cr2T (n1,n2) = thofib



T (n1 ∨ n2) → T (n1)

↓ ↓

T (n2) → T (0)


is nontrivial, beause the total homotopy �ber is equivalent to the on�gurations of all the pairs suh thatthe pair does not lie in the same T (ni), i = 1, 2.

cr3T (n1,n2,n3) = thofib T (n1 ∨ n2 ∨n3) //

��

vvmmmmmmmmmmmmm
T (n2 ∨ n3)

��

xxrrrrrrrrrr

T (n1 ∨ n3) //

��

T (n3)

��

T (n1 ∨ n2) //

vvmmmmmmmmmmmmm
T (n2)

xxrrrrrrrrrr

T (n1) // T (0)is trivial, sine the on�guration of pairs in T (n1∨n2∨n3) lies either in T (n2∨n3), T (n1∨n3), T (n1∨n2)or their ommon parts, so we see that the 3-ube is a homotopy pullbak , whih follows that deg(T ) ≤ 2,and so is its extension.The quadrati funtor D2T (X) will have the form
D2T (X) ≃

∐

n

Cn(X∧2 ∧Σ2 EΣ2+) →֒ Ω∞Σ∞(X ∧X ∧ EΣ2+)Σ2 = Ω∞Σ∞(X ∧X)hΣ2 .Example 6.5.4. Another example is a generalization of the in�nite symmetri produt. Let X be abased onneted spae, de�ne
Qu(X) :=

{
{(x1, y1), · · · , (xn, yn)} ∈

⋃

n

SPn(SP2(X))

}
/ ∼ .

{(x1, y1), · · · , (xn, yn)} ∼ {(x1, y1), · · · , (̂xi, yi), · · · , (xn, yn)}, if xi = ∗ or yi = ∗.It is straigtforward to hek that Qu(∗) = ∗ and Qu(f) : Qu(X)→ Qu(Y ) is a homotopy equivalene if
f : X → Y is so. And in partiular there is an isomorphism Qu(S0) ∼= N whih is given by the ardinalityof nonbasepoint elements.Denote S0 ∨ S0 = {∗, u1, u2}, we then have the resulting map

Qu(S0 ∨ S0)→ N× N× N, n1(u1, u1) + n2(u1, u2) + n3(u2, u2) 7→ (n1, n2, n3).It implies that Qu(X) is not linear, but a quadrati funtor.
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Appendix AGromov's h-prinipleWe will give an introdution and reall some results of Gromov [Gr℄ whih will be neessary for theunderstanding of the proof of Proposition 5.2.5.In [Gr℄ Setion 2.2 Gromov onsidered a general ase, namely the set-theoreti sheaf. For a topologialsheaf, it is understandable that the restrition map indued by inlusions is ontinuous. For a set-theoretisheaf, there are no open sets, but still he an de�ne the notion of quasi-ontinuous sheaves.Reall that a sheaf over an n-dimensional manifold M , by de�nition, assigns a set Ψ(U) to eah opensubset U ⊂ M and a map Ψ(ι) : Ψ(U) → Ψ(U ′) to eah inlusion ι : U ′ ⊂ U suh that the followingaxioms are satis�ed.(1) Funtoriality. If ι′ : U ′′ ⊂ U ′ and ι : U ′ ⊂ U are two inlusions, then Ψ(ι ◦ ι′) = Ψ(ι′) ◦Ψ(ι).(2) Loality (Uniqueness). If two elements ψ1 and ψ2 of Ψ over U are loally equal, then they are equal.Here the loal equality means that there exists a neighborhood U ′ ⊂ U of every point u ∈ U suh that
ψ1|U ′ = ψ2|U ′ .(2') Loality (Existene). If {Ui} is an open overing of U , and if we have elements ψi ∈ Ψ(Ui) satisfying
ψi|Ui∩Uj

= ψj |Ui∩Uj
for eah i, j, then there exists an element ψ ∈ Ψ(U) suh hat ψ|U = ψi for eah i.The axiom (2) and (2') show that every sheaf Ψ is uniquely de�ned by Ψ(Ui) for any base of open subsets

Ui ⊂ M . Next we an extend Ψ to non-open subsets C ⊂ M . We de�ne Ψ(C) to be the diret limit of
Ψ(U) over all neighborhoods U of C. In partiular, one an also de�ne the stalk Ψ(v) for all v ∈M . Thenone an restrit Ψ to a sheaf over C, denoted by Ψ|C and de�ne (Ψ|C)(D) to be the diret limit of Ψ(O)for all open subsets D ⊂ C and for O ⊂M . Thus the sheaf Ψ|C has the same stalks over the point c ∈ Cas Ψ.De�nition A.0.5. (Spanier-Whitehead [SpWh℄, page 336; [Gr℄, page 36) Let A be any set. By a quasi-topology on A we mean a rule whih, for every topologial spae P , selets a lass of funtions P → A, tobe alled quasi-ontinuous in [SpWh℄, subjet to the following formal properties.(i) If µ : P → A is quasi-ontinuous and ϕ : Q→ P is a ontinuous map, then the omposite µ◦ϕ : Q→ Ais quasi-ontinuous. And every onstant funtion P → A is quasi-ontinuous.(ii) If a map µ : P → A is loally quasi-ontinuous, then it is quasi-ontinuous. Loally quasi-ontinuousmeans that for every point in P there exists a neighborhood U ⊂ P suh that µ|U : U → A is quasi-ontinuous. 75



(iii) Let P be overed by two losed (or two open) subsets P1 and P2. If a map µ is quasi-ontinuouson P1 and P2, then it is quasi-ontinuous on P . Therefore, if P =
⋃k

i=1 Pi is a overing of P by �nitelymany losed (or open) subsets, then a map µ : P → A is quasi-ontinuous if and only if µ|Pi
: Pi → A isquasi-ontinuous for all i = 1, · · · , k.In general, if A has a topology, by assigning the funtions P → A to be the ordinary ontinuous maps,we obtain a quasi-topology on A. It is a muh weaker struture. A map between quasi-topologial spaes

α : A → B is alled quasi-ontinuous if α ◦ µ : P → B is quasi-ontinuous for all quasi-ontinuous map
P → A from a topologial spaes P .De�nition A.0.6. A set-valued sheaf Ψ on M is alled quasi-ontinuous if every set Ψ(U) for U ⊂M isendowed with a quasi-topology suh that the restrition maps Ψ(ι) indued by inlusions ι : U ⊆ V arequasi-ontinuous maps Ψ(V )→ Ψ(U).Let Open(M) be the ategory of open submanifolds of M with inlusions as morphisms and QTOP bethe ategory of quasi-topologial spaes with quasi-ontinuous maps as morphisms. Then we an regard aquasi-ontinuous sheaf Ψ as a ontravariant funtor Ψ : Open(M)→ QTOP. A homomorphism betweenquasi-ontinuous sheaves over M , say α : Φ → Ψ, is a olletion of quasi-ontinuous maps αU : Φ(U) →

Ψ(U) for all open U ⊂M whih ommute with the restrition maps, that is αU ′ ◦Φ(ι) = Ψ(ι) ◦αU for all
ι : U ′ ⊂ U . Finally, one de�nes a subsheaf Ψ′ ⊂ Ψ by given a subset Ψ′(U) ⊂ Ψ(U) for all U ⊂ V suhthat Ψ′ satis�es (2) and (2').The standard de�nitions of homotopy theory (e.g. the weak homotopy equivalene) obviously generalizeto quasi-topologial spaes.We write Diff(M) for the pseudogroup of di�eomorphisms of M , whih is the set Λ of triples (U, f, U ′)with U an open set of V and f : U → U ′ a di�eomorphism. This pseudogroup Λ satis�es the followingproperties:(i) For every open set U in V , (U, id, U) is in Λ.(ii) If (U, f, U ′) is in Λ, then so is (U ′, f−1, U).(iii) If (U, f, U1) and (U ′, f ′, U ′

1) are in Λ, and the intersetion U1 ∩ U ′ is not empty, then the restritedomposition (f−1(U1 ∩ U ′), f ′ ◦ f) with f ′ ◦ f : f−1(U1 ∩ U ′)→ f ′(U1 ∩ U ′) is in Λ.By a Diff(M)-ation on the sheaf Ψ we mean there is a family of morphisms {Ψf}, where Ψf : Ψ(U ′)→

Ψ(U). If all Ψf are homeomorphisms, we say Ψ is Diff(M)-invariant, or equivariant. Note that if we take
U to be M itself, then the ordinary di�eomorphism group Diff(M) is a proper subset of Diff(M).For any topologial spae P and a topologial sheaf Ψ we de�ne a new quasi-ontinuous sheaf ΨP on
M × P , whih we all the parametri sheaf : its elements are the ontinuous families of elements of Ψparametrized by P . To give the de�nition we only need to speify ΨP (U × R) for open sets U ⊆ M ,
R ⊆ P . Set ΨP (U ×R) := (Ψ(U))R, the set of quasi-ontinuous maps with the following quasi-topology:a map Q→ (Ψ(U))R is quasi-ontinuous if and only if the map Q×R→ Ψ(U) is ontinuous.Next we apply this to P = M and restrit the parametri sheaf ΨM over M × M to the diagonal
∆ ⊆ M ×M . The resulting sheaf over ∆ ∼= M is denoted by Ψ♯. So Ψ♯ assoiates for eah z ∈ U agerm ψz in the stalk Ψ(z). Every element of Ψ orresponds to a unique onstant family of elements withthe parameter spae M . We obtain an injetive homomorphism D : Ψ → Ψ♯ whih makes Ψ a subsheaf
D(Ψ) = Ψ in Ψ♯. 76



For example, Ψ(U) =
∐

F Emb(F,U)/Diff(F ), where F varies over d-dimensional manifolds withoutboundary. This sheaf has a topology de�ned in [RW℄. Note that an element in Ψ♯(U) assigns to eah
z ∈ U a germ ψz of d-submanifolds in U . That is, ψz is represented by an equivalene lass α ∈ Ψ(U),where U is a neighborhood of z. The equivalene relation is as follows. Let U ′ be another neighborhoodof z, then an element β ∈ Ψ(U ′) is equivalent to α if there exists a neighborhood U ′′ of z whih lies in
U ∩ U ′ suh that the restrition of α and β on U ′′ are the same. For eah z, we an hoose a spei� U ,whih is under the exponential map the image of open dis DzU ⊂ TzU in the tangent spae to z. Thisneighborhood U ∼= Rn depends on the hoie of the metri. Then Ψ♯(U) an be identi�ed with the sheafof setions of ertain bundle on U . The �bre over eah z ∈ U is the spae of germs of submanifolds of Rnat 0, namely Ψ(0 ∈ Rn). By de�nition, Ψ(0 ∈ Rn) = colim

0∈U⊆Rn
Ψ(U). Sine any ǫ-neighborhood of 0 ∈ Rnan be strethed to all of Rn, the restrition map Ψ(Rn)→ Ψ(0 ∈ Rn) is a homotopy equivalene.If E → X is an n-dimensional vetor bundle and if Ψ is a topologial sheaf, then there is an assoiated�ber bundle Ψfib(E) → X whose �ber over x is Ψ(Ex) where Ex is the �ber of x in the vetor bundle

E → X . So we an apply this onstrution to the tangent bundle TM → M . Then Ψfib(TM) an beonstruted by letting Vn(TM) be the frame bundle of M , a prinipal GLn-bundle. Note that thereis a group homomorphism GLn → Diff(Rn) into the ordinary group of di�eomorphism and GLn atsontinuously on Ψ(Rn) if Ψ is Diff(Rn)-invariant. So we an form
Ψfib(TM) := Vn(TM)×GLn

Ψ(Rn). (A.0.1)Sine Ψ(Rn) ≃ Ψ(0 ∈ Rn), Ψ♯(M) an be identi�ed with the spae of setions of the bundle Ψfib(TM)obtained by applying Ψ to the tangent bundle. That is
Ψ♯(M) ≃ Sect(Ψfib(TM)→M).The omposition

Ψ(M)
D
−→ Ψ♯(M) ≃ Sect(Ψfib(TM)→M) (A.0.2)is homotopi to a "sanning map", more details are given in Chapter 5.De�nition A.0.7. A sheaf Ψ satis�es the h-priniple if D : Ψ→ Ψ♯ is a weak homotopy equivalene.De�nition A.0.8. A topologial sheaf Ψ on M is alled miro�exible if for eah pair of ompat sets

C′ ⊂ C in M , the restrition map Ψ(C)→ Ψ(C′) is a miro�bration.A miro�bration is a map p : E → B suh that for eah ommutative right square in the diagramwith A a ompat polyhedron, there is an ǫ > 0 and a lifting L : A × [0, ǫ] → E, suh that p ◦ L =

H |A×[0,ǫ], L|A×{0} = ℓ and the diagram ommutes.
A× {0}

��

A× {0}
ℓ //

��

E

p

��
A× [0, ǫ]

L

44iiiiiiiiii
� � // A× [0, 1]

H // B.Theorem A.0.9. ([Gr℄, setion 2.2.2) D is a weak homotopy equivalene ifM is open (i.e. no omponentis ompat), Ψ is Diff(M)-invariant and miro�exible. �This theorem is ruial for the proof of our main result Theorem 5.3.6.77
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Appendix BHomotopy Calulus of Funtors: anOverviewThe homotopy alulus of funtors is a method of desribing spaes up to weak homotopy equivaleneby using ategories and funtors (developed by T. Goodwillie). Namely, one obtains information about aspae by viewing the spae as a speial value of suitable funtor, analyzes the funtor using "alulus".We give a brief summary of the homotopy alulus of funtors whih we used in Chapter 6. For a moredetailed disussion see [Go1℄,[Go2℄ and [Go3℄.We assume given a homotopy funtor F : C → D between two nie topologial model ategories in whihone an do homotopy. One wishes to understand the homotopy type of F (X), perhaps for some partiular
X ∈ C. The idea is to use the funtoriality as X varies, to onstrut a anonial polynomial "resolution"of F (X) as a funtor of X . In the ordinary di�erential alulus, the entral idea is to approximate thefuntions by linear funtions, and here analogously, the entral idea is to approximate funtors by "linear"funtors.A homotopy funtor F is alled linear if the following holds:1) F takes homotopy pushout squares to homotopy pullbak squares (all F exisive);2) F (∗)→ ∗ is a weak homotopy equivalene (all F redued).Eah linear funtor from Top∗ to Top∗ has the form L(X) = Ω∞(C ∧ X) for a spetrum C (it is alledthe oe�ient of the linear funtor ).There is a standard proess, whih is alled the linearization, for turning a redued funtor F into a linearfuntor L. Roughly speaking, there is a natural map F (X)→ ΩF (ΣX), and one iterates this proess toform the linearization, the homotopy olimit of ΩnF (ΣnX) as n runs to in�nity. If F is linear then L isequivalent to F . We shall explain this linearization proess in the next part.One the other hand, one an view the exision ondition as a property of funtors de�ned on 2-dimensionalubial diagrams. Generalizing this, we all a funtor polynomial of degree at most n if it satis�es similarondition on (n + 1)-dimensional ubial diagrams. And it turns out that for any F there is a universaln-exisive funtor under F . We denote this funtor PnF and all it the n-th Taylor polynomial of F .79



We reall �rst the notion of ubial diagrams ([Go2℄, [Ku℄). Let S be a �nite pointed set. The poset ofpointed subsets of S is P(S) = {T ⊂ S and T ontains the base point}. It is a partially ordered set viapointed inlusion, hene is a small ategory. Also, write P0(S) for the full subategory of all subsets T of
S suh that the omplementary of the base point in T is nonempty, and P1(S) for the full subategory ofall proper subsets of S. Often S is given by the onrete set n = {0, 1, · · · , n} with 0 as base point.De�nition B.0.10. (1) An n-ube in C is a funtor X : P(n)→ C.(2) An n-ube X is (homotopy) artesian if the natural omposition

X (0)→ lim
T∈P0(n)

X (T )→ holim
T∈P0(n)

X (T )is a weak equivalene. Dually we say that an n-ube in D is (homotopy) oartesian if the naturalomposition
hocolim
T∈P1(n)

X (T )→ colim
T∈P1(n)

X (T )→ X (n)is a weak equivalene.(3)A strongly (homotopy) oartesian n-ube X is one in whih every 2-dimensional fae is oartesian.(This de�nition implies that the n-ube itself as well as every fae of dim ≥ 2 is also oartesian.)De�nition B.0.11. F : C → D is alled n-exisive (or polynomial of degree at most n) , denoted by
deg(F ) ≤ n) if, whenever X is a strongly oartesian (n+ 1)-ube in C, F (X ) is a Cartesian ube in D.Example B.0.12. F : C → D is 1-exisive (linear) if and only if F takes (homotopy) pushout squares to(homotopy) pullbak squares.Exisive approximations are onstruted by making for every X ∈ C a "nie" strongly oartesian n-ube
X (X) : P(n) → C and then investigating the resulting n-ubes F (X (X)). If all the ubes F (X (X)) areCartesian, then F is (n − 1)-exisive; otherwise F (X (X)) gives rise to a new funtor Tn−1(F ) whih isslightly loser to being Cartesian on X (X).We review the onstrution of Kuhn [Ku℄ and de�ne the join of an objet of C and a �nite set.De�nition B.0.13. For X ∈ ob(C) and T a �nite set, de�ne X ∗ T , the join of X and T to be thehomotopy o�ber of the folding map X ∗ T = hocof(

∐
T X → X).Note that for T ⊂ n, the assignment T 7→ X ∗ T de�nes a strongly oartesian n-ube X . In the ase

n = 2, we have the pushout square
X

��

// CX

��
CX // ΣXDe�nition B.0.14. De�ne Tn−1F : C → D to be Tn−1F (X) := holim

T∈P0(n)
F (X ∗ T ).For example,

T1F (X)) = holim




F (CX)

↓

F (ΣX)

↑

F (CX)



≃ holim




∗

↓

F (ΣX)

↑

∗



≃ ΩF (ΣX).
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There is a natural transformation tn−1(F ) : F → Tn−1F . If F is (n − 1)-exisive, this is an equivalene.If not, the (n− 1)-exisive approximation to F is given by the homotopy olimit of the diagram
Pn−1F := hocolim

{
F → Tn−1F → T 2

n−1F → · · ·
}
.From the last example we know that

P1F (X) ≃ hocolimn ΩnF (ΣnX).In partiular, if F is the identity funtor id : Top∗ → Top∗, it follows that
P1(id)(X) ≃ Ω∞Σ∞X = QX.Sine F = T 0

n−1F , the funtor Pn−1F omes equipped with a natural transformation F
pn−1F //Pn−1F .Furthermore, there are transformations TnF → Tn−1F indued by the inlusion of ategories P0(n) →

P0(n+ 1), whih extends to give a ommutative diagram ([Go3℄)
F

tnF // TnF
tnTnF //

qn,1

��

T 2
nF

tnT 2
nF //

qn,2

��

· · · PnF

qnF

��
F

tn−1F // Tn−1F
tn−1Tn−1F// T 2

n−1F
tn−1T 2

n−1F
// · · · Pn−1F.Therefore it de�nes a natural transformation between the homotopy olimits qnF : PnF → Pn−1F , sineall the qn,iF are the natural maps from the homotopy limit of a diagram to the homotopy limit of arestrition of the diagram.Theorem B.0.15. [Go3,Theorem1.13.] A homotopy funtor F : C → D determines a tower of funtors

PnF : C → D with natural transformations pnF and qnF :...
��

PnF

qnF

��

DnFoo

Pn−1F

qn−1F

��

Dn−1Foo

F

p0F

��3
33

33
33

33
33

33
33

3
p1F

!!D
DD

DD
DD

DD

pn−1F

=={{{{{{{{{

pnF

EE���������������� ...
q2F

��
P1F

q1F

��

D1Foo

P0F D0Fsuh that PnF are polynomial of degree n, for eah X ∈ C, the maps qnF (X) : PnF (X)→ Pn−1F (x) are�brations, the funtors DnF := hofib(qnF : PnF → Pn−1F ) are n-homogeneous 2. �2A funtor is n-homogeneous if it is both polynomial of degree at most n and n-redued, i.e. deg(DnF ) ≤ n and
Pn−1DnF ≃ ∗. 81



If F is degree n, then the Goodwillie tower of F is trunated, i.e. DnF is the largest nontrivial layer of
F and PkF is equivalent to F for all k ≥ n.De�nition B.0.16. Let F : C → D be a funtor, we de�ne crnF : Cn → D, the nth-ross e�et of F , tobe the funtor of n variables given by

(crnF )(X1, · · · , Xn) : = hofib{F (
∨

i∈n

Xi)→ holim
T∈P0(n)

F (
∨

i∈n−T

Xi)}

= thofibF (X (X1, · · · , Xn)).where the n-ube X (X1, · · · , Xn) : P(n)→ C is given by
X (X1, · · · , Xn) : T →

∨

i∈n−T

Xiwith maps indued by the maps Xi → ∗.The nth-ross e�et measures the extent to whih F fails to be degree n−1. Furthermore, F is degree n ifand only if crnF is linear in eah variable. Analogously[Go3, Lemma 3.3℄, if F is degree n, then crkF ≃ ∗for every k ≥ n+ 1.Lemma B.0.17. ([Go2, Proposition 3.4℄) if F : Cn → D is (x1, · · · , xn)-exisive, then the diagonalizationfuntor ∆n omposed with F , namely ∆nF is (
∑
xi)-exisive. �
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