A K-theoretic Proof
 of Boutet de Monvel's Index Theorem for Boundary Value Problems

Elmar Schrohe
Universität Hannover

Coauthors

Relies on joint work with

S. Melo (São Paolo), R. Nest (Kopenhagen) T. Schick (Göttingen)

1. Melo, Nest, Schrohe. C^{*}-structure and K-theory of Boutet de Monvel's algebra.
J. Reine Angew. Math. 2003.
2. Melo, Schick, Schrohe. A K-theoretic proof of Boutet de Monvel's index theorem for boundary value problems. math.KT/0403059, J. Reine Angew. Math. (to appear)

The Index

Fredholm Operators

A linear operator P is a Fredholm operator if $\operatorname{dim} \operatorname{ker} P$ and codim ran P are both finite.

In that case

$$
\text { Index } P=\operatorname{dim} \text { ker } P-\operatorname{codim} \operatorname{ran} P \in \mathbb{Z}
$$

The Index

Fredholm Operators

A linear operator P is a Fredholm operator if $\operatorname{dim} \operatorname{ker} P$ and codim ran P are both finite.

In that case

$$
\text { Index } P=\operatorname{dim} \text { ker } P-\operatorname{codim} \operatorname{ran} P \in \mathbb{Z}
$$

Important

Index is stable under small and compact perturbations.

The Index

The Classical Situation: Closed Manifold M

P (pseudo-)differential operator

$$
P: C^{\infty}(M, E) \longrightarrow C^{\infty}(M, F)
$$

acting between sections of vector bundles E, F over M. Elliptic: Principal symbol $\sigma_{P}(x, \xi)$ invertible for $(x, \xi) \in T^{*} M \backslash 0$.

The Index

The Classical Situation: Closed Manifold M

P (pseudo-)differential operator

$$
P: C^{\infty}(M, E) \longrightarrow C^{\infty}(M, F)
$$

acting between sections of vector bundles E, F over M.
Elliptic: Principal symbol $\sigma_{P}(x, \xi)$ invertible for $(x, \xi) \in T^{*} M \backslash 0$.

Central Facts

- Ellipticity implies that P is Fredholm.
- Index depends only on principal symbol (lower order terms = compact perturbations)
- Index depends only on stable homotopy classes of σ_{P}.

The Index Problem

Gelfand 1960

Compute Index P from σ_{P}.

The Index Problem

Gelfand 1960

Compute Index P from σ_{P}.

Atiyah und Singer 1963

- Solved the problem.
- Key tools: K-theory and pseudodifferential calculus.

K-theory

Definition

A K-class with compact support over X is a triple (E, F, σ)

- E, F vector bundles over X
- $\sigma: E \rightarrow F$ vector bundle map
- σ isomorphism outside compact set.

K-theory

Definition

A K-class with compact support over X is a triple (E, F, σ)

- E, F vector bundles over X
- $\sigma: E \rightarrow F$ vector bundle map
- σ isomorphism outside compact set.

Principal Symbol

σ_{P} 'lives' on $T^{*} M \backslash 0$. Defines homomorphism $\pi^{*} E \rightarrow \pi^{*} F$. Moreover: Isomorphism outside zero section due to ellipticity. Hence: Defines an element

$$
\left[\sigma_{P}\right] \in K_{c}\left(T^{*} M\right) .
$$

Index Theorem

Topological Index Map

There exists a homomorphism ('topological index map')

$$
\chi_{t}: K_{c}\left(T^{*} M\right) \rightarrow \mathbb{Z}
$$

Corollary

Have two ways of associating an integer to an elliptic operator:

- Take the Fredholm index of P
- Take the topological index of $\left[\sigma_{P}\right]$

Index Theorem: Same result

$$
\text { Index } P=\chi_{t}\left(\left[\sigma_{P}\right]\right) .
$$

Index Theorem

Cohomological Form

$$
\operatorname{Index} P=\int \operatorname{ch}\left[\sigma_{P}\right] \wedge \operatorname{Td}(M)
$$

with Chern character of the K-class and the Todd genus of M.

Classical Boundary Value Problems

$\Omega \subseteq \mathbb{R}^{n}$ smoothly bounded domain.
P differential operator on Ω, f function on Ω,
T trace operator, g function on $\partial \Omega$.
Find u on $\bar{\Omega}$ with

$$
P u=f \text { in } \Omega \quad \text { and } \quad T u=g \text { on } \partial \Omega .
$$

Example: Dirichlet Problem

$$
\begin{aligned}
\Delta u & =f \text { in } \Omega \\
\gamma_{0} u=\left.u\right|_{\partial \Omega} & =g \text { auf } \partial \Omega
\end{aligned}
$$

Ellipticity

Lopatinskij-Shapiro Condition

The boundary problem $\binom{P}{T}$ is elliptic, if

- P is elliptic and
- for each $\left(x^{\prime}, \xi^{\prime}\right) \in T^{*}(\partial X) \backslash 0$

$$
\binom{\sigma_{P}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)}{\sigma_{T}\left(x^{\prime}, \xi^{\prime}, D_{n}\right)}: \mathcal{S}\left(\mathbb{R}_{+}\right) \xrightarrow{\cong} \begin{array}{ccl}
\mathcal{S}\left(\mathbb{R}_{+}\right) & \text {boundary symbol } \\
& \mathbb{C} & \text { must be } \\
\text { invertible }
\end{array}
$$

Here, locally $X=\left\{x_{n} \geq 0\right\}$.

Detour: Solving the Dirichlet Problem

Solving the Dirichlet Problem

Solution is a sum $u=u_{1}+u_{2}$, where u_{1} and u_{2} solve

$$
\begin{array}{ccc}
\Delta u_{1}=f & \text { and } & \Delta u_{2}=0 \\
\gamma_{0} u_{1}=0 & & \gamma_{0} u_{2}=g .
\end{array}
$$

Obtain

u_{1} using
Green's function Γ
$u_{1}=\Gamma f=\int_{\Omega} \Gamma(x, y) f(y) d y$
u_{2} using
Poisson operator K

$$
u_{2}=K g=\int_{\partial \Omega} K(x, y) g(y) d y
$$

Detour: Solving the Dirichlet problem

Green's function 「 is the sum of

- Newton potential (= fundamental solution of Δ) and
- correction term (= smooth in the interior).

Detour: Solving the Dirichlet problem

Green's function 「 is the sum of

- Newton potential (= fundamental solution of Δ) P and
- correction term G (= smooth in the interior).

As an operator:

$$
\binom{\Delta}{\gamma_{0}}: C^{\infty}(\bar{\Omega}) \rightarrow \begin{gathered}
C^{\infty}(\bar{\Omega}) \\
{ }^{\infty}(\partial \Omega)
\end{gathered}
$$

Inverse:

$$
\binom{\Delta}{\gamma_{0}}^{-1}=(\underbrace{P+G}_{\Gamma} K): \begin{gathered}
C^{\infty}(\bar{\Omega}) \\
C^{\infty}(\partial \Omega)
\end{gathered} \rightarrow C^{\infty}(\bar{\Omega})
$$

Boutet de Monvel's Algebra

Goal (Boutet de Monvel 1971)

Construction of an algebra containing

- the classical boundary value problems and
- their (pseudo-)inverses, whenever those exist.

Boutet de Monvel's Algebra

X smooth compact manifold with boundary. An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

- P pdo with transmission condition, $P_{+}=r^{+} P e^{+}$

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

- P pdo with transmission condition, $P_{+}=r^{+} P e^{+}$
- G singular Green operator

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

- P pdo with transmission condition, $P_{+}=r^{+} P e^{+}$
- G singular Green operator
- K potential- or Poisson operator

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

- P pdo with transmission condition, $P_{+}=r^{+} P e^{+}$
- G singular Green operator
- K potential- or Poisson operator
- T trace operator

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

- P pdo with transmission condition, $P_{+}=r^{+} P e^{+}$
- G singular Green operator
- K potential- or Poisson operator
- T trace operator
- S pdo on ∂X.

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

Note:

- Contains classical boundary value problems: $F_{1}=0, G=0, K, S$ not present.
- Contains their inverses (if they exist):
$F_{2}=0, T, S$ not present.
- Allows composition, if bundles match.
\longrightarrow Algebra for $E_{1}=E_{2}=E, F_{1}=F_{2}=F$

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

Note:

- Contains classical boundary value problems:

$$
F_{1}=0, G=0, K, S \text { not present. }
$$

- Contains their inverses (if they exist):
$F_{2}=0, T, S$ not present.
- Allows composition, if bundles match.
\longrightarrow Algebra for $E_{1}=E_{2}=E, F_{1}=F_{2}=F$

Boutet de Monvel's Algebra

X smooth compact manifold with boundary.
An operator in Boutet de Monvel's algebra is a matrix

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right): \begin{gathered}
C^{\infty}\left(X, E_{1}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{1}\right)
\end{gathered} \rightarrow \begin{gathered}
C^{\infty}\left(X, E_{2}\right) \\
\oplus \\
C^{\infty}\left(\partial X, F_{2}\right)
\end{gathered}
$$

Note:

- Contains classical boundary value problems:

$$
F_{1}=0, G=0, K, S \text { not present. }
$$

- Contains their inverses (if they exist):
$F_{2}=0, T, S$ not present.
- Allows composition, if bundles match.
\longrightarrow Algebra for $E_{1}=E_{2}=E, F_{1}=F_{2}=F$

Ellipticity in Boutet de Monvel's Algebra

Two Symbols

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right)
$$

- Interior symbol: $\sigma(A)=\sigma_{P}$ on $T^{*} X \backslash 0$
- boundary symbol $\gamma(\boldsymbol{A})$ on $T^{*} \partial \boldsymbol{X} \backslash 0$

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

Ellipticity $=$ Invertibility of both symbols \rightarrow Fredholm operator. Index determined by two symbols.

Ellipticity in Boutet de Monvel's Algebra

Two Symbols

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right)
$$

- Interior symbol: $\sigma(A)=\sigma_{P}$ on $T^{*} X \backslash 0$
- boundary symbol $\gamma(\boldsymbol{A})$ on $T^{*} \partial \boldsymbol{X} \backslash 0$

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

Ellipticity $=$ Invertibility of both symbols \rightarrow Fredholm operator. Index determined by two symbols.

Ellipticity in Boutet de Monvel's Algebra

Two Symbols

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right)
$$

- Interior symbol: $\sigma(A)=\sigma_{P}$ on $T^{*} X \backslash 0$
- boundary symbol $\gamma(\boldsymbol{A})$ on $T^{*} \partial \boldsymbol{X} \backslash 0$

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

Ellipticity = Invertibility of both symbols \rightarrow Fredholm operator. Index determined by two symbols.

Ellipticity in Boutet de Monvel's Algebra

Two Symbols

$$
A=\left(\begin{array}{cc}
P_{+}+G & K \\
T & S
\end{array}\right)
$$

- Interior symbol: $\sigma(A)=\sigma_{P}$ on $T^{*} X \backslash 0$
- boundary symbol $\gamma(\boldsymbol{A})$ on $T^{*} \partial \boldsymbol{X} \backslash 0$

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

Ellipticity $=$ Invertibility of both symbols \rightarrow Fredholm operator. Index determined by two symbols.

Boutet de Monvel's Theorem

Boutet de Monvel's Index Theorem

- Reduces order and class/type to zero. Endomorphisms.

Boutet de Monvel's Index Theorem

- Reduces order and class/type to zero. Endomorphisms.
- Main Step: An elliptic operator A as above is stably homotopic to an operator of the form

$$
\widetilde{A}=\left(\begin{array}{cc}
\widetilde{P}_{+} & 0 \\
0 & Q
\end{array}\right)
$$

where $\sigma_{\tilde{p}}$ is elliptic and independent of ξ near ∂X.

Boutet de Monvel's Index Theorem

- Reduces order and class/type to zero. Endomorphisms.
- Main Step: An elliptic operator A as above is stably homotopic to an operator of the form

$$
\widetilde{A}=\left(\begin{array}{cc}
\widetilde{P}_{+} & 0 \\
0 & Q
\end{array}\right)
$$

where $\sigma_{\tilde{p}}$ is elliptic and independent of ξ near ∂X.

- Then $\sigma_{\tilde{p}}$ defines an element of $K_{c}\left(T^{*} X^{\circ}\right)$.

Boutet de Monvel's Index Theorem

- Reduces order and class/type to zero. Endomorphisms.
- Main Step: An elliptic operator A as above is stably homotopic to an operator of the form

$$
\widetilde{A}=\left(\begin{array}{cc}
\widetilde{P}_{+} & 0 \\
0 & Q
\end{array}\right)
$$

where $\sigma_{\tilde{p}}$ is elliptic and independent of ξ near ∂X.

- Then $\sigma_{\tilde{p}}$ defines an element of $K_{c}\left(T^{*} X^{\circ}\right)$.
- Can associate to A a class $[A]$ in $K_{c}\left(T^{*} X^{\circ}\right)$ by letting

$$
[A]=\left[\sigma_{\tilde{\rho}}\right] \oplus \text { Thom }\left[\sigma_{Q}\right] .
$$

Boutet de Monvel's Index Theorem

- Reduces order and class/type to zero. Endomorphisms.
- Main Step: An elliptic operator A as above is stably homotopic to an operator of the form

$$
\widetilde{A}=\left(\begin{array}{cc}
\widetilde{P}_{+} & 0 \\
0 & Q
\end{array}\right)
$$

where $\sigma_{\tilde{p}}$ is elliptic and independent of ξ near ∂X.

- Then $\sigma_{\tilde{p}}$ defines an element of $K_{c}\left(T^{*} X^{\circ}\right)$.
- Can associate to A a class $[A]$ in $K_{C}\left(T^{*} X^{\circ}\right)$ by letting

$$
[A]=\left[\sigma_{\tilde{\rho}}\right] \oplus \text { Thom }\left[\sigma_{Q}\right]
$$

- Using the Atiyah-Singer Index Theorem, he obtains

$$
\text { Index } A=\chi_{t}([A])
$$

Boutet de Monvel's Index Theorem

Cohomological form (Fedosov 1996)

$$
\text { Index } A=\int_{T^{*} X} \operatorname{ch}(\sigma(A)) \operatorname{Td}(X)+\int_{T^{*} \partial X} \operatorname{ch}^{\prime}(\gamma(A)) \operatorname{Td}(\partial X) .
$$

K-theory

Reductions: - X connected, $\partial X \neq \emptyset$

- Endomorphisms of order and type zero.

Definition

$\mathfrak{A}=C^{*}$-closure of operators of order and class 0
$\mathfrak{K}=$ ideal of compact operators.

K-theory

Reductions: - X connected, $\partial X \neq \emptyset$

- Endomorphisms of order and type zero.

Definition

$\mathfrak{A}=C^{*}$-closure of operators of order and class 0
$\mathfrak{K}=$ ideal of compact operators.

Theorem

Find natural short exact sequences

$$
0 \rightarrow K_{i}(C(X)) \longrightarrow K_{i}(\mathfrak{A} / \mathfrak{K}) \xrightarrow{p} K_{1-i}\left(C_{0}\left(T^{*} X^{\circ}\right)\right) \rightarrow 0,
$$

$i=0,1$. The sequences split (though not naturally), and

$$
K_{i}(\mathfrak{A} / \mathfrak{K})=K_{i}(C(X)) \oplus K_{1-i}\left(C_{0}\left(T^{*} X^{\circ}\right)\right) .
$$

K-theoretic Version of the Index Theorem

Theorem

The map p in the short exact sequence

$$
0 \rightarrow K_{1}(C(X)) \longrightarrow K_{1}(\mathfrak{A} / \mathfrak{K}) \xrightarrow{p} K_{0}\left(C_{0}\left(T^{*} X^{\circ}\right)\right) \rightarrow 0,
$$

is Boutet de Monvel's map. With the topological index map χ_{t}

$$
\text { Index } A=\chi_{t}(p(A))
$$

Also Fedosov's cohomological formula follows.

K-theoretic Version of the Index Theorem

Comparison with Boutet de Monvel

- Boutet de Monvel's proof is ingeneous, but hard to understand.

K-theoretic Version of the Index Theorem

Comparison with Boutet de Monvel

- Boutet de Monvel's proof is ingeneous, but hard to understand.
- His constructions are very geometric. Uses classical K-theory

K-theoretic Version of the Index Theorem

Comparison with Boutet de Monvel

- Boutet de Monvel's proof is ingeneous, but hard to understand.
- His constructions are very geometric. Uses classical K-theory
- Our proof relies on
- knowledge of algebra structure of Boutet de Monvel's algebra
- K-theory of C^{*}-algebras (not yet developed in 1971!)
- standard constructions in K-theory.

K-theoretic Version of the Index Theorem

Comparison with Boutet de Monvel

- Boutet de Monvel's proof is ingeneous, but hard to understand.
- His constructions are very geometric. Uses classical K-theory
- Our proof relies on
- knowledge of algebra structure of Boutet de Monvel's algebra
- K-theory of C^{*}-algebras (not yet developed in 1971!)
- standard constructions in K-theory.
- Much simpler, but sometimes less explicit.

Idea of the Proof

Understand Boundary Symbol

$\gamma: \mathfrak{A} \rightarrow C\left(S^{*} \partial X, \mathfrak{W}\right) \mathfrak{W}$ Wiener-Hopf operators (\approx Toeplitz).

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

Idea of the Proof

Understand Boundary Symbol

$\gamma: \mathfrak{A} \rightarrow C\left(S^{*} \partial X, \mathfrak{W}\right) \mathfrak{W}$ Wiener-Hopf operators (\approx Toeplitz).

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

- $g_{0}, t_{0}, k_{0}, s_{0}$ compact.

Idea of the Proof

Understand Boundary Symbol

$\gamma: \mathfrak{A} \rightarrow C\left(S^{*} \partial X, \mathfrak{W}\right) \mathfrak{W}$ Wiener-Hopf operators (\approx Toeplitz).

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

- $g_{0}, t_{0}, k_{0}, s_{0}$ compact.
- $\operatorname{ker} \gamma=\left\{A: p^{0}=0\right.$ at $\partial X, G, T, K, S$ lower order. $\}$. Contains compact operators.

Idea of the Proof

Understand Boundary Symbol

$\gamma: \mathfrak{A} \rightarrow C\left(S^{*} \partial X, \mathfrak{W}\right) \mathfrak{W}$ Wiener-Hopf operators (\approx Toeplitz).

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

- $g_{0}, t_{0}, k_{0}, s_{0}$ compact.
- $\operatorname{ker} \gamma=\left\{A: p^{0}=0\right.$ at $\partial X, G, T, K, S$ lower order. $\}$. Contains compact operators.
- $\operatorname{ran} \gamma=\boldsymbol{C}(\partial X) \oplus C\left(S^{*} \partial X, \mathfrak{W}_{0}\right)$.
\mathfrak{W}_{0} : Ideal of operators, for which symbol vanishes at ∞.

Idea of the Proof

Understand Boundary Symbol

$\gamma: \mathfrak{A} \rightarrow C\left(S^{*} \partial X, \mathfrak{W}\right) \mathfrak{W}$ Wiener-Hopf operators (\approx Toeplitz).

$$
\gamma(A)=\left(\begin{array}{cc}
p_{0}\left(x^{\prime}, 0, \xi^{\prime}, D_{n}\right)+g_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & k_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) \\
t_{0}\left(x^{\prime}, \xi^{\prime}, D_{n}\right) & s_{0}\left(x^{\prime}, \xi^{\prime}\right)
\end{array}\right)
$$

- $g_{0}, t_{0}, k_{0}, s_{0}$ compact.
- $\operatorname{ker} \gamma=\left\{A: p^{0}=0\right.$ at $\partial X, G, T, K, S$ lower order. $\}$.

Contains compact operators.

- ran $\gamma=\boldsymbol{C}(\partial X) \oplus C\left(S^{*} \partial X, \mathfrak{W}_{0}\right)$.
\mathfrak{W}_{0} : Ideal of operators, for which symbol vanishes at ∞.
- $K_{i}\left(\mathfrak{W}_{0}\right)=0 \Rightarrow K_{i}\left(C\left(S^{*} \partial X, \mathfrak{W}_{0}\right)\right)=0$.

Idea of the Proof

Understand Short Exact Sequence

$$
0 \rightarrow \operatorname{ker} \gamma / \mathfrak{K} \rightarrow \mathfrak{A} / \mathfrak{K} \rightarrow \operatorname{ran} \gamma=\mathfrak{A} / \operatorname{ker} \gamma \rightarrow 0
$$

Idea of the Proof

Understand Short Exact Sequence

$$
0 \rightarrow \operatorname{ker} \gamma / \mathfrak{K} \rightarrow \mathfrak{A} / \mathfrak{K} \rightarrow \operatorname{ran} \gamma=\mathfrak{A} / \operatorname{ker} \gamma \rightarrow 0
$$

- $\operatorname{ker} \gamma / \mathfrak{K} \cong\left\{P: p^{0}=0\right.$ at $\left.\partial X\right\} \cong C_{0}\left(S^{*} X^{\circ}\right)$

Idea of the Proof

Understand Short Exact Sequence

$$
0 \rightarrow \operatorname{ker} \gamma / \mathfrak{K} \rightarrow \mathfrak{A} / \mathfrak{K} \rightarrow \operatorname{ran} \gamma=\mathfrak{A} / \operatorname{ker} \gamma \rightarrow 0 .
$$

- $\operatorname{ker} \gamma / \mathfrak{K} \cong\left\{P: p^{0}=0\right.$ at $\left.\partial X\right\} \cong C_{0}\left(S^{*} X^{\circ}\right)$
- $K_{i}(\operatorname{ran} \gamma) \cong K_{i}(C(\partial X)) \oplus \underbrace{K_{i}\left(C\left(S^{*} \partial X, \mathfrak{W}_{0}\right)\right)}_{=0}=K_{i}(C(\partial X))$

Idea of the Proof

Understand Short Exact Sequence

$$
0 \rightarrow \operatorname{ker} \gamma / \mathfrak{K} \rightarrow \mathfrak{A} / \mathfrak{K} \rightarrow \operatorname{ran} \gamma=\mathfrak{A} / \operatorname{ker} \gamma \rightarrow 0
$$

- $\operatorname{ker} \gamma / \mathfrak{K} \cong\left\{P: p^{0}=0\right.$ at $\left.\partial X\right\} \cong C_{0}\left(S^{*} X^{\circ}\right)$
- $K_{i}(\operatorname{ran} \gamma) \cong K_{i}(C(\partial X)) \oplus \underbrace{K_{i}\left(C\left(S^{*} \partial X, \mathfrak{W}_{0}\right)\right)}_{=0}=K_{i}(C(\partial X))$
- Isomorphism implemented by

$$
C(\partial X) \ni g \stackrel{b}{\mapsto}\left(\begin{array}{ll}
f & 0 \\
0 & 0
\end{array}\right) \in \mathfrak{A} / \mathfrak{K}
$$

where f is a function in $C(X)$ with $f=g$ on ∂X, considered as multiplication operator.

Idea of the Proof

The commutative diagram

induces canonically a grid:

- b isomorphism \Rightarrow (right vertical) $K_{i}(C b)=0$

$$
\begin{aligned}
& \uparrow \uparrow \\
& 0 \longrightarrow C\left(X^{\circ}\right) \longrightarrow C(X) \xrightarrow{r} C(\partial X) \longrightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \\
& 0 \longrightarrow S(\operatorname{ker} \gamma / \mathfrak{K}) \longrightarrow S(\mathfrak{A} / \mathfrak{K}) \xrightarrow{S \pi} S(\operatorname{ran} \gamma) \longrightarrow 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

- b isomorphism \Rightarrow (right vertical) $K_{i}(C b)=0$
- \Rightarrow (middle horizontal) $K_{i}(\mathrm{Cm}) \cong K_{i}\left(C m_{0}\right)$.

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \\
& 0 \longrightarrow C(X) \longrightarrow C(\partial X) \longrightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& 0 \longrightarrow S(\operatorname{ker} \gamma / \mathfrak{K}) \longrightarrow S(\mathfrak{A} / \mathfrak{K}) \xrightarrow{S \pi} S(\operatorname{ran} \gamma) \longrightarrow 0 \\
& 0 \\
& 0
\end{aligned}
$$

- b isomorphism \Rightarrow (right vertical) $K_{i}(C b)=0$
- \Rightarrow (middle horizontal) $K_{i}(\mathrm{Cm}) \cong K_{i}\left(\mathrm{Cm}_{0}\right)$.
- Study long exact sequence for left verticals.

$$
\begin{aligned}
& \left.\longrightarrow K_{i}(X)\right) \xrightarrow{m_{*}} \quad K_{i}(21 / \Omega) \xrightarrow{\beta} \\
& \uparrow \quad i \uparrow \quad \phi \uparrow \\
& \longrightarrow K_{i}\left(\mathrm{CO}_{0}\left(X^{\circ}\right)\right) \xrightarrow{m_{0 *}} K_{i}\left(\operatorname{Ker}_{\gamma} / \Re_{i}\right) \xrightarrow{\alpha} K_{1-i}\left(\mathrm{Cm}_{0}\right)
\end{aligned}
$$

- Principal symbol furnishes Iso $\operatorname{ker} \gamma / \mathfrak{K} \cong C_{0}\left(S^{*} X^{\circ}\right)$.

$$
\begin{array}{cccc}
\longrightarrow K_{i}(C(X)) \\
\uparrow & m_{*} & K_{i}(\mathfrak{A} / \mathfrak{K}) & \xrightarrow{\beta} \\
i \uparrow & & K_{1-i}(C m) \\
\longrightarrow & K_{i}\left(C_{0}\left(X^{\circ}\right)\right) \xrightarrow{m_{0 *}} & K_{i}(\operatorname{ker} \gamma / \mathfrak{K}) \xrightarrow{\alpha} \xrightarrow{\alpha} & K_{1-i}\left(C m_{0}\right) \longrightarrow
\end{array}
$$

- Principal symbol furnishes Iso $\operatorname{ker} \gamma / \mathfrak{K} \cong C_{0}\left(S^{*} X^{\circ}\right)$.
- X connected, $\partial X \neq \emptyset \Rightarrow S^{*} X^{\circ}$ has a section.

- Principal symbol furnishes Iso $\operatorname{ker} \gamma / \mathfrak{K} \cong C_{0}\left(S^{*} X^{\circ}\right)$.
- X connected, $\partial X \neq \emptyset \Rightarrow S^{*} X^{\circ}$ has a section.
- Yields $s: C_{0}\left(S^{*} X^{\circ}\right) \rightarrow C\left(X^{\circ}\right)$ left inverse to $m_{0 *}$.

- Principal symbol furnishes Iso $\operatorname{ker} \gamma / \mathfrak{K} \cong C_{0}\left(S^{*} X^{\circ}\right)$.
- X connected, $\partial X \neq \emptyset \Rightarrow S^{*} X^{\circ}$ has a section.
- Yields s : $C_{0}\left(S^{*} X^{\circ}\right) \rightarrow C\left(X^{\circ}\right)$ left inverse to $m_{0 *}$.
- \Rightarrow Sequence splits at $m_{0 *}$ (not naturally).

- Principal symbol furnishes Iso $\operatorname{ker} \gamma / \mathfrak{K} \cong C_{0}\left(S^{*} X^{\circ}\right)$.
- X connected, $\partial X \neq \emptyset \Rightarrow S^{*} X^{\circ}$ has a section.
- Yields s : $C_{0}\left(S^{*} X^{\circ}\right) \rightarrow C\left(X^{\circ}\right)$ left inverse to $m_{0 *}$.
- \Rightarrow Sequence splits at $m_{0 *}$ (not naturally).
- \Rightarrow splits at $\alpha \Rightarrow$ splits at β.
$\longrightarrow K_{i}(C(X)) \xrightarrow{m_{*}} K_{i}(\mathfrak{A} / \mathfrak{K}) \xrightarrow{\beta} K_{1-i}(C m)$
$\uparrow \quad i \uparrow \quad \phi \uparrow \cong$
$\longrightarrow K_{i}\left(C_{0}\left(X^{\circ}\right)\right) \xrightarrow{m_{0 *}} K_{i}(\operatorname{ker} \gamma / \mathfrak{K}) \xrightarrow{\alpha} K_{1-i}\left(C m_{0}\right)$
- Principal symbol furnishes Iso $\operatorname{ker} \gamma / \mathfrak{K} \cong C_{0}\left(S^{*} X^{\circ}\right)$.
- X connected, $\partial X \neq \emptyset \Rightarrow S^{*} X^{\circ}$ has a section.
- Yields $s: C_{0}\left(S^{*} X^{\circ}\right) \rightarrow C\left(X^{\circ}\right)$ left inverse to $m_{0 *}$.
- \Rightarrow Sequence splits at $m_{0 *}$ (not naturally).
- \Rightarrow splits at $\alpha \Rightarrow$ splits at β.
- \Rightarrow long exact sequence furnishes short exact sequences

$$
0 \rightarrow K_{i}(C(X)) \xrightarrow{m_{*}} K_{i}(\mathfrak{A} / \mathfrak{K}) \xrightarrow{\beta} K_{1-i}(C m) \rightarrow 0,
$$

$\longrightarrow K_{i}(C(X)) \xrightarrow{m_{*}} K_{i}(\mathfrak{A} / \mathfrak{K}) \xrightarrow{\beta} K_{1-i}(C m)$
$\uparrow \quad i \uparrow \quad \phi \uparrow \cong$
$\longrightarrow K_{i}\left(C_{0}\left(X^{\circ}\right)\right) \xrightarrow{m_{0 *}} K_{i}(\operatorname{ker} \gamma / \mathfrak{K}) \xrightarrow{\alpha} K_{1-i}\left(C m_{0}\right)$

- Principal symbol furnishes Iso ker $\gamma / \mathfrak{K} \cong C_{0}\left(S^{*} X^{\circ}\right)$.
- X connected, $\partial X \neq \emptyset \Rightarrow S^{*} X^{\circ}$ has a section.
- Yields $s: C_{0}\left(S^{*} X^{\circ}\right) \rightarrow C\left(X^{\circ}\right)$ left inverse to $m_{0 *}$.
- \Rightarrow Sequence splits at $m_{0 *}$ (not naturally).
- \Rightarrow splits at $\alpha \Rightarrow$ splits at β.
- \Rightarrow long exact sequence furnishes short exact sequences

$$
0 \rightarrow K_{i}(C(X)) \xrightarrow{m_{*}} K_{i}(\mathfrak{A} / \mathfrak{K}) \xrightarrow{\beta} K_{1-i}(C m) \rightarrow 0,
$$

- Now identify $K_{1-i}(C m) \cong K_{1-i}\left(C_{0}\left(T^{*} X^{\circ}\right)\right)$.

Index Theory

$0 \longrightarrow K_{i}(C(X)) \xrightarrow{m_{*}} K_{i}(\mathfrak{A} / \mathfrak{K}) \xrightarrow{p} K_{1-i}\left(C_{0}\left(T^{*} X^{\circ}\right)\right)$ \qquad
$\iota \uparrow \quad \phi \uparrow \cong$
$0 \longrightarrow K_{i}\left(C_{0}\left(X^{\circ}\right)\right) \xrightarrow{m_{0 *}} K_{i}(\mathfrak{I} / \mathfrak{K}) \longrightarrow K_{1-i}\left(C m_{0}\right) \longrightarrow 0$
Show Index $A=\chi \circ p(A)$ on the ranges of $\iota_{*}: K_{i}(\operatorname{ker} \gamma / \mathfrak{K}) \rightarrow K_{i}(\mathfrak{A} / \mathfrak{K})$ and $\left.m_{*}: K_{i}(C(X)) \rightarrow K_{i}(\mathfrak{A} / \mathfrak{K})\right)$.

- On ran m_{*}, both are zero:
ran m_{*} : Equivalence classes of invertible multiplication operators. (Index =0).
On the other hand, exactness of the sequence implies that ran $m_{*} \rightarrow 0$.
- On ran ι_{*} use Atiyah-Singer Theorem.

