Stochastic Partial Differential Equations and Infinite Dimensional Analysis

Michael Röckner

joint work (several papers) with:
Viorel Barbu, Vladimir I. Bogachev, Giuseppe Da Prato, Zeev Sobol, Feng-Yu Wang

Ref.: BiBoS-Preprint Server, my homepage at Purdue University (BiBoS = Bielefeld-Bonn-Stochastics Research Centre)

A - From ODE to PDE
in finitely many variables

A - ODE to PDE, finite dimensional

ODE
(1) $\begin{aligned} \mathrm{d} X_{t}^{x} & =B\left(X_{t}^{x}\right) \mathrm{d} t \\ X_{0}^{x} & =x \in \mathbb{R}^{d}\end{aligned}$
on \mathbb{R}^{d}
$X_{t}^{x}=x+\int_{0}^{t} B\left(X_{s}^{x} \quad\right) \mathrm{d} s$

$$
\begin{array}{ll}
\Rightarrow \quad & p_{t} f(x):=f\left(X_{t}^{x}\right) \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{array}
$$

$$
\begin{aligned}
& \text { semigroup } \\
& \left(p_{t+s} f(x)=p_{t}\left(p_{s} f\right)(x)\right) \\
& \text { by flow property }
\end{aligned}
$$

solves PDE (2)

A - ODE to PDE, finite dimensional

$$
\begin{array}{ll}
\Rightarrow \quad & p_{t} f(x):=\quad f\left(X_{t}^{x}\right) \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{array}
$$

```
semigroup
(p}\mp@subsup{p}{t+s}{}f(x)=\mp@subsup{p}{t}{}(\mp@subsup{p}{s}{}f)(x)
by flow property
```

solves PDE
(2) $\frac{\partial}{\partial t} p_{t} f(x)=\sum_{i=1}^{d} B^{i}(x) \cdot \frac{\partial}{\partial e_{i}} p_{t} f(x)$

$$
\begin{align*}
& =B(x) \cdot \nabla_{x} p_{t} f(x) \tag{1}\\
& \left.=: \underset{\substack{\uparrow \\
\uparrow \\
\text { "generator" } \\
\text { of }(1)}}{ } p_{t} f\right)(x) \\
&
\end{align*}
$$

Here $B=\left(B^{1}, \ldots, B^{d}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $e_{i}=(0, \ldots, \underset{\uparrow}{1}, \ldots, 0)$ canonical basis

ODE

$$
\begin{aligned}
\mathrm{d} X_{t}^{x} & =B\left(X_{t}^{x}\right) \mathrm{d} t & \text { on } \mathbb{R}^{d} \\
X_{0}^{x} & =x \in \mathbb{R}^{d} &
\end{aligned}
$$

$$
X_{t}^{x}=x+\int_{0}^{t} B\left(X_{s}^{x} \quad\right) \mathrm{d} s
$$

$$
\begin{array}{ll}
\Rightarrow \quad & p_{t} f(x):=\quad f\left(X_{t}^{x}\right) \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{array}
$$

$$
\begin{aligned}
& \text { semigroup } \\
& \left(p_{t+s} f(x)=p_{t}\left(p_{s} f\right)(x)\right) \\
& \text { by flow property }
\end{aligned}
$$

solves PDE (2)

SODE

$$
\begin{align*}
\mathrm{d} X_{t}^{x} & =B\left(X_{t}^{x}\right) \mathrm{d} t+\quad \mathrm{d} W_{t} & \text { on } \mathbb{R}^{d} \\
X_{0}^{x} & =x \in \mathbb{R}^{d} & \\
X_{t}^{x}(\omega) & =x+\int_{0}^{t} B\left(X_{s}^{x}(\omega)\right) \mathrm{d} s+ & \underbrace{W_{t}(\omega)}_{\begin{array}{c}
\text { Brownian motion } \\
\text { on } \mathbb{R}^{d}
\end{array}} \tag{1}
\end{align*}
$$

$\stackrel{\text { Kolmogorov }}{\Longleftrightarrow}$

$$
\begin{aligned}
& p_{t} f(x):=\int f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)=: \mathbb{E}\left[f\left(X_{t}^{x}\right)\right] \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \text { semigroup } \\
& \left(p_{t+s} f(x)=p_{t}\left(p_{s} f\right)(x)\right) \\
& \text { by 太बwxpkoprenty } \\
& \text { Markov property } \\
& \hline
\end{aligned}
$$

solves PDE (2) (heat equation in finitely many variables)

A - ODE to PDE, finite dimensional

$$
\Rightarrow \quad \begin{aligned}
& p_{t} f(x):=\quad f\left(X_{t}^{x}\right) \\
& \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

```
semigroup
(p}\mp@subsup{p}{t+s}{}f(x)=\mp@subsup{p}{t}{}(\mp@subsup{p}{s}{}f)(x)
by flow property
```

solves PDE
(2) $\frac{\partial}{\partial t} p_{t} f(x)=\sum_{i=1}^{d} B^{i}(x) \cdot \frac{\partial}{\partial e_{i}} p_{t} f(x)$

$$
\begin{align*}
& =B(x) \cdot \nabla_{x} p_{t} f(x) \tag{2}\\
& =: \underset{\substack{ \\
\\
\text { "generator" } \\
\text { of }(1)}}{L\left(p_{t} f\right)(x)}
\end{align*}
$$

Here $B=\left(B^{1}, \ldots, B^{d}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $e_{i}=(0, \ldots, \underset{\uparrow}{1}, \ldots, 0)$ canonical basis
$\stackrel{\text { Kolmogorov }}{\Longleftrightarrow}$

$$
\begin{aligned}
& p_{t} f(x):=\int f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)=: \mathbb{E}\left[f\left(X_{t}^{x}\right)\right] \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

semigroup
$\left(p_{t+s} f(x)=p_{t}\left(p_{s} f\right)(x)\right)$
by Aowxpropenty
Markov property

solves PDE (heat equation in finitely many variables)
(2) $\frac{\partial}{\partial t} p_{t} f(x) \stackrel{\text { Itô }}{=} \sum_{i=1}^{d} B^{i}(x) \cdot \frac{\partial}{\partial e_{i}} p_{t} f(x)+\frac{1}{2} \sum_{i=1}^{d} \quad \frac{\partial^{2}}{\partial e_{i} \partial e_{i}} p_{t} f(x)$

$$
\begin{align*}
& =B(x) \cdot \nabla_{x} p_{t} f(x)+\frac{1}{2} \Delta_{x} p_{t} f(x) \tag{3}\\
& =: \underset{\substack{\uparrow \\
\text { "generator" } \\
\text { of }(1)}}{L\left(p_{t} f\right)(x)}
\end{align*}
$$

Here $B=\left(B^{1}, \ldots, B^{d}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $e_{i}=(0, \ldots, \underset{\uparrow}{1}, \ldots, 0)$ canonical basis

Itô:

$$
\begin{aligned}
p_{t} f(x)= & E\left[f\left(X_{t}^{x}\right)\right] \\
= & f(x)+\sum_{i=1}^{d} \underbrace{E\left[\int_{0}^{t}\left(\frac{\partial}{\partial e_{i}} f\right)\left(X_{s}^{x}\right) d W_{s}^{i}\right]}_{=0}+\sum_{i=1}^{d} \int_{0}^{t} \underbrace{E\left[\left(\frac{\partial}{\partial e_{i}} f\right)\left(X_{s}^{x}\right) B^{i}\left(X_{s}^{x}\right)\right] d s}_{p_{s}\left(\left(\frac{\partial}{\partial e_{i}} f\right) B^{i}\right)(x) d s} \\
& +\frac{1}{2} \sum_{i, j=1}^{d} \int_{0}^{t} \underbrace{E[\left(\frac{\partial^{2}}{\partial e_{i} \partial e_{j}} f\right)\left(X_{s}^{x}\right) \underbrace{\left\langle d W_{s}^{i}, d W_{s}^{j}\right\rangle_{\mathbb{R}^{d}}}_{=\delta_{i j} d s}]}_{=p_{s}\left(\frac{\partial^{2}}{\partial e_{i} \partial e_{j}} f\right)(x) \delta_{i j} d s} \text { (Taylor up to order 2!) } \\
= & f(x)+\int_{0}^{t} \underbrace{p_{s}(L f)(x)}_{L\left(p_{s} f\right)(x)} d s
\end{aligned}
$$

A - SODE to PDE, finite dimensional

SODE

$$
\begin{align*}
\mathrm{d} X_{t}^{x} & =B\left(X_{t}^{x}\right) \mathrm{d} t+\quad \mathrm{d} W_{t} & \text { on } \mathbb{R}^{d} \\
X_{0}^{x} & =x \in \mathbb{R}^{d} & \\
X_{t}^{x}(\omega) & =x+\int_{0}^{t} B\left(X_{s}^{x}(\omega)\right) \mathrm{d} s+ & \underbrace{W_{t}(\omega)}_{\begin{array}{c}
\text { Brownian motion } \\
\text { on } \mathbb{R}^{d}
\end{array}} \tag{1}
\end{align*}
$$

$\stackrel{\text { Kolmogorov }}{\Longleftrightarrow}$

$$
\begin{aligned}
& p_{t} f(x):=\int f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)=: \mathbb{E}\left[f\left(X_{t}^{x}\right)\right] \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \text { semigroup } \\
& \left(p_{t+s} f(x)=p_{t}\left(p_{s} f\right)(x)\right) \\
& \text { by 太बwxpkoprenty } \\
& \text { Markov property }
\end{aligned}
$$

solves PDE (2) (heat equation in finitely many variables)

A - SODE to PDE, finite dimensional

SODE

$$
\begin{align*}
\mathrm{d} X_{t}^{x} & =B\left(X_{t}^{x}\right) \mathrm{d} t+\sigma\left(X_{t}^{x}\right) \mathrm{d} W_{t} \tag{1}\\
X_{0}^{x} & =x \in \mathbb{R}^{d}
\end{align*}
$$

$$
X_{t}^{x}(\omega)=x+\int_{0}^{t} B\left(X_{s}^{x}(\omega)\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(X_{s}^{x}(\omega)\right) \underbrace{\mathrm{d} W_{s}(\omega)}_{\substack{\text { Brownian motion } \\ \text { on } \mathbb{R}^{d}}}
$$

$\stackrel{\text { Kolmogorov }}{\Longleftrightarrow}$

$$
\begin{aligned}
& p_{t} f(x):=\int f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)=: \mathbb{E}\left[f\left(X_{t}^{x}\right)\right] \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

$$
\begin{aligned}
& \text { semigroup } \\
& \left(p_{t+s} f(x)=p_{t}\left(p_{s} f\right)(x)\right) \\
& \text { by 太बwxpkoprenty } \\
& \text { Markov property }
\end{aligned}
$$

solves PDE (2) (heat equation in finitely many variables)
$\stackrel{\text { Kolmogorov }}{\Longleftrightarrow}$

$$
\begin{aligned}
& p_{t} f(x):=\int f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)=: \mathbb{E}\left[f\left(X_{t}^{x}\right)\right] \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

semigroup
$\left(p_{t+s} f(x)=p_{t}\left(p_{s} f\right)(x)\right)$
by 甘बwxpкopenty
Markov property

solves PDE (heat equation in finitely many variables)
(2) $\frac{\partial}{\partial t} p_{t} f(x) \stackrel{\mathrm{It} \hat{e}}{=} \sum_{i=1}^{d} B^{i}(x) \cdot \frac{\partial}{\partial e_{i}} p_{t} f(x)+\frac{1}{2} \sum_{i=1}^{d} \quad \frac{\partial^{2}}{\partial e_{i} \partial e_{i}} p_{t} f(x)$

$$
\begin{align*}
& =B(x) \cdot \nabla_{x} p_{t} f(x)+\frac{1}{2} \operatorname{Tr}\left(\quad D^{2} p_{t} f(x)\right) \tag{4}\\
& =: \underset{\substack{ \\
\uparrow}}{\text { "generator" }} \begin{array}{l}
\text { of (1) }
\end{array}
\end{align*}
$$

Here $B=\left(B^{1}, \ldots, B^{d}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $e_{i}=(0, \ldots, \underset{\uparrow}{1}, \ldots, 0)$ canonical basis
$\stackrel{\text { Kolmogorov }}{\Longleftrightarrow}$

$$
\begin{aligned}
& p_{t} f(x):=\int f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)=: \mathbb{E}\left[f\left(X_{t}^{x}\right)\right] \\
& p_{0} f=f \text { for } f: \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

solves PDE (heat equation in finitely many variables)
(2) $\frac{\partial}{\partial t} p_{t} f(x) \stackrel{\text { Itô }}{=} \sum_{i=1}^{d} B^{i}(x) \cdot \frac{\partial}{\partial e_{i}} p_{t} f(x)+\frac{1}{2} \sum_{i, j=1}^{d}\left(\sigma^{T}(x) \sigma(x)\right)^{i j} \cdot \frac{\partial^{2}}{\partial e_{i} \partial e_{j}} p_{t} f(x)$

$$
\begin{align*}
& =B(x) \cdot \nabla_{x} p_{t} f(x)+\frac{1}{2} \operatorname{Tr}\left(\sigma^{T}(x) \sigma(x) D^{2} p_{t} f(x)\right) \tag{5}\\
& =: \underset{\uparrow}{\uparrow} \underset{\uparrow}{L}\left(p_{t} f\right)(x) \\
& \text { "generator" } \\
& \text { of }(1)
\end{align*}
$$

Here $B=\left(B^{1}, \ldots, B^{d}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and $e_{i}=\left(0, \ldots, \frac{1}{\uparrow}, \ldots, 0\right)$ canonical basis and $\sigma=\left(\sigma^{i j}\right): \mathbb{R}^{d} \rightarrow \underbrace{M(d \times d)}_{d \times d \text {-matrices }}$

Construction of Brownian motion
[Levy-Wiener-Ciesielski]
First ingredient: Haarbasis of $L^{2}([0,1], \mathrm{d} t)$:
\uparrow
measure
$f_{0,0} \equiv 1$, and for $n \in \mathbb{N}, 0<k<2^{n}, k$ odd,

$\left(f_{n, k}\right)_{\substack{0<k<2^{n} \\ n \in \mathbb{N}}}, k$ odd is ONB of $L^{2}([0,1], \mathrm{d} t)$

Second ingredient: Standard normal distribution on \mathbb{R}^{∞}
Standard normal distribution on \mathbb{R}^{1} :

$$
\underset{\substack{\text { Gauss }}}{\gamma(\mathrm{d} x)}:=\frac{1}{\sqrt{2 \pi}} \cdot e_{\substack{-\frac{x^{2}}{2}}}^{\substack{\text { Lebesgue meas. } \\ \text { on } \mathbb{R}^{1}}}
$$

Set $\gamma_{n, k}:=\gamma$.

$$
\mathbb{P}:=\bigotimes_{\substack{0<k<2^{n} \\ \text { ood } \\ n \in \mathbb{N}}} \gamma_{n, k} \quad \text { product measure on } \mathbb{R}^{\infty}\left(=\mathbb{R}^{\{(n, k) \mid \ldots\}}\right)
$$

Define $\xi_{n, k}: \mathbb{R}^{\left\{(n, k) \mid n \in \mathbb{N}, 0<k<2^{n}, k \text { odd }\right\} \cup\{(0,0)\}} \rightarrow \mathbb{R}$ (projection) and for $t \in[0,1]$

$$
\underset{\uparrow}{W_{t}(\omega)}:=\sum_{(n, k)} \xi_{n, k}(\omega) \int_{0}^{t} f_{n, k}(s) \mathrm{d} s \quad \text { converges for } \mathbb{P} \text {-a.e. } \omega \in \mathbb{R}^{\infty}
$$

Brownian motion on \mathbb{R}^{1}

B - From SODE to PDE

in infinitely many variables

B - SODE to PDE, infinite dimensional

SODE in E
(1) $\mathrm{d} X_{t}^{x}=B\left(X_{t}^{x}\right) \mathrm{d} t+\sigma\left(X_{t}^{x}\right) \mathrm{d} W_{t}$

Brownian motion
on E

$$
p_{t} f(x):=\int_{\Omega} f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega), \quad p_{0} f=f, \quad \text { for } f: E \rightarrow \mathbb{R}
$$

solves PDE (2) (heat equation in infinitely many variables)
\Longleftrightarrow

$$
p_{t} f(x):=\int_{\Omega} f\left(X_{t}^{x}(\omega)\right) \mathbb{P}(\mathrm{d} \omega), \quad p_{0} f=f, \quad \text { for } f: E \rightarrow \mathbb{R}
$$

solves PDE (heat equation in infinitely many variables)
(2) $\quad \frac{\partial}{\partial t} p_{t} f(x)=\sum_{i=1}^{\infty}\left\langle B(x), e_{i}\right\rangle \frac{\partial}{\partial e_{i}} p_{t} f(x)+\frac{1}{2} \sum_{i, j=1}^{\infty}\langle\underbrace{\sigma^{T}(x) \sigma(x)}_{=: A(x)} e_{i}, e_{j}\rangle \frac{\partial^{2}}{\partial e_{i} \partial e_{j}} p_{t} f(x)$ (heuristically!)

$$
=\underset{\substack{\uparrow \\ \text { "generator" } \\ \text { of }(1)}}{L\left(p_{t} f\right)(x) .}
$$

Here $B: E \rightarrow E$ and $\left\{e_{i} \mid i \in \mathbb{N}\right\}$ ONB of E and

$$
\begin{aligned}
\sigma: E \rightarrow & L(E) \\
& \uparrow \\
& \\
& \text { (bounded) linear operators } \\
& \text { on } E
\end{aligned}
$$

For simplicity $A(x)=\sigma^{T}(x) \sigma(x)=A$ independent of $x \in E$. So, have:

$$
\begin{align*}
\sigma\left(X_{t}\right) \text { above } & \in L(E) \text {, pos. } \\
\mathrm{d} X_{t} & =B\left(X_{t}\right) \mathrm{d} t+\sqrt[4]{A} \mathrm{~d} W_{t} \quad \leftarrow \text { B.M. on } E \\
X_{0} & =x \in E \quad=\text { sep. Hilbert space with }\langle,\rangle \tag{1}
\end{align*}
$$

Associated generator (Kolmogorov operator)

$$
\begin{aligned}
L \varphi(x) & =\sum_{i=1}^{N}\left\langle B(x), e_{i}\right\rangle \frac{\partial \varphi}{\partial e_{i}}(x)+\frac{1}{2} \sum_{i, j=1}^{N}\left\langle A e_{i}, e_{j}\right\rangle \frac{\partial^{2}}{\partial e_{i} \partial e_{j}} \varphi(x) \\
& =\langle B(x), \underset{\text { Fréchet derivatives }}{D} \varphi(x)\rangle+\frac{1}{2} \operatorname{Tr}\left(A D^{2} \varphi(x)\right)
\end{aligned}
$$

$$
\text { for } x \in E \text { and } \varphi=g\left(\left\langle e_{1}^{\swarrow}, \cdot\right\rangle, \ldots,\left\langle e_{\uparrow}, \cdot\right\rangle\right) \leftarrow \text { anB of } E \text { such } \mathcal{F} C_{b}^{2}
$$

$$
\uparrow_{\in C_{b}^{2}\left(\mathbb{R}^{N}\right)} \quad \in \mathbb{N} \text { arbitrary }
$$

Altogether:

$$
\begin{align*}
\mathrm{d} X_{t} & =B\left(X_{t}\right) \mathrm{d} t+\sqrt{A} \mathrm{~d} W_{t} \tag{1}\\
X_{0} & =x \in E
\end{align*}
$$

Associated generator (Kolmogorov operator)

$$
\begin{aligned}
L \varphi(x) & =\sum_{i=1}^{N}\left\langle B(x), e_{i}\right\rangle \frac{\partial \varphi}{\partial e_{i}}(x)+\frac{1}{2} \sum_{i, j=1}^{N}\left\langle A e_{i}, e_{j}\right\rangle \frac{\partial^{2}}{\partial e_{i} \partial e_{j}} \varphi(x) \\
& =\langle B(x), D \varphi(x)\rangle+\frac{1}{2} \operatorname{Tr}\left(A D^{2} \varphi(x)\right)
\end{aligned}
$$

for $x \in E$ and $\varphi=g\left(\left\langle e_{1}, \cdot\right\rangle, \ldots,\left\langle e_{N}, \cdot\right\rangle\right): E \rightarrow \mathbb{R}$.
The associated heat equation is also called Kolmogorov (backward) equation
(2) $\quad \frac{\partial}{\partial t} u(t, x)=L u(t, x), \quad u(0, \cdot)=f$,
where $f: E \rightarrow \mathbb{R}$.

Want to solve (2), then (1)!

Once (2) is solved one has to apply highly developed machinery to get solution of (1). In this talk we concentrate on solving (2):
Two approaches to solve (2) will be presented:

- L^{p}-approach
- Weighted function space (=WFS -) approach

C - Two stochastic PDE as examples

(a) Porous media equation (L^{p}-approach)
(b) Stochastic Navier-Stokes equation, $d=2$
(WFS-approach)
(a) Stochastic porous media equation (L^{p}-approach)
with Dirichlet boundary conditions

$$
\mathrm{d} X_{t}=\underbrace{\Delta \Psi\left(X_{t}\right)}_{B\left(X_{t}\right)} \mathrm{d} t+\underset{\substack{\uparrow \\ \text { trace class }}}{\sqrt{A}} \mathrm{~d} W_{t} \quad \text { with } \Psi: \mathbb{R} \rightarrow \mathbb{R}
$$

on $E:=H^{-1}(\Lambda), \Lambda \subset \mathbb{R}^{d}$, open;
so,

$$
L \varphi(x)=\langle\Delta \Psi(x), D \varphi(x)\rangle+\frac{1}{2} \operatorname{Tr} A D^{2} \varphi(x), \quad x \in H^{-1}(\Lambda), \quad \text { for } \varphi: H^{-1}(\Lambda) \rightarrow \mathbb{R}
$$

Remark:

(i) $A \equiv 0$: enormous literature.
(ii) $A \not \equiv 0$: first papers [Da Prato / R.: JEE '04], [Barbu / Bogachev/Da Prato/R.: JFA '06] Subsequently, many others. Mainly, on SPDE, not on Kolmogorov equations: Kim, Wu, Zhang, ...
Among most recent: Da Prato/R./Rosowski/Wang: Comm. P.D.E. '06], [Ren/R./Wang: BiBos-preprint '06].

C - Two stochastic PDE as examples

(c) Stochastic Navier-Stokes equation, $d=2$ (WFS-approach)

$$
E:=\{x \in L^{2}\left(\Lambda \rightarrow \mathbb{R}^{2}, \mathrm{~d} x\right) \mid \underbrace{\operatorname{div} x}=0\},
$$

in the sense of distributions
$\Lambda \subset \mathbb{R}^{2}$, open, bounded, $\partial \Lambda$ smooth;
so,

$$
L \varphi(x)=\left\langle\nu \Delta_{s} x-\langle x, \nabla\rangle_{\mathbb{R}^{2}} x, D \varphi(x)\right\rangle_{E},+\frac{1}{2} \operatorname{Tr} A D^{2} \varphi(x), \quad x \in E, \quad \text { for } \varphi: E \rightarrow \mathbb{R} .
$$

Remark:

(i) $A \equiv 0:$ OVERWHELMING literature
(ii) $A \not \equiv 0$: on SPDE: OVERWHELMING literature
$A \not \equiv 0$: on Kolmogorov equations: Da Prato/Debussche (also $d=3!$), Barbu, Flandoli, Gozzi,...
WFS-approach: [R./Sobol: Ann. Prob. '06] for $d=1$., [R./Sobol: Preprint '06] for $d=2$ and also for geostrophic equation
(iii) Existence of infinitesimally invariant measures also proved for $d \geq 2$: [Bogachev
/ R.: PTRF '00]

D - Strategies to solve

the Kolmogorov equation

D - Strategy

to solve
(2) $\quad \frac{\partial}{\partial t} u(t, x)=L u(t, x), \quad u(0, \cdot)=f$.
semigroup approach!

Construct

$$
e^{t L} f(x)=: u(t, x), \quad t \geq 0
$$

If $e^{t L}$ exists, then by operator calculus

$$
(\lambda-L)^{-1}=\int_{0}^{\infty} e^{-\lambda t} e^{t L} \mathrm{~d} t, \lambda>\lambda_{0}
$$

So, try to construct $(\lambda-L)^{-1}, \lambda>\lambda_{0}$, and invert Laplace transform, (well-known method: "Hille-Yosida Theorem").

For implementation two major steps necessary:

Step 1

Show "dissipativity", i.e.

$$
\|(\lambda-L) \varphi\|_{W(E)} \geq\left(\lambda-\lambda_{0}\right)\|\varphi\|_{W(E)} \quad \forall \varphi \in \mathcal{F} C_{b}^{2}, \quad \lambda>\lambda_{0}
$$

for suitable norm $\|\cdot\|_{W(E)}$ in Banach space $W(E)$ of functions $f: E \rightarrow \mathbb{R}^{d}$ such that $\mathcal{F} C_{b}^{2} \subset W(E)$. So, $\lambda-L$ is invertible for all $\lambda>\lambda_{0}$.

Step 2

Show "density of range", i.e. $(\lambda-L)\left(\mathcal{F} C_{b}^{2}\right)$ is dense in $\left(W(E),\|\cdot\|_{W(E)}\right)$ for one (hence all) $\lambda>\lambda_{0}$. (Easier to achieve for weaker norms!)

Cannot take: $W=C_{b}(E)$, since coefficients of L not continuous in general.
In this talk:
Only Step 1 in

- L^{p} - approach for stochastic porous media equation.

Here $W(E):=L^{p}(E, \mu)$ for suitable measures on E !

- WFS-approach for stochastic Navier-Stokes equation

Here $W(E):=$ weighted space of sequentially weakly continuous functions.

E - L^{p}-Approach

General idea of L^{p}-approach:

Step 1: Reference measures on E.

Solve $L^{*} \mu=0 \quad$ " μ is L-infinitesimally invariant". (i.e. solve an elliptic problem first!)
Borel σ -
algebra
i.e. find probability measure μ on $\overbrace{\mathcal{B}(E)}$ such that $L \varphi \in L^{1}(E, \mu)$ and

$$
\int L \varphi \mathrm{~d} \mu=0 \quad \forall \varphi \in \mathcal{F} C_{b}^{2}
$$

Then not hard to show: $\left(L, \mathcal{F} C_{b}^{2}\right)$ is dissipative on $L^{p}(E, \mu)$ (so has closure $(\bar{L}, D(\bar{L}))$ on $L^{p}(E, \mu)$ for all $p \in[1, \infty)$)

Step 2:

Show: $\quad(\lambda-L)\left(\mathcal{F} C_{b}^{2}\right)$ dense in $L^{p}(E, \mu)$
Then $\quad \exists e^{t \bar{L}}, t>0$, on $L^{p}(E, \mu)$ hence

$$
L^{p}(E, \mu)-\frac{\mathrm{d}}{\mathrm{~d} t} \underbrace{e^{t \bar{L}} f}_{u(t, \cdot)}=\bar{L}(\underbrace{e^{t \bar{L}} f}_{u(t, \cdot)}), \quad t>0, f \in D(\bar{L}), \quad \text { "solution in } L^{p "}
$$

Remark. Then $\int e^{t \bar{L}} f \mathrm{~d} \mu=\int f \mathrm{~d} \mu \forall t>0 \quad$ " μ invariant"

F - L^{p}-Approach for

Stochastic Porous Medium Equation

Now Step 1 for stochastic porous medium equation (=SPME):
For simplicity $\Psi(x)=x^{3}$. So,

$$
\begin{align*}
\mathrm{d} X_{t}=\Delta\left(X_{t}^{3}\right) \mathrm{d} t+\sqrt{A} & \mathrm{~d} W_{t} \tag{SPME}\\
& \uparrow \\
& =\left(W_{t}^{i} e_{i}\right)_{i \in \mathbb{N}}
\end{align*}
$$

where W_{t}^{i} indep. B. motions on \mathbb{R}^{1}
on $E:=H^{-1}(\Lambda) \quad\left(:=\right.$ dual of $\left.H_{0}^{1}(\Lambda)\right), \Lambda \subset \mathbb{R}^{d}$, open, bdd., $\partial \Lambda$ smooth. Dirichlet bd. cond.
Have

$$
H_{0}^{1}(\Lambda) \subset L^{2}(\Lambda) \subset H^{-1}(\Lambda) \xrightarrow[\text { bijection }]{\Delta^{-1}} H_{0}^{1}(\Lambda)
$$

- $\left\{e_{i} \mid i \in \mathbb{N}\right\}=$ eigenbasis of Dirichlet Laplacian on $H^{-1}(\Lambda)$.
- $A \in L\left(H^{-1}, H^{-1}\right), A e_{i}=\lambda_{i} e_{i} \quad$ ("diagonal")
- $\lambda_{i} \geq 0 \forall i \in \mathbb{N}$, and $\sum_{i=1}^{\infty} \lambda_{i}<\infty \quad$ ("trace class").

In this case for $\varphi \in \mathcal{F} C_{b}^{2}\left(H^{-1}\right)$

$$
L \varphi(x)=\frac{1}{2} \sum_{i=1}^{\infty} \lambda_{i} \frac{\partial^{2}}{\partial e_{i}^{2}} \varphi(x)+_{H^{-1}}\left\langle\Delta x^{3}, D \varphi(x)\right\rangle_{H_{0}^{1}}
$$

$x \in L^{2}(\Lambda)\left(\subset H^{-1}(\Lambda)\right)$ s.th. $x^{3} \in H_{0}^{1}$.
(So, can only be written in this form for special $x \in H^{-1}(\Lambda)$)

Step 1: \quad Solve $L^{*} \mu=0$.
Let $V_{2}: H^{-1}(\Lambda) \rightarrow[0, \infty] \quad$ "Lyapunov function"

$$
V_{2}(x):= \begin{cases}\frac{1}{2} \int_{\Lambda} x^{2}(\xi) \mathrm{d} \xi, & x \in L^{2}(\Lambda) \\ +\infty, & \text { else }\end{cases}
$$

Then for $x \in L^{2}(\Lambda)\left(\subset H^{-1}(\Lambda)\right)$ s.th. $x^{2}, x^{3} \in H_{0}^{1}(\Lambda)$

$$
L V_{2}(x)=\underbrace{\frac{1}{2} \sum_{i=1}^{\infty} \lambda_{i} \int_{\Lambda} e_{i}^{2}(\xi) \mathrm{d} \xi}_{=: C=\text { const. }}+\underbrace{H^{-1}\left\langle\Delta x^{3}, x\right\rangle_{H_{0}^{1}}}_{\substack{=-\frac{3}{4} \int_{\Lambda}\left|\nabla x^{2}(\xi)\right|^{2} \mathrm{~d} \xi \\=:-\Theta_{2}(x)}}=\underbrace{C}_{\geq 0}-\underbrace{\Theta_{2}(x)}_{\geq 0}
$$

Restrict to $x \in \operatorname{span}\left\{e_{1}, \ldots, e_{N}\right\}$

Relatively easy to show:
([Bogachev / R.: Th. Prob. Appl. '00])
\exists prob. measure μ_{N} on $\operatorname{span}\left\{e_{1}, \ldots, e_{N}\right\} \cong \mathbb{R}^{N}$ s.th. $L_{N}^{*} \mu_{N}=0$, so

$$
0=\int L_{N} V_{2} \mathrm{~d} \mu_{N} \leq C-\int \Theta_{2} \mathrm{~d} \mu_{N}
$$

$$
0=\int L_{N} V_{2} \mathrm{~d} \mu_{N} \leq C-\int \Theta_{2} \mathrm{~d} \mu_{N}
$$

Consider μ_{N} on $H^{-1}(\Lambda)\left(\supset \operatorname{span}\left\{e_{1}, \ldots, e_{N}\right\}\right)$, then

$$
\sup _{N} \mu_{N}(\underbrace{\left\{\Theta_{2}>R\right\}}_{\substack{\text { have compact } \\ \text { complements } \\ \text { in } H^{-1}(\Lambda)}}) \stackrel{\text { Chebychev }}{\leq} \frac{1}{R} \cdot \sup _{N} \int \Theta_{2} \mathrm{~d} \mu_{N} \stackrel{1}{\leq} \cdot C \xrightarrow{R \rightarrow \infty} 0
$$

$$
\begin{aligned}
& \stackrel{\text { Prokhorov }}{\Rightarrow} \exists \mu:=\lim _{k \rightarrow \infty} \mu_{N_{k}} \quad \text { in weak topology of measures on } H^{-1}(\Lambda) \\
& \quad \text { and } \quad \int \Theta_{2} \mathrm{~d} \mu \leq C .
\end{aligned}
$$

(Can show similarly: $\int\left|\nabla x^{3}\right|_{L^{2}}^{2} \mu(\mathrm{~d} x)<\infty$,
so $\mu\left(\left\{x \in L^{2}(\Lambda) \mid x^{2}, x^{3} \in H_{0}^{1}(\Lambda)\right\}\right)=1$.)
Then show (again work!)

$$
L^{*} \mu \quad\left(\stackrel{!}{=} \lim _{k \rightarrow \infty} L_{N_{k}}^{*} \mu_{N_{k}}\right) \quad=0
$$

G - WFS -Approach

General idea of WFS-approach for

Step 1

Prove a weighted maximum principle in infinite dimension, i.e.
show (in applications by finite dimensional approximation):
There exist two functions $\mathbb{V}, \mathbb{W}: E \rightarrow \mathbb{R}_{+}, \mathbb{V} \leq \mathbb{W}$ both with weakly compact levels sets $\{\mathbb{V} \leq R\},\{\mathbb{W} \leq R\}, R>0$, such that for some $\lambda_{0}>0$

$$
\sup _{x \in\{\mathbb{W}<\infty\}} \frac{\left(\lambda_{0}-L\right) u}{\mathbb{W}}(x) \geq \sup _{x \in\{\mathbb{V}<\infty\}} \frac{u}{\mathbb{V}}(x)
$$

Then
(a variant of) $\left(L, \mathcal{F} C_{0}^{2}\right)$ is dissipative on $W(E)$,
where the Banach space $W(E)$ is defined by
$W(E):=\left\{u:\{\mathbb{V}<\infty\} \rightarrow \mathbb{R} \mid f_{\lceil\{\mathbb{V} \leq R\}}\right.$ is weakly continuous $\forall R>0$ and $\left.\lim _{R \rightarrow \infty} \sup _{\{\mathbb{V} \geq R\}} \frac{|f|}{\mathbb{V}}=0\right\}=: C_{\mathbb{V}}$
equipped with the norm

$$
\|u\|_{W(E)}:=\sup _{\{\mathbb{V}<\infty\}} \frac{|u|}{\mathbb{V}}
$$

H - WFS -Approach for Stochastic Navier-Stokes Equation

Step 1

Weighted maximum principle holds with $\left(\kappa, \alpha>0, \kappa>\alpha\left(1+\nu^{-2}\right)\right)$

$$
\mathbb{V}(x):=e^{\kappa\|x\|_{E}^{2}}\left(1+\|\nabla x\|_{E}^{2}\right)^{\alpha}
$$

and

$$
\mathbb{W}(x):=\nu \mathbb{V}(x)\left(\kappa\|\nabla x\|_{2}^{2}+\alpha\|\Delta x\|_{2}\right),
$$

$$
x \in E=\left\{x \in L^{2}\left(\Lambda \rightarrow \mathbb{R}^{d}, \mathrm{~d} \xi\right) \mid \operatorname{div} x=0\right\} .
$$

