

Minisymposium 24 - Probability and Geometry

One dimensional diffusions conditioned to be non-explosive

ICHIRO SHIGEKAWA (KYOTO UNIVERSITY)

We consider one dimensional diffusions conditioned to be non-explosive. Suppose we are given a minimal diffusion process $\{X_t, P_x\}$ on an interval (l_1, l_2) . Let ζ be its explosion time. If $P_x[\zeta=\infty]>0$, then the measure conditioned to be non-explosive is defined by

$$P_x[\cdot | \zeta = \infty] = P_x[\cdot \cap \zeta = \infty]/P_x[\zeta = \infty].$$

If $P_x[\zeta=\infty]=0$, then the measure conditioned to be non-explosive is defined as the limit

$$\lim_{T \to \infty} P_x[\; \cdot \; |\; \zeta > T].$$

If the limit exists and the limit is a diffusion process, we call it a surviving diffusion. We are interested in the following problems:

- (1) When does the surviving diffusion exist?(2) Characterization of the surviving diffusion.

The surviving diffusion is characterized as a h-transform of the original process by the λ -harmonic function φ , λ being the principal eigenvalue.