
#### Abstract

Let $U_{F}(x)$ be the number of integers not exceeding $x$ that can be represented by a primitive positive definit binary quadratic form $F \in \mathbb{Z}[x, y]$ having discriminant $D<0$. It is shown that $$
U_{F}(x) \gg_{\varepsilon}|D|^{-\varepsilon} x(\log x)^{-\frac{1}{2}}
$$ uniformly in $|D| \leq(\log x)^{\log 2-\varepsilon}$ and $$
U_{F}(x) \gg_{\varepsilon} x(\log x)^{-1-\kappa(\log (2 \kappa)-1)-\varepsilon}
$$ uniformly in $|D| \leq(\log x)^{2 \kappa \log 2-\varepsilon}$ for any $\frac{1}{2} \leq \kappa \leq \frac{1}{1+\log 2}-\varepsilon$. As an application a problem of Erdös is considered. Let $V(x)$ be the number of integers representable as a sum of two squareful integers. Then $V(x) \gg x(\log x)^{-0.253}$.


