

Minisymposium 12 - Representation Theory of Algebras

Examples of higher Auslander algebras which are quasi-hereditary

CHRISTOF GEISS (UNAM, MEXICO)

This is a report on joint work in progress with B. Leclerc (Caen) and J. Schröer (Bonn).

Let Q be a Dynkin quiver, \bar{Q} its double and $\Lambda = k\bar{Q}/(\sum_{a \in Q_1}[a,\bar{a}])$ the corresponding preprojective algebra. Let R be a maximal 1-orthogonal Λ -module and $E = \operatorname{End}_{\Lambda}(R)$, so this is a higher Auslander algebra in the sense of Iyama. Then $F_R = \operatorname{Hom}_{\Lambda}(-,R)$ induces an anti-equivalence from Λ -modules to the E-modules of projective dimension at most 1. If R is produced by pushing the projective modules of the (ordinary) Auslander algebra of kQ to Λ then E is canonically quasi-hereditary. The image of F_R are precisely the Δ -good modules, the Δ_i are just $F_R(X)$ where X runs over the indecomposable kQ^{op} -modules viewed as Λ -modules, and $\operatorname{Ext}^1_{\Lambda}(F_R(X), F_R(Y)) \cong D \operatorname{Ext}^1_{Q^{\operatorname{op}}}(X, Y)$. The Δ -dimension vectors should in this way provide usefull invariants of Λ -modules.