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Introduction

In this talk, I will give an introduction to some recent work in set
theory, developed primarily over the last 15 years, and discuss its
connections with aspects of dynamical systems and in particular
rigidity phenomena in the context of ergodic theory.
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Introduction

Theory of complexity of classification problems in
mathematics.

“Definable” or Borel cardinality theory of quotient spaces (vs.
“classical” or Cantor cardinality theory).
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Classification problems

A classification problem is given by:

A collection of objects X.

An equivalence relation E on X.

A complete classification of X up to E consists of:

A set of invariants I.

A map c : X → I such that xEy ⇔ c(x) = c(y).

For this to be of any interest both I, c must be as explicit and
concrete as possible.
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Classification problems

Example

Classification of finitely generated abelian groups up to
isomorphism.
Invariants: finite sequences of integers.

Example

Classification of Bernoulli automorphisms up to conjugacy
(Ornstein).
Invariants: reals

Example

Classification of torsion-free abelian groups of rank 1 (i.e.,
subgroups of (Q,+)) up to isomorphism (Baer).
Invariants: subsets of N modulo finite differences.
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Classification problems

Example

Classification of ergodic measure preserving transformations with
discrete spectrum up to conjugacy (Halmos-von Neumann).
Invariants: countable subsets of T.

Example

Classification of increasing homeomorphisms of [0, 1] up to
conjugacy.
Invariants: Essentially countable linear orderings up to
isomorphism.
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Classification problems

Most often the collection of objects we try to classify can be
viewed as forming a “nice” space, namely a standard Borel space,
i.e., a Polish (complete separable metric) space with its associated
Borel structure and the equivalence relation E turns out to be
Borel or analytic (as a subset of X2).

I will concentrate below on Borel equivalence relations.
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Borel equivalence relations and reducibility

The theory of Borel equivalence relations studies the set-theoretic
nature of possible (complete) invariants and develops a
mathematical framework for measuring the complexity of
classification problems.

The following simple concept is basic in organizing this study.
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Borel equivalence relations and reducibility

Definition

Let (X, E), (Y, F ) be Borel equivalence relations. E is (Borel)
reducible to F , in symbols

E ≤B F,

if there is Borel map f : X → Y such that

x E y ⇔ f(x) F f(y).

Intuitive meaning:

The classification problem represented by E is at most as
complicated as that of F .

F -classes are complete invariants for E.
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Borel equivalence relations and reducibility

Definition

E is bi-reducible to F if E is reducible to F and vice versa.

E ∼B F ⇔ E ≤B F and F ≤B E.

We also put:

Definition

E <B F ⇔ E ≤B F and F �B E.
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Borel equivalence relations and reducibility

Example

(Isomorphism of f.g. abelian groups) ∼B (=N)

Example

(Conjugacy of Bernoulli automorphisms) ∼B (=R)

Example

(Isomorphism of t.f. abelian groups of rank 1) ∼B E0,
where E0 is the equivalence relation on 2N given by

x E0 y ⇔ x 4 y is finite
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Borel equivalence relations and reducibility

Example

(Conjugacy of discrete spectrum m.p.t.) ∼B Ec,
where Ec is the equivalence relation on TN given by

(xn) EC (yn) ⇔ {xn : n ∈ N} = {yn : n ∈ N}

Example

(Conjugacy of increasing homeomorphisms of [0, 1]) ∼B

(Isomorphism of countable linear orderings)
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Borel cardinality theory

The preceding concepts can be also interpreted as the basis of a
“definable” or Borel cardinality theory for quotient spaces.

E ≤B F means that there is a Borel injection of X/E into
Y/F , i.e., X/E has Borel cardinality less than or equal to
that of Y/F , in symbols

|X/E|B ≤ |Y/F |B

E ∼B F means that X/E and Y/F have the same Borel
cardinality, in symbols

|X/E|B = |Y/F |B

E <B F means that X/E has strictly smaller Borel
cardinality than Y/F , in symbols

|X/E|B < |Y/F |B
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Structure of ≤B

Below X stands for the equality relation on X, =X .

We clearly have:

1 <B 2 <B 3 · · · <B N <B E

Theorem (Silver, 1980)

For every Borel E, either E ≤B N or R ≤B E.

Thus we have:

1 <B 2 <B 3 · · · <B N <B R <B E
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Structure of ≤B

1 <B 2 <B 3 · · · <B N <B R <B E

Note that E ≤B R means that there is a standard Borel space Y
and a Borel map f : X → Y such that x E Y ⇔ f(x) = f(y).
Such E are called concretely classifiable or smooth. A canonical
example of a non-smooth E is the equivalence relation E0 of
equality of subsets of N modulo finite. So R <B E0.

Theorem (Harrington-K-Louveau, 1990)

For any Borel E, either E ≤B R or E0 ≤B E.

This is called the General Glimm-Effros Dichotomy.

Thus we have:

1 <B 2 <B 3 · · · <B N <B R <B E0 <B E
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Structure of ≤B

The proofs of these two dichotomies, which are about classical
concepts of descriptive set theory, i.e., Borel sets and functions,
use methods of so-called effective descriptive set theory, which are
based on computability theory, i.e., the theory of algorithms,
Turing machines, etc. No “classical” type proofs are known.
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Structure of ≤B

1 <B 2 <B 3 · · · <B N <B R <B E0 <B E

The linearity of ≤B breaks down after E0.

Example (K-Louveau)

The following equivalence relations on RN are incomparable:

(xn) E1 (yn) ⇔ ∃n∀m ≥ n(xm = ym)

(xn) E2 (yn) ⇔ lim
n→∞

(xn − yn) = 0

So the picture is as follows:
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Structure of ≤B

1

2

3

N

R

E0
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Structure of ≤B

So far all the known Borel equivalence relations above E0 fall into
exactly 4 types and it may be that they all do. This is partially
supported by a series of results of Hjorth, K, Louveau, ... Below we
use the following definitions.

Definition

For a Polish group G, Polish space X, and a continuous or Borel
action of G on X, we denote by EX

G the induced (orbit)
equivalence relation.

Definition

S∞ is the infinite symmetric group.

Definition

Γ denotes an arbitrary countable (discrete) group.
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Structure of ≤B

Definition

(xn) E0 (yn) ⇔ ∃n∀m ≥ n(xm = ym), on 2N

(xn) E1 (yn) ⇔ ∃n∀m ≥ n(xm = ym), on RN

(xn) E2 (yn) ⇔ lim
n→∞

(xn − yn) = 0, on RN

E3 = (E0)N
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Structure of ≤B

1

2

3

N

R

E0

E1
E2 E3

EX
Γ

EX
G

turbulent EX
S∞
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Countable Borel equivalence relations

Definition

E is countable if every E-class is countable.

Example

Any equivalence relation, EX
Γ , induced by a Borel action of a

countable group Γ on X

We actually have:

Theorem (Feldman-Moore)

Every countable E is of the form EX
Γ .

Example

Turing equivalence
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Countable Borel equivalence relations

Up to bireducibility they also include:

Example (K)

EX
G for G second countable locally compact group (e.g., Lie group)

Example (Hjorth-K)

Isomorphism of countable structures that are of “finite type”, e.g.,
finitely generated groups, locally finite trees, finite rank torsion-free
abelian groups, finite transcendence degree fields, etc.

Example (Hjorth-K)

Conformal equivalence of Riemann surfaces
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Hyperfinite

We will now consider the structure of ≤B on the countable Borel
equivalence relations. Unless otherwise stated, the results below
are due to: Dougherty-Jackson-K (1994) and Jackson-K-Louveau
(2002).

The simplest countable equivalence relations are the smooth ones,
which have a trivial structure. The next more complicated ones are
the so-called hyperfinite ones.

Definition

E is hyperfinite if E =
⋃

n En, with En increasing and finite (i.e.,
having equivalence classes that are finite).

Theorem (Slaman-Steel, Weiss)

E is hyperfinite iff it is of the form EX
Z .
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Hyperfinite

Which groups always give hyperfinite equivalence relations?
Necessary condition: They have to be amenable.

Problem (Weiss, 1984)

If Γ is amenable, is EX
Γ hyperfinite?

Theorem

If Γ is finitely generated of polynomial growth, then EX
Γ is

hyperfinite.

Very recently, Gao-Jackson announced that this is also true for any
abelian Γ.
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Hyperfinite

The hyperfinite equivalence relations have been classified both
under bireducibilty and isomorphism.

Theorem

i) Up to Borel bireducibility, there is only one non-smooth,
hyperfinite equivalence relation, namely E0.
ii) Up to Borel isomorphism, there are exactly countably many
non-smooth, aperiodic, hyperfinite equivalence relations, namely

Et, E0, 2E0, 3E0, . . . , nE0,ℵ0E0, Es.

Here Et is the tail equivalence relation on 2N and Es is the
aperiodic part of the shift equivalence relation on 2Z.
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Universal

The hyperfinite equivalence relations are the simplest non-trivial
countable equivalence relations. At the other end there are the
most complex ones, the so-called universal ones.

Theorem

There is a universal countable Borel equivalence relation, E∞. It
satisfies E ≤B E∞ , for all countable E.

Example

E∞ ∼B (the shift equivalence relation on 2F2)

Theorem

E0 <B E∞
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Intermediate

There are countable equivalence relations which are neither
hyperfinite nor universal.

Theorem

There exist intermediate countable Borel equivalence relations E,
i.e.,

E0 <B E <B E∞.

Example

E = (the free part of the shift equivalence relation on 2F2)

This is a typical example of a treeable equivalence relation. These
were first studied by S. Adams in ergodic theory.
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Intermediate

Since the early 1990’s a small finite number of intermediate
equivalence relations were known and they were in a linear order
under ≤B. This lead to the following basic problems:

Problem

Are there infinitely many?

Problem

Does non-linearity occur here?

Theorem (Adams-K, 2000)

Every Borel partial order embeds into ≤B on the countable
equivalence relations.
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Picture of ≤B on countable equivalence relations

1

2

3

N

R

E0

E∞ universal

intermediate

treeable

hyperfinite

(non-smooth)

smooth

}

f.g. groups,
l.f. trees,

Riemann surfaces,
connected l.c.
metric spaces

rigid l.f. trees

free actions
of F2

rank 1 t.f.a. groups,
R-flows, . . .

planar annuli,
Bernoulli shifts,

compact Riemann surfaces,
compact metric spaces

f.g. abelian groups
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Set theoretic rigidity

The proof of the preceding theorem of Adams-K used Zimmer’s
cocycle superrigidity theory for ergodic actions of linear algebraic
groups and their lattices.

The key point is that there is a phenomenon of set theoretic
rigidity analogous to the measure theoretic rigidity phenomena
discovered by Zimmer.
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Set theoretic rigidity

(Measure theoretic rigidity) Under certain circumstances,
when a countable group acts preserving a probability measure,
the equivalence relation associated with the action together
with the measure “encode” or “remember” a lot about the
group (and the action).

(Set theoretic rigidity) Such information is simply encoded
in the Borel cardinality of the (quotient) orbit space.
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Set theoretic rigidity

Some set theoretic rigidity results.

Theorem (Adams-K)

|Tm/GLm(Z)|B = |Tn/GLn(Z)|B ⇔ m = n

Below Γp = SO7(Z[1/p]), p prime. Also Ep is the free part of the
shift equivalence relation on 2Γp .

Theorem (Adams-K)

Ep ≤B Eq ⇔ p = q
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Set theoretic rigidity

Below let ∼=n be isomorphism of torsion-free abelian groups of rank
n, i.e., subgroups of (Qn,+). This can be seen to be (up to ∼B) a
countable Borel equivalence relation.

Theorem (S. Thomas, 2003)

(∼=m) ∼B (∼=n) ⇔ m = n
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Set theoretic rigidity

Recently Hjorth-K, 2005 developed a set theoretic rigidity theory
for product groups that has several applications in the study of
countable Borel equivalence relations – but also in ergodic theory.
They also use ergodic theoretic methods, like cocycle reduction
techniques, actions on boundaries, etc. (Also, independently,
Monod-Shalom and Popa have proved important rigidity results for
product groups in the context of ergodic theory – it is yet unclear
what is the relationship between these theories.)

Here are a few results from the work of Hjorth-K.
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Set theoretic rigidity

Below, for any group Γ, we let EΓ be the free part of the shift
equivalence relation on 2Γ.

Theorem

E(Zp?Zp)×Z ≤B E(Zq?Zq)×Z ⇔ p = q

Note however that:

E(Zp?Zp) ∼B E(Zq?Zq)
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Set theoretic rigidity

The next result concerns the distinction between the equivalence
relation EF n

2
induced by the shift action of the product of n copies

of F2 (shift of the product) and the product equivalence relation of
n copies of the shift action of F2, i.e., (EF2)

n (product of the
shift). It can be best summarized in a picture.
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Set theoretic rigidity

Theorem

EF2

EF2
×EF2

EF2×F2

EF2
×EF2

×EF2

EF2×F2×F2

(EF2
)4

E(F2)4
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An ergodic theory rigidity result

Theorem

Suppose H0,H1 are non-amenable, torsion-free, hyperbolic groups
and ∆0,∆1 are infinite amenable groups. Let each Hi ×∆i act
freely on Xi with invariant, probability measure, so that the action
is ergodic on ∆i, i = 1, 2. If the action of H0 ×∆0 is (stably)
orbit equivalent to the action of H1 ×∆1, then H0

∼= H1.
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... and a final comment

The theory of countable Borel equivalence relations points to an
interesting phenomenon. Although one is dealing here with very
simple set theoretic notions (countable Borel equivalence relations
and Borel reducibility) most basic questions about them (like
existence of intermediate or incomparable ones) have been
answered by using rather sophisticated ergodic theory methods,
and this certainly represents an interesting application of ergodic
theory to set theory. At this time no other methods to study these
problems are known.

Logic and Dynamical Systems


