
#### Abstract

Let $f \in \mathbb{Z}[x, y]$ be a primitive positive binary quadratic form with fundamental discriminant and let $$
\theta(f, z):=\sum_{n=0}^{\infty} r(f, n) e(n z)=E(f, z)+S(f, z)
$$ be the corresponding $\theta$-series, decomposed into an Eisenstein series $E(f, z)$ and a cusp form $S(f, z)=\sum b(f, z) e(n z)$. For any real $\beta>0$, the exact order of magnitude of the counting function $\sum_{n \leq x}|b(f, n)|^{2 \beta}$ is given. For integral $\beta>0$, a meromorphic continuation of $\sum|b(f, n)|^{2 \beta} n^{-s}$ to the halfplane $\Re s>0$ is obtained. The number of sign changes of $b(f, n)$ for $n \leq x$ is estimated.


$M S C$ (2000) *11N37, 11F11, 11E16

