
THETA DIVISORS ON MODULI SPACES OF BUNDLES

1. Introduction

Thetaseries are the most classical examples of mod-
ular forms and still one of the most efficient tools
to construct them. In some arithmetic situations
(like Siegel modular forms over the integers) they are
the only available tool. Today we deal with moduli-
spaces of bundles over curves which are simpler but
still pose interesting problems.

We have:
Curves C
⇒ Bundles E on C
⇒ Modulispace of Bundles MG

⇒ line-bundles Lc on MG.
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2. Curves

We can define curves as either compact connected
Riemann-surfaces or as smooth projective irreducible
algebraic curves. The latter is more complicated but
works over more general basefields. However for to-
day the complex numbers suffice. Their most impor-
tant is the genus g, ”the number of handles”.

On a curve a vectorbundle always means holomor-
phic (or algebraic) vectorbundle. It has as struc-
turegroup the algebraic group GLr. Later we need
other groups, like the symplectic group SP2r or spin-
groups. A vectorbundle with structuregroup SP2r is
the same as a vectorbundle E of rank 2r together with
a non-degenerate symplectic inner product E ×E →
OC .

Vectorbundles on curves E have a determinant det(E)
which is a line-bundle. It has a degree, and line-
bundles of degree zero are parametrised by the Jaco-
bian J , an abelian variety (complex torus) of dimen-
sion equal to the genus g of C.
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3. Classical thetas

The Riemann thetafunction plays an important role
in the theory of principally polarised abelian vari-
eties. It is given by the explicit sum

θ(z; Z) =
∑

n

exp(πintZn + ntz).

(Z lies in the Siegel upper halfspace, etc.) For curves
C of genus g the zeroset of θ on the jacobian J con-
sists of line-bundles L of degree g − 1 for which

H0(C,L) %= 0, or H1(C,L) %= 0 (both spaces have
the same dimension by Riemann-Roch).

A modular interpretation:
Consider the tautological line-bundle L of degree

g − 1 on C × J . The derived direct image Rpr2,∗L
is (by EGA3) locally representable by a complex of
vectorbundles
F0 → F1.
The line-bundle det(F1) ⊗ det(F0)⊗−1 is globally

defined on J , and is the inverse of the determinant of
the cohomology of L. Furthermore the differential of
the complex defines a global section which (after suit-
able trivialisations over the complex numbers) can be
identified with the theta-function.
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4. Theta for GLn and SLn

The definition as determinant of cohomology gen-
eralises to vectorbundles of higher rank. Namely on
the stack of vectorbundles E of slope g − 1 we get
a global section of the inverse of the determinant of
cohomology, whose zeroset consists of bundles E for
which H0(C, E) (or H1(C, E)) does not vanish. If we
restrict to vectorbundles of rank n with trivial deter-
minant we can consider the thetafunctions for twists
E ⊗L, where L is a line-bundle of degree g− 1. The
isomorphism-class of the determinant-bundle on the
moduli-stack of SLn-bundles does not depend on L:
Replacing L by L(x) for a point x ∈ C changes the
determinant of cohomology by the (trivial) determi-
nant of the fibre of E in x, etc..

Thus all these thetas lie in a fixed space of sections.
It turns out that this space has dimension ng which is
the minimum possible: Namely the moduli-stack of
SLn-bundles admits an action of J [n] = H1(C, µn)
by central twists. It extends to an action on the
determinant-of-cohomology bundle if one passes to
the usual central Gm-extension (all important in clas-
sical theta-theory), and all representations of this
group with the identity as central character are mul-
tiples of one irreducible representation of dimension
ng.
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5. G-bundles

Suppose G is a simple, semisimple, and simply con-
nected algebraic group, and we consider G-torsors
on a curve C. These are classified by a stack MG

of relative dimension (g − 1)dim(G). Analogues of
theta-functions should be sections of line-bundles on
MG, so we first have to determine these. If x ∈ C is
a point any G-torsor becomes trivial on the comple-
ment C0 = C −{x}. If we choose a local coordinate
t near x we thus obtain a representation as double
cosets

MG = Γ(C0, G)\LG/L≥0G.
Here Γ(C0, G) is an ind-groupscheme, LG is the
loopgroup (also an ind-groupscheme) with

LG(R) = G(R((t))),
and L≥0 are the holomorphic loops. The quotient
DG = LG/L≥0G
is an inductive limit of projective algebraic varieties

(Bruhat-cells) and also known as affine Grassman-
nian. It is known that Pic(DG) = Z is cyclic. Any
of its elements is equivariant under a central Gm-
extension L̃G of LG. In characteristic zero it can be
constructed using the G-invariant bilinear form B on
g for which B(α̌, α̌) = 2 for a long root α. Finally
Γ(C0, G) admits no characters so that the pullback
from Pic(MG) to Pic(DG) is injective. Thus a line-
bundle on MG is determined by its ”central charge”.
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6. Determinant of cohomology

For any G-module E we may pullback the deter-
minant of cohomology bundle via the induced map
from MG to MSL(E). The invariant of the pullback
in Pic(DG) = Z is the ratio of the trace-form trE and
B. It follows that for the groups SLn and SP2n the
determinant of cohomology of the standard-representation
generates the Picard-group of DG and also of MG.
For orthogonal representations the determinant of
cohomology as well as its canonical section admit
squareroots (the Pfaffians), and these for the stan-
dard representation generate the Picard-groups for
G = Spin(n). However for exceptional groups these
constructions are not sufficient. For example for the
group E8 we can only construct a line-bundle with
central charge 30, from the (orthogonal) adjoint rep-
resentation.
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7. Construction of line-bundles with
central charge one (interlude

especially for Luc)

Such a construction can be done as follows: For a
Borel B of G consider sufficiently generic B-torsors,
i.e. the degree of the associated T -torsors should
correpond to a suffiently antidominant coweight. For
example for G = SLn one considers flags

E0 = (0) ⊂ E1 ⊂ ... ⊂ En = E
such that the degrees deg(Ei/Ei−1) are strongly in-
creasing. For such a T -torsor the twist U of the
unipotent radical U of B is ”very negative”, and our
space is an H1(C,U)-fibrespace over Jl. Over the
base the even form B defines a canonical polarisa-
tion and a symmetric line-bundle in this polarisa-
tion, thus by pullback a line-bundle on the stack of
generic B-torsors. This stack covers MG, and one
constructs a descent-datum to get a line-bundle on
MG.
Remark: The Hitchin-fibration defines coverings

D → C and abelian subvarieties A ⊂ Jl
D mapping

to MG. The pullback of a line-bundle of central
charge one defines a polarisation on A which again
can be described by the bilinear form B. This can
be used to get upper bounds for the dimension of
the space of global sections, even in (good) positive
characteristics.
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8. Application of the Verlinde-formula

The Verlinde-formula computes the dimension of
spaces of global sections of line-bundles on MG, in
characteristic zero. More generally suppose given
points {x1, ...., xr} ⊂ C, and for each point xi an
irreducible representation Ei of G. The fibres at xi

of the universal G-torsor on MG × C define vector-
bundles Ei on MG. If Lc denotes the line-bundle of
central charge c, the Verlinde-formula computes the
dimension of
Γ(MG,

⊗r
i=1 Ei ⊗ Lc).

It is known that this dimension does not depend
on the choice of C nor on that of the xi (projective
connections), and that it vanishes unless all Ei are
integrable. That means that the dual θ̌ of the maxi-
mal root θ has only eigenvalues of size ≤ c. There are
(for fixed c) only finitely many integrable irreducible
representations.
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9. Degenerating the curve

For computing dimensions one degenerates C into
a projective line with g nodes. A G-torsor on such
a singular curve is the same as a G-torsor on its
normalisation P1, together with identifications of the
fibres in g pairs of points. The latter correspond to
sections of a twist of G, considered as scheme with
G × G-action.

As the regular functions on G are the direct sum of
tensorproducts E⊗Ev, with E running over all irre-
ducible representations of G, one gets that to obtain
the dimension we may replace C by P1, add to the
Ei g-pairs {E, Ev}, and sum over all such g-tuples
of pairs. The sum is effectively finite because of the
integrability condition.
Remark: This construction only covers G-bundles

with ”good reduction”. One can show that our sec-
tions also extend to others, using rigid analysis, but
this was deemed to be too difficult for the general
public. An alternative is to reduce to Lie-algebras.
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10. Verlinde for the projective line

Finally for the projective line everything is gov-
erned by the Verlinde-algebra Fc. It is the vec-
torspace with basis the irreducible representations of
E of level ≤ c. It has an orthogonal form where
the product of basiselements vanishes except that
< E, Ev >= 1 is one. Furthermore we have a prod-
uct defined by

< E1 · E2, E3 >= dimension of space of global
sections of E1 ⊗ E2 ⊗ E3 ⊗ Lc.

By various deformations one shows that this prod-
uct is associative, and the trivial representation is a
unit. Also if
κ =

∑
E · Ev

is the Casimir element our desired dimension is the
inner product of κg · E1 · ... · Er with the unit. One
can determine the structure of Fc and compute this
explicitely.
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11. The structure of the
Verlinde-algebra

Let ȟ = ρ(θ̌) + 1 (dual Coxeter number). As-
sociating λ+ ρ to an irreducible representation with
highest weight λ identifies the set of integrable repre-
sentations with elements µ in the weight-lattice such
that µ(α̌) > 0 (α positive), µ(θ̌) < c + ȟ. If we re-
place ”<” by ”≤” we obtain a fundamental domain
for an action of the affine Weylgroup Waff . This
group acts on Z[weights]. Twist this action by the
sign character and form the quotient. It has as basis
the µ’s above and thus can be identified with Fc. If
instead we only divide by the usual Weylgroup W
we obtain the representation-ring R(G). Fact:

The projection R(G) → Fc is a homomorphism of
rings.

This determines the multiplication on Fc. The
characters of Fc are identified with regular elements
x ∈ T (modulo W ) such that α(x)c+ȟ = 1 for long
roots α.
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12. Level one

We now specialise to the case of c = 1 and that
there are only long roots, i.e. G is of type A, D, E.
Then integrable representations are miniscule rep-
resentations. They correspond to characters of the
center Z of G. Furthermore the product in F1 cor-
responds to the product of characters, so F1 is the
group-algebra of the dual Zv. Also κ = |Z| is a
scalar and thus

dim(γ(MG,L1) = |Z|g.
Especially for G of type E8 there is a unique non-

trivial section (from now on called ”E8-theta”) which
defines a divisor in MG. What is that divisor? A
variant: Let X denote the E8-lattice which its even
unimodular form. For any principally polarised abelian
variety A A ⊗ X ∼= A8 is not only principally po-
larised but admits a canonical ample symmetric line-
bundle defining this principal polarisation. The ze-
roset of its unique global section is a canonical theta-
divisor. Is there a geometric description for it. If
A = J is the Jacobian of a curve C A ⊗ X classi-
fies T -torsors, T the maximal torus of the group E8.
The E8-theta restricts to a multiple of this canon-
ical theta. From the proof of the Verlinde-formula
one derives that this restriction does not vanish for
Mumford-curves (it is nonzero on the trivial torsor).
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13. Spin-thetas?

For other G’s as the space of sections admits an
action of the central Gm-extension of H1(C, Z) it is
the unique irreducible extension of that central ex-
tension. This can be also shown in characteristic
p if p is a good prime for G: Semicontinuity gives
a lower bound for the dimension of the space of sec-
tions, and the Hitchin-fibration an upper bound. Re-
stricting the E8-theta gives canonical sections for E6

and E7. As the case of SLn is wellknown this leaves
type D. For spin-groups Spin4n the centre Z is iso-
morphic to µ2 × µ2. For each subfactor µ2 we get a
maximal isotropic subgroup H1(C, µ2) ⊂ H1(C, Z)
and thus thetafunctions which are eigenfunctions for
this subgroup (the eigenvalues depend on how we lift
our subgroup into the central extension). For the
diagonal µ2 we get the previous Pfaffians for SO4n-
bundles, while the other possibilities are somehow
related to the two spin-representations. For exam-
ple Spin8 embeds into E8 and the restriction of the
E8-theta is a multiple of one of the ”spin-thetas”.
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14. Examples of divisors in MG

a) nilpotent endomorphisms
Over MG we construct a relative projective scheme

which classifies isomorphism classes of triples (P,L, N),
with

- P a G-torsor on C,
- L a line-bundle on the base,
- N ∈ Γ(C, gad,P ⊗ ωC) ⊗ L a nonzero (on each

fibre) nilpotent section.
By the theory of Hitchin fibrations its image lies in

a proper divisor.
b) parabolic reduction
Suppose Q ⊂ G is a maximal proper parabolic, Q0

its derived group, so Q/Q0 ∼= Gm. Consider reduc-
tions of a G-torsor P on C to a Q-torsor, together
with an injection of the the associated line-bundle
into some fixed line-bundle L on C. This is again
projective over MG, and sometimes (for suitable de-
gree of L) has the right dimension to define a divisor.

c) A common generalisation: Suppose Z is a pro-
jective scheme with a very ample line-bundle M,
and G operates on the tuple (Z,M). For a fixed
line-bundle L on C consider the relative projective
scheme over MG whose fibre over a G-torsor P con-
sists of section s : C → ZP and an injection s∗(M) →
L, up to Gm-action. Under suitable condition its im-
age defines a divisor in MG.

In case a) where N is supposed to lie in the minimal
nilpotent conjugacy class the central charge is (2h∨)g.


