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How to make fun
with cross ratios ...
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Disclaimer

Most of the statements and definitions below are not precise enough
and should not be taken seriously !

The slides are meant to be complemented by a talk
Preprints, with accurate statements and bibliography

can be downloaded from
http://math.u-psud.fr/ labourie/preprints/index.html

These slides are provided AS IS and without warranty of any kind

and F. Labourie expressly disclaims all other warranties, expressed

or implied, including, but not limited to, the implied warranties of

rigourousness and fitness for a particular purpose. Under no

circumstances shall F. Labourie be liable for any incidental, special,

or consequential damages that result from the use or inability to

use these slides. IF YOU DO NOT AGREE TO THE TERMS OF

THIS AGREEMENT, DO NOT READ THESE SLIDES AND

DESTROY ALL COPIES IN YOUR POSSESSION.
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Riemann Uniformisation Theorem

• Let S be a compact, connected surface of genus ≥ 2

• Let π1(S) be its fundamental group, also called surface group.

Riemann Uniformisation Theorem:

complex structure J on S ;

a representation ρ : π1(S) → PSL(2, R)

s.t. (S, J) is conformal to H
2/ρ(π1(S)) .

Such a representation ρ is said to be Fuchsian , it is the

monodromy of a hyperbolic structure. Fuchsian representations fill

up two isomorphic connected components of the space of

representations [Goldman].
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Teichmüller Spaces

Using Riemann’s Theorem, we can identify three different moduli

spaces

• The space of complex structures on S.

• a connected component of the space of representations

Rep(π1(S), PSL(2, R)).

• The space of hyperbolic metrics on S.

The corresponding topological space T (S) is called Teichmüller

space.

We will first explain another elementary point of view on

Teichmüller space.
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The boundary at infinity of a surface group

To a surface group π1(S) , we can associate a topological space ,

the boundary at infinity denoted ∂∞π1(S) on which π1(S) acts. It

is is defined as the ”horizon” of the group π1(S) viewed as a

geometric object.

This space has the following properties

• it is homeomorphic to the circle

• Every non trivial element γ of π1(S) has exactly two fixed

points on ∂∞π1(S).

– one attractive fixed point γ+,

– one repulsive fixed point γ−.

• every orbit is dense.

These three properties characterise the boundary at infinity

[Gabai].
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Geometric realisation of ∂∞π1(S)

Let us choose a hyperbolic metric on S. The universal cover of S is

identified with the hyperbolic plane H
2.

Then ∂∞π1(S) is identified with the boundary of the disk in the

Poincaré disk model : ∂∞π1(S) = ∂∞H
2 = RP

1.

hyperbolic structure on S ; identification ∂∞π1(S) ↔ RP
1

Teichmüller space T (S) =

moduli space of π1(S) invariant projective structures on

∂∞π1(S)
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Cross ratio and periods

• A cross ratio on ∂∞π1(S) is a Hölder function

b : ∂∞π1(S)4 \ ∆ → R
∗,

invariant under the action of π1(S) satisfying some rules

b(x, y, z, t) = b(x, y, z, w)b(x, w, z, t) (Cocycle identity)

b(x, y, z, t) = b(x, y, w, t)b(w, y, z, t) (Symmetric rule)

b(x, y, z, t) = b(z, t, x, y)( Symmetry)

b(x, y, z, t) = 0 ⇔ x = y or z = t(Normalisation)

b(x, y, z, t) = 1 ⇔ x = z or y = t(Normalisation)

• Let γ ∈ π1(S). The period of γ with respect to a cross ratio b is

lb(γ) = log |b(γ+, y, γ−, γy)|.

Where γ+ (resp. γ−) is the attracting (resp. repelling) fixed
23



Cross ratio and periods

• A cross ratio on ∂∞π1(S) is a Hölder function
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Cross ratio and periods

• A cross ratio on ∂∞π1(S) is a Hölder function

b : ∂∞π1(S)4 \ ∆ → R
∗,

invariant under the action of π1(S) satisfying some rules :

– Cocycle identity and symmetric cocycle identity

– Symmetry and normalisation

• Let γ ∈ π1(S). The period of γ with respect to a cross ratio b is

lb(γ) = log |b(γ+, y, γ−, γy)|.

Where γ+ (resp. γ−) is the attracting (resp. repelling) fixed

point of γ on ∂∞π1(S), and y any element in ∂∞π1(S).
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Classical Example

• The classical cross ratio on RP
1, satisfies furthermore the

functional relation.

F (2) : b(x, y, z, t) = 1 − b(t, y, z, x).

Moreover, every cross ratio satisfying F (2) is classical.

• In particular

ρ ∈ T (S) ; cross ratio on ∂∞π1(S) ≃ RP
1.

• Hence

Teichmüller space T (S) =

space of cross ratios on ∂∞π1(S) satisfying F (2) .

periods ! lengths of closed geodesics

30



Classical Example

• The classical cross ratio on RP
1, satisfies furthermore the

functional relation.

F (2) : b(x, y, z, t) = 1 − b(t, y, z, x).

Moreover, every cross ratio satisfying F (2) is classical.

• In particular

ρ ∈ T (S) ; cross ratio on ∂∞π1(S) ≃ RP
1.

• Hence

Teichmüller space T (S) =

space of cross ratios on ∂∞π1(S) satisfying F (2) .

periods ! lengths of closed geodesics

31



Classical Example

• The classical cross ratio on RP
1, satisfies furthermore the

functional relation.

F (2) : b(x, y, z, t) = 1 − b(t, y, z, x).

Moreover, every cross ratio satisfying F (2) is classical.

• In particular

ρ ∈ T (S) ; cross ratio on ∂∞π1(S) ≃ RP
1.

Teichmüller space T (S) =

space of cross ratios on ∂∞π1(S) satisfying F (2) .

periods ! lengths of closed geodesics

32



Less Classical Examples

• if ξ and ξ∗ are curves from S1 to P(E) and P(E∗) respectively,

b(x, y, z, t) =
〈ξ̂(x), ξ̂∗(y)〉〈〈ξ̂(z), ξ̂∗(t)〉

〈ξ̂(z), ξ̂∗(y)〉〈ξ̂(x), ξ̂∗(t)〉
.

(Generalisation to flag manifolds)

• Geodesic flows of negatively curved metrics on S ; crossratios

Periods = length of closed geodesics. (In general, Anosov flows

! Cross ratios) [Otal, Hamenstädt, Ledrappier]

We will show that Teichmüller theory extends as a higher Te-

ichmüller theory (or higher Thurston theory) which is a dictio-

nary between cross ratios, representations of surface groups and

complex analysis.
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Representations of π1(S) in PSL(n, R)

• Fuchsian representations in PSL(n, R) By definition these are

compositions

π1(S)
Fuchsian

−→ PSL(2, R)
irreducible

−→ PSL(n, R).

• Hitchin representations in PSL(n, R): a representation which

can be deformed to a Fuchsian representation.

• Hitchin component H(n, S) is (one of) the connected

component(s) of

{Hitchin representations}/PSL(n, R).
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A Theorem by Hitchin

Observe first that H(2, S) = T (S).

Theorem [Hitchin-90] The Hitchin component H(n, S) is

homeomorphic to a ball of dimension −χ(S)(n2 − 1).

The proof uses harmonic mappings.

• What can be said individually about Hitchin’s representations?

are they discrete?

• Does the mapping class group acts Out(π1(S)) properly on

H(n, S)?

• Are Hitchin representations symmetries of geometric objects?
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Theorem [L.]

• Hitchin component H(n, S) = space of cross ratios on ∂∞π1(S)

satisfying a rational functional relation F (n).

• In this correspondence,

∀γ ∈ π1(S), lb(γ) = log
λmax(ρ(γ))

λmin(ρ(γ)
.

• Every Hitchin representation is discrete, faithful, the image of

every element in π1(S) is real split.

• The mapping class group acts properly on H(n).
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The functional relation F (n)

F (n) involves quotient of determinants of matrices whose

coefficients are values of the cross ratio.If {. . . , ei, . . . , ui . . .} are

points in ∂∞π1(S), we define

χn(e0, . . . , en; u0, . . . , un) = det(b(ei, uj , e0, u0)).

Then F (n) is

∀p ≤ n, χp 6= 0,

∀p > n, χp = 0.

In particular,

χn+1 = 0.
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Hyperconvex curves

A continuous curve ξ from S1 to RP
n−1 is hyperconvex if for any

distinct points (x1, . . . , xn) in S1 we have

ξ(x1) ⊕ . . . ⊕ ξ(xn) = R
n.

• for n = 2 hyperconvex means injective,

• for n = 3 hyperconvex means convex,

• The Veronese embedding is hyperconvex.

• By Cauchy-Crofton formula, hyperconvex curves are rectifiable

with universally bounded length :

length(c) =

∫

hyperplanes P

♯(c ∩ P )
︸ ︷︷ ︸

≤n−1

dP.
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Theorem [L.] If ρ is a Hitchin representation, then there exists a

(unique) ρ-equivariant hyperconvex curve ξ, the limit curve, from

∂∞π1(S) to RP
n−1. Furthermore, these (generally only C1) curves

admits continuous osculating flags in general position

• for Fuchsian representations, we get the Veronese embedding,

• Hitchin representations are symmetries of hyperconvex curves.

• This leads to cross ratios.

Using a result by Guichard, we have

Hitchin component H(n, S) =

moduli space of equivariant hyperconvex curves in RP
n−1
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Universal constructions

• Universal Hitchin component (when genus of S goes to infinity)

= {hyperconvex curves }

• Universal Hitchin component (when n goes to infinity) =

Rep∗(π1(S), C1,h(S1) ⋊ Diffh(S1)) = H(∞, S)

We have the two inclusions

∀n, H(n, S) ⊂ H(∞, S)

{ negatively curved metrics on S} ⊂ H(∞, S).
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A conjecture about uniformisation

• Let’s fix a complex structure J on S, N. Hitchin constructed a

homeomorphism (actually a section of Hitchin’s fibration)

φJ : H0(K2
J) ⊕ . . . ⊕ H0(Kn

J ) → H(n)

• We want to get rid of the choice of J . Let T (S) be Teichmüller

space. Let E → T (S) be the vector bundle with fibre

EJ = H0(K3
J ) ⊕ . . . ⊕ H0(Kn

J ).

Let

Φ :







E 7→ H(n)

(J, ω) → φJ(0, ω)

Notice that Φ is equivariant under the action of the Mapping

Class Group M(S) = Out(Γ).
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Conjecture The map Φ is a homeomorphism

• For n = 2, this is Riemann’s Theorem.

• This conjecture has a translation as the stability of a minimal

surface in a symmetric space.

• This would imply H(n)/M(S) is naturally a complex manifold.

Theorem Φ is surjective : this follows from the existence for every

Hitchin representation ρ of a minimal surface in

ρ(π1(S))\SL(n, R)/SO(n, R)

Moreover, for n = 3, Φ is a homeomorphism.
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• For n = 2, this is Riemann’s Theorem.

• This conjecture has a translation as the stability of a minimal

surface in a symmetric space.

• This would imply H(n)/M(S) is naturally a complex manifold.
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Teichmüller-Thurston dictionnary

Teichmüller-Thurston theory ; a dictionnary between complex

analysis, algebra (representations of surface groups), geometry

(hyperbolic metrics), dynamics, combinatorics , integrable systems

(Virasoro algebra).

What can be said about representations of π1(S) in PSL(n, R) ?

70



Teichmüller-Thurston dictionnary

Teichmüller-Thurston theory ; a dictionnary between complex

analysis, algebra (representations of surface groups), geometry

(hyperbolic metrics), dynamics, combinatorics (Penner’s cell

decomposition), integrable systems (Virasoro algebra).

What can be said about representations of π1(S) in PSL(n, R) ?
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Other elements of the dictionnary

• [Combinatorics] Thurston shear coordinates on T (S) for

surfaces with boundary

; Fock-Goncharov work : coordinates, quantisation, positive

algebraic geometry interpretation, as well as extension to the

open case and real-split groups.

• Mc Shane’s identity about length of closed geodesics ; higher

identities [L-, Mc Shane]

• Dynamical properties of the geodesic flow ; Anosov flow

associated to Hitchin representation [L]

• Properness of the energy functional [Schoen-Yau] remains true.

• Compactifications : A. Parreau

• Integrable systems ? W (n) algebras ? Intersection numbers ?
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