
Abstract

Let $K=\mathbb{Q}(\sqrt{-D})$ be the imaginary quadratic field of discriminant $-D, \mathcal{C}$ its class group and $h=|\mathcal{C}|$ the class number. For each character $\chi \in \hat{\mathcal{C}}$ let $$
L_{K}(s, \chi)=\sum_{\mathfrak{a}} \chi(\mathfrak{a})(N \mathfrak{a})^{-s}
$$ be the attached L-function. It is shown that there is a constant $c>0$ such that for sufficiently large D at least $\operatorname{ch} \prod_{p \mid D}\left(1-p^{-1}\right)$ of the h distinct L-functions $L_{K}(s, \chi)$ do not vanish at the central point $s=$ $1 / 2$.

$\operatorname{MSC}(2000) * 11 \mathrm{R} 42,11 \mathrm{M} 41,11 \mathrm{~F} 67$

Keywords: non-vanishing results, L-functions, imaginary quadratic fields, mollifier

