
Abstract

Let f be a positive definite ternary quadratic form of level N. Let $r(f, n)$ be the number of representations of n by f and $r(\operatorname{spn} f, n)$ the weighted mean over all representation numbers of forms in the spinor genus of f. If we write $n=2^{e_{2}} \prod_{p \geq 3} p^{e_{p}}$, it is shown $$
r(f, n)=r(\operatorname{spn} f, n)+O_{e_{2}, \varepsilon}\left(N^{45 / 28} n^{1 / 2-1 / 28+\varepsilon}\right)
$$ for any $\varepsilon>0$, as well as the uniform bound $$
r(f, n)=r(\operatorname{spn} f, n)+O_{\varepsilon}\left(N^{A} n^{1 / 2-1 / 28+\varepsilon}\right)
$$ with an absolute effective constant A. This extends a result of Duke and Schulze-Pillot in making explicit the dependence on the form f in the error term. As an application the number of representations of n as a sum of three squareful integers is considered.

$M S C$ (2000) *11E25, 11F11, 11E20, 11N25

Keywords: squareful numbers, ternary quadratic forms, Fourier coefficients of modular forms of half-integral weight, Shimura lifting, asymptotic behaviour

