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Abstract

Let K be a maximal unramified extension of a nonarchimedean local field of residual charac-
teristic p > 0. Let G be a reductive group over K which splits over a tamely ramified extension
of K. To a point z in the Bruhat—Tits building of G over K, Moy and Prasad have attached a
filtration of G(K) by bounded subgroups.

In this thesis, we give necessary and sufficient conditions for the existence of stable vectors
in the dual of the first Moy—Prasad filtration quotient V, under the action of the reductive
quotient G,. This extends earlier results by Reeder and Yu for large residue-field characteristic
and yields new supercuspidal representations for small primes p.

Moreover, we show that the Moy—Prasad filtration quotients for different residue-field char-
acteristics agree as representations of the reductive quotient in the following sense: For some N
coprime to p, there exists a representation of a reductive group scheme over Spec(Z[1/N]) all of
whose special fibers are Moy—Prasad filtration representations. In particular, the special fiber
above p corresponds to G, acting on V.

In addition, we provide a new description of the representation of G, on V, as a repre-
sentation occurring in a generalized Vinberg-Levy theory. This generalizes an earlier result by
Reeder and Yu for large primes p. Moreover, we describe these representations in terms of Weyl
modules.

In this thesis, we also treat reductive groups G that are more general than those that split
over a tamely ramified field extension of K.
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1 Introduction

Let k£ be a nonarchimedean local field with residual characteristic p > 0. Let K be a maximal
unramified extension of k and identify its residue field with F,. Let G be a reductive group over
K. In |[BT72,BT84|, Bruhat and Tits defined a building #(G, K) associated to G. For each
point = in B(G, K), they constructed a compact subgroup G, of G(K), called parahoric subgroup.
In [MP94,MP96], Moy and Prasad defined a filtration of these parahoric subgroups by smaller
subgroups

Gy =G o> Gy DGrry ...,

where 0 < r; < rg < ... are real numbers depending on x. For simplicity, we assume that ry,ro, ...
are rational numbers. The quotient G /G, can be identified with the [F,-points of a reductive
group G, and G, /Gy .y, (i > 0) can be identified with an F,-vector space V,, on which G,
acts.

If G is defined over k, this filtration was used to associate a depth to complex representations
of G(k), which can be viewed as a first step towards a classification of these representations. In
1998, Adler (|[Adl98|) used the Moy—Prasad filtration to construct supercuspidal representations
of G(k), and Yu (|YuOl]) generalized his construction three years later. Kim ([Kim07]) showed
that, for large primes p, Yu’s construction yields all supercuspidal representations. However, the
construction does not give rise to all supercuspidal representations for small primes.

In 2014, Reeder and Yu (|[RY14]) gave a new construction of supercuspidal representations of
smallest positive depth, which they called epipelagic representations. A vector in the dual me =
(G /Gary) of the first Moy-Prasad filtration quotient is called stable in the sense of geometric
invariant theory if its orbit under G, is closed and its stabilizer in G is finite. The only input for
the new construction of supercuspidal representations in [RY14] is such a stable vector. Assuming
that G is a semisimple group that splits over a tamely ramified field extension, Reeder and Yu gave
a necessary and sufficient criterion for the existence of stable vectors for sufficiently large primes
p. One application of this thesis is a criterion for the existence of stable vectors for all primes p,
which yields new supercuspidal representations. Moreover, we do not only treat semisimple groups
that split over a tamely ramified field extension, but we work with a larger class of groups that also
includes arbitrary simply connected or adjoint groups.

Our method of proof assumes the result for large primes and semisimple groups that split over a
tamely ramified extension, and transfers it to arbitrary residue-field characteristics and a larger
class of groups G. This is done via a comparison of the Moy—Prasad filtrations for different primes
D.

More precisely, we show for a large class of reductive groups over finite extensions of Q" (or
Fp((t))""), which we call good groups (see Definition [3.1)), that the Moy-Prasad filtration is in a
certain sense (made precise below) independent of the residue-field characteristic p. The class of
good groups contains reductive groups that split over a tamely ramified field extension, as well
as simply connected and adjoint semisimple groups, and products and restriction of scalars along
finite separable (not necessarily tamely ramified) field extensions of any of these. The restriction
to this (large) subclass of reductive groups is necessary as the main result (Theorem fails in
general. Given a good reductive group G over K, a rational point x of the Bruhat—Tits building
% (G, K) and an arbitrary prime g coprime to a certain integer N that depends on the splitting field
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of G (for details see Definition , we construct a finite extension K, of Q", a reductive group
G4 over K, and a point z, in B(Gy, K,;). To these data, one can attach a Moy-Prasad filtration
as above. The corresponding reductive quotient G, is a reductive group over ?q that acts on the
quotients V., which are identified with F4-vector spaces. For a given positive integer i, we show
in Theorem [3.7| that then there exists a split reductive group scheme .# over Z[1/N] acting on a
free Z[1/N]-module ¥ such that the special fibers of this representation are the above constructed
Moy—Prasad filtration representations of Gz, on Vg, .. This allows to compare the Moy—Prasad
filtration representations for different primes.

We also give a new description of the Moy—Prasad filtration representations for reductive groups
that split over a tamely ramified field extension of K. Let m be the order of z. We define an action of
the group scheme pu,,, of m-th roots of unity on a reductive group %Fp over I, and denote by 5%“ m 0

the identity component of the fixed-point group scheme. In addition, we define a related action of
W, on the Lie algebra Lie(%ﬁp), which yields a decomposition Lie(gﬁp (Fp) =B, Lie(%ﬁp)i(Fp).

Then we prove that the action of G, on V., corresponds to the action of ,‘%“ m0 6n one of the graded
— p

pieces Lie(¥);(F,) of the Lie algebra of %g,- This was previously known by [RY14] for sufficiently
large primes p, and representations of the latter kind have been studied by Vinberg [Vin76| in
characteristic zero and generalized to positive characteristic coprime to m by Levy [Lev09]. To be
precise, in this thesis we even prove a global version of the above mentioned result. See Theorem
for details. We also show that the same statement holds true for all good reductive groups after
base change of s and ¥ to Q, see Corollary .

This allows us to classify in Corollary the points of the building (G, K) whose first Moy—
Prasad filtration quotient contains stable vectors, which then yield supercuspidal representations. In
addition, we prove in Theorem that, similarly, the existence of semistable vectors is independent
of the residue-field characteristic.

Moreover, the global version of the Moy—Prasad filtration representations given by Theorem
allows us to describe the representations occurring in the Moy—Prasad filtration of reductive groups
that split over a tamely ramified field extension of K in terms of Weyl modules, see Section [6}

Structure of the thesis. In Section, [2] we first recall the Moy—Prasad filtration of G, and then
in Section [2.4] we introduce a Chevalley system for the reductive quotient that will be used for
the construction of the reductive group scheme 57 that appears in Theorem In Section
we construct an inclusion of the Moy—Prasad filtration representation of G into that of G for a
sufficiently large field extension F' of K that will allow us to define the action of # on ¥ in Theorem
Afterwards, in Section [3] we move from a previously fixed residue-field characteristic p to other
residue-field characteristics q. More precisely, we first introduce the notion of a good group and
define K,/Qy", G4 over Ky, and z, € #(Gy, K,). In Section we prove our first main theorem,
Theorem Section {4 is devoted to giving a different description of the Moy—Prasad filtration
representations and their global version as generalized Vinberg—Levy representations (Theorem|4.1)).
In Section [5, we use the results of the previous sections to show that the existence of (semi)stable
vectors is independent of the residue characteristic. This leads to new supercuspidal representations.

We conclude the thesis by giving a description of the Moy—Prasad filtration representations in term
of Weyl modules in Section [6]

Conventions and notation. If M is a free module over some ring A, and if there is no danger
of confusion, then we denote the associated scheme whose functor of points is B — M ®4 B for
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any A-algebra B also by M. In addition, if G and T are schemes over a scheme S, then we may
abbreviate the base change G xg T by Gr; and, if T'= Spec A for some ring A, then we may also
write GG 4 instead of Gr.

When we talk about the identity component of a smooth group scheme G of finite presentation,
we mean the unique open subgroup scheme whose fibers are the connected components of the
respective fibers of the original scheme that contains the identity. The identity component of G
will be denoted by G.

Throughout the thesis, we require reductive groups to be connected.

For each prime number ¢, we fix an algebraic closure Q, of Q, and an algebraic closure Fy((t))
of Fy((¢t)). All field extensions of Qg and F,((t)) are assumed to be contained in Q, and F,((¢)),
respectively. We then denote by Q" the maximal unramified extension of Q, (inside @q), and
by Fq((¢))*" the maximal unramified extension of Fy((¢)). For any field extension F' of Q, (or
of Fy((t))), we denote by F'™™ its maximal tamely ramified field extension. Similarly, we fix an
algebraic closure Q of Q, and we denote by Z the integral closure of Z in Q and by Zz the integral
closure of Z, in @q.

In addition, we will use the following notation throughout the thesis: p denotes a fixed prime
number, k is a nonarchimedean local field (of arbitrary characteristic) with residual characteristic
p, and K is the maximal unramified extension of k. We write O for the ring of integers of K,
v: K — Z U {oo} for a valuation on K with image Z N {oo}, and w for a uniformizer. G is a
reductive group over K, and E denotes a splitting field of G, i.e., F is a minimal field extension
of K such that G is split. Note that all reductive groups over K are quasi-split and hence F is
unique up to conjugation. Let e be the degree of E over K, O the ring of integers of E, and wg
a uniformizer of £. Without loss of generality, we assume that @ is chosen to equal w% modulo
w1 Op. We denote the (absolute) root datum of G by R(G), and its root system by ® = &(G).
We fix a point = in the Bruhat—Tits building Z(G, K) of G, denote by S a maximal split torus of G
such that x is contained in the apartment 7 (S, K) associated to .S, and let T" be the centralizer of
S, which is a maximal torus of G. Moreover, we fix a Borel subgroup B of G containing 7', which
yields a choice of simple roots A in ®. In addition, we denote by ®x = @ (G) the restricted root
system of G, i.e., the restrictions of the roots in ® from 7" to S. Restriction yields a surjection from
® to Ok, and for a € P, we denote its preimage in ¢ by D,.

Moreover, to help the reader, we will adhere to the convention of labeling roots in ® by Greek
letters: «, 3, ..., and roots in ®x by Latin letters: a,b,.. ..
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2 Parahoric subgroups and Moy—Prasad filtration

In order to talk about the Moy—Prasad filtration, we will first recall the structure of the root groups
following |[BT84, Section 4]. For more details and proofs we refer to loc. cit.

For a € ®, we denote by UZ the root subgroup of G g corresponding to .. Note that I' = Gal(E/K)
acts on ®. We denote by E, the fixed subfield of F of the stabilizer Stabr(a) of « in I". In order to
parameterize the root groups of G over K, we fix a Chevalley-Steinberg system {zE : G, — UF} o
of G with respect to T, i.e. a Chevalley system {zf : G, = UF},co of Gp (see Remark
satisfying the following additional properties for all roots a € ¥:

(i) The isomorphism zZ : G, — UF is defined over E,.

(ii) If the restriction a € ®f of a to S is not divisible, i.e. § ¢ @, then xf(a) =~ozFon~! for
all v € Gal(E/K).

(iii) If the restriction a € ®x of a to S is divisible, then there exist 3,8’ € ® restricting to g,

Ez = Ep is a quadratic extension of E,, and xf(a) =yoxEoryTloe, where e € {1} is 1 if

and only if v induces the identity on Eg.

According to [BT84, 4.1.3] such a Chevalley-Steinberg system does exist. It is a generalization of
a Chevalley system for non-split groups and it will allow us to define a valuation of root groups in
Section even if the group G is non-split.

Remark 2.1. We follow the conventions resulting from [SGA 3111 news XXIII Définition 6.1], so we
do not add the requirement of Bruhat and Tits that for each root «, z¥ and x¥, are associated,
ie. xP(1)zZ,(1)zE(1) is contained in the normalizer of T. However, there exists €, o € {1,—1}

such that
me = ak (Da?, (eaa)zl (1)

—Q

is contained in the normalizer of T. Moreover, Ad(m,)(Lie(z£)(1)) = €q.a Lie(zZ,)(1).

Definition 2.2. For o, 8 € ®, we define e, 3 € {1} by
Ad(mq)(Lie(zg)(1)) = €q,p Lie(xs,(5))(1).

The integers €, g for o and 8 in ® are called the signs of the Chevalley-Steinberg system {28} hco.
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2.1 Parametrization and valuation of root groups

In this section, we associate a parametrization and a valuation to each root group of G.

Let a € P = Pg(G), and let U, be the corresponding root subgroup of G, i.e., the connected
unipotent (closed) subgroup of G normalized by S whose Lie algebra is the sum of the root spaces
corresponding to the roots that are a positive integral multiple of a.

Let G, be the subgroup of G generated by U, and U_,, and let 7 : G* — G, be a simply connected
cover. Note that 7 induces an isomorphism between a root group Ui of G* and U,. We call U
the positive root group of G*. In order to describe the root group U,, we distinguish two cases.

Case 1: The root a € @k is neither divisible nor multipliable, i.e. § and 2a are both not in ®x.

Let o € @, be a root that equals a when restricted to S. Then G® is isomorphic to the Weil
restriction Resp, /i SL2 of SLy over E, to K, and U, ~ Resg, /i UE where U¥ is the root group
of Gg corresponding to « as above. Note that (U,)g is the product Hﬁe% Ug. Using the E,-
isomorphism zZ : G, — U we obtain a K-isomorphism

Tq 1= ResEa/K:z:f : Resp, )k Ga — Resg, /k UOIZJ — U,,

which we call a parametrization of U,. Note that for u € Resg, /x Go(K) = Eq, we have

za(u) = [ 2f (u), with w,() =~(u) for v € Gal(E/K).
BEPq

This allows us to define the valuation g : Ug(K) — mz N{oo} of Uy(K) by
¢a(za(u)) = v(u).

Case 2: The root a € @k is divisible or multipliable, i.e. § or 2a € ®.

We assume that a is multipliable and describe U, and Us,. Let o, & € ®, be such that « + a is a
root in ®. Then G* is isomorphic to Resg, _/x SUs, where SUs is the special unitary group over
Eq,g defined by the hermitian form (z,y, 2) — o(z)z +o(y)y + o(2)z on E3 with o the nontrivial
element in Gal(E,/E,.5). Hence, in order to parametrize U,, we first parametrize the positive
root group Ut of SUs. To simplify notation, write L = E, = EFz and Ly = E,,5. Following
[BT84], we define the subset Ho(L, L2) of L x L by

Hy(L,Ls) = {(u,v) € Lx L|v+o(v) =oc(u)u}.

Viewing L x L as a four dimensional vector space over Ly, and considering the corresponding
scheme over Ly (as described in “Conventions and notation” in Section [1)), we can view Ho(L, L)
as a closed subscheme of L x L over L, which we will again denote by Hy(L, L2). Then there exists
an Lo-isomorphism p : Hy(L, Le) — Uy given by

1 —o(u) —v
(u,v) =~ |0 1 u |,
0 0 1

where o is induced by the nontrivial element in Gal(L/L2). Using this isomorphism, we can transfer
the group structure of Uy to Hy(L, Ly) and thereby turn the latter into a group scheme over Lo.
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Let us denote the restriction of scalars Resy, /x Ho(L, L2) of Ho(L, L2) from E, 5 = L2 to K by
H(L, L2). Then, by identifying G* with Resg_ . x SUs, we obtain an isomorphism

zq:=moResg, . /kp: H(L, L) =u,,

which we call the parametrization of U,. We can describe the isomorphism x, on K-points as follows.
Let [®,] be a set of representatives in ®, of the orbits of the action of Gal(E,/E,15) = (o) on .
We will choose the sets of representatives for ®, and ®_, such that [®,] and —[®_,] are disjoint.
For f3 € [®,], choose v € Gal(E/K) such that 8 = v() and set § = (&) and ug = y(u) for every
u € L. By replacing some l’§+§ by x§+3 o (—1) if necessary, we ensure that a:ngE = Inn(mél) o xg
(where my is defined as in Remark Ij Moreover, we choose the identification of G* with
Resg, . ./x SUs so that its restriction to the positive root group arises from the restriction of scalars

of the identification that satisfies

1 —w v
(o 1 wu||=afwazl ;(v)2Ew).
0 O 1

Then we have for (u,v) € Hyo(L,L2) = H(L, L2)(K) C L x L that

ra(u,v) = [T @ up)all s(—vp)eE(o(w)s). (2.1)
BE[Pal

The root group Us, corresponding to 2a is the subgroup of U, given by the image of x,(0,v). Hence
Usq(K) is identified with the group of elements in F, of trace zero with respect to the quadratic
extension F,/E, 5, which we denote by E9.

Using the parametrization z,, we define the valuation ¢, of U,(K) and ¢a, of U, (K) by

Pa(@a(u,v)) = Sv(v)
p2a(2a(0,v)) = v(v).
Remark 2.3. (i) Note that v + o(v) = o(u)u implies that iv(v) < v(u).

(ii) The valuation of the root groups U, can alternatively be defined for all roots a € ®x as

follows. Let u € Uy(K), and write u =  [[  uq with uq € Uy(E). Then
a€d,Uds,

1
Yq(u) = inf ( inf gan(ua), inf 2905(ua)> ,

acd, acdDg,

where ¢F(1,(v)) = v(v). The equivalence of the definitions is an easy exercise, see also
[BT84, 4.2.2].

E
B+8
uniform construction of the root group parameterizations that does not require us to distinguish between positive

and negative roots, but that coincides with the ones defined by Bruhat and Tits in [BT84].

!Note that our choice of :cg; or T for negative roots 575 deviates from Bruhat and Tits. It allows us a more
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2.2 Affine roots

Recall that the apartment &/ = o7(S, K) corresponding to the maximal split torus S of G is an

affine space under the R-subspace of X,(S) ®z R spanned by the coroots of G, where X,(S) =

Hompg (G, S). The apartment .7 can be defined as corresponding to all valuations of (T'(K), (Ug(K))acd ) )
in the sense of [BT72, Section 6.2] that are equipolent to the one constructed in Section ie.,
families of maps (@q : Ug(K) — R U {00})sea, such that there exists v € X, (S5) ®z R satisfying

Ga(u) = pg(u) + a(v) for all u € U,(K), for all a € ®g. In particular, the valuation defined in
Section corresponds to a point in &/ that we denote by zy. Then the set of affine roots ¥x on

&/ consists of the affine functions on 2/ given by

Ui =VUg(H)={y—aly—z0) +7|acPk,yel,},

where
Iy = {va(u) |u € Us — {1}, pa(u) = sup po(ul)} -

It will turn out to be handy to introduce a more explicit description of I',. In order to do so,
consider a multipliable root a and o € ®,, and define

(Ea)o = {’LL € Ea |TrEa/Ea+& (u) = 0}7
(Ba)' = {u€Eal|Trg,p,,,(u) =1},
(Ba)max = { € (Ba)'|v(u) =sup{v(v) |v € (Ba)'}}.

Then, by [BT84, 4.2.20, 4.2.21], the set (E,)}
and a still being multipliable, we have

is nonempty, and, with A any element of (E,)L

max max

I, = v\ +v(E.—{0}) (2.2)
a = V((Ea)® —{0}) = v(Es — {0}) —2- T},
For a being neither multipliable nor divisible and a € ®,, we have
I, = v(E, — {0}). (2.4)

Remark 2.4. Note that if the residue-field characteristic p is not 2, then % € (Eq)L., for a a
multlphable root and a € ®,, and hence I/, = v(E, — {0}). If the residue-field characteristic is
=2, then v(\) < 0 for A € (E,)}

max*

2.3 Moy—Prasad filtration

Bruhat and Tits (|[BT72,BT84]) associated to each point x in the Bruhat—Tits building Z(G, K) a
parahoric group scheme over O, which we denote by P,, whose generic fiber is isomorphic to G. We
will quickly recall the filtration of G, := P,(O) introduced by Moy and Prasad in [MP94,MP96]
and thereby specify our convention for the involved parameter.

Define Ty = T'(K) NP, (O). Then Tj is a subgroup of finite index in the maximal bounded subgroup
{te T(K)|v(x(t) =0Yx € X*(T) = Homz(T,G,,)} of T(K). Note that this index equals one if
G is split.

For every positive real number r, we define

T, ={teTo|v(x(t) —1) >rforall x € X*(T) = Homz (T, G,,)}.
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For every affine root ¢ € W, we denote by 4 its gradient and define the subgroup Uy of U, ;] (K)
by
Uy = {u € Ug(K) [u=1 or o;(u) > Y(r0)}.

Then the Moy—Prasad filtration subgroups of G, are given by
Ga},r = <TT‘7U7,[) |1/) € \IJK,@b(LU) > T> for r > O>

and we set

Ga:,r+ = U Gz,s'

s>r

The quotient G /Ga.0+ can be identified with the F)-points of the reductive quotient of the special
fiber P, xo [, of the parahoric group scheme P,, which we denote by G,. From [BT84, Corol-
laire 4.6.12] we deduce the following lemma.

Lemma 2.5 ([BT84]). Let Rx(G) = (X = Homg (S, G,,), @, Xi¢ = X.(S), D) be the restricted
root datum of G. Then the root datum R(G,) of G is canonically identified with (X, ®', Xfc, @)
where

& ={a€®|alx—z0) €T}

We can define a filtration of the Lie algebra g = Lie(G)(K) similar to the filtration of G,. In
order to do so, we denote the O-lattice Lie(P;) of g by p. Define p, = p N g, for a € & and
t = Lie(T)(K).

We define the Moy—Prasad filtration of the Lie algebra t for » € R to be

t, = {X € t|v(Lie(x)(X)) > r for all x € X*(T)} (2.5)

For every root a € ®g, we define the Moy—Prasad filtration of g, as follows. Let 1, be the
smallest affine root with gradient a such that 1, (z) > 0. For every ¢ € U with gradient a, we let
Ny = ea(1) —1q), where e = [E, : K| for some root o € ®, that restricts to a. Note that n,, is an
integer. Choosing a uniformizer w, € E, and viewing p, inside Lie(G)(E,) we setE|

Uy, = wa((’)EapQ) ng.
Then the Moy—Prasad filtration of the Lie algebra g is given by

Gzr = <tr,u1/; |¢(-’L‘) > 7"> for r € R.

In general, the quotient G, /Gy r+ is not isomorphic to gz ,/gq r+ for r > 0. However, it turns out
that we can identify them (as Fp-vector spaces) under the following assumption.

Assumption 2.6. The mazimal split torus T of G becomes an induced torus after a tamely ramified
extension.

2Note that uy does not depend on the choice of z inside .o7.

10
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Recall that the torus T is called induced if it is a product of separable Weil restrictions of G,,, i.e.
N

T = [] Resg, /K G, for some integer IV and finite separable field extensions K;/K, 1 <i < N.
i=1

For the rest of Section [2, we impose Assumption [2.6

Remark 2.7. Assumption holds, for example, if G is either adjoint or simply connected
semisimple, or if G splits over a tamely ramified extension.

For r € R, we denote the quotient g, ,/gzr+ (~ Gy r/Gzry for r > 0) by V. The adjoint action
of G0 on g, (or, equivalently, the conjugation action of G, on G, for r > 0) induces an action
of the algebraic group G, on the quotients V.

2.4 Chevalley system for the reductive quotient

In this section we construct a Chevalley system for the reductive quotient G, by reduction of the
root group parameterizations given in Section Let U, denote the root group of G, corre-
sponding to the root a € ®(G;) C Px(G). We denote by Ogqr the ring of integers in Q" If K

is an extension of Q)", we let x : Fp — OQgr be the Teichmiiller lift, i.e. the unique multiplicative
section of the surjection Ogur — F,. If K is an extension of F,((¢))*" = lim o Fyn((t)), we let
X :Fp=lm  Fpn —lim  Fpe[[t] be the usual inclusion.

Lemma 2.8. Let A = A\, € (Eqy)L,.. for some a € ®,, and write A = g - wg()‘)e; e.g., take

A =A= % if p £ 2. Consider the map

Fp — G%o

La ( /\iox(u)w%q, x(wwgeao(x(u)wger) - w}“k) if a is multipliable
W wal0,x(w) - T ) if a is divisible
za(x(u) - wga(wixo).eﬁrs) otherwise,,
where s = —(a(z—x0)+v(A)/2)-¢, and €1, €9, €3 € 14+wpOp such that /- x(u)wher, x(w)@ gt e
and X(u)wga@*zo)'%g are contained in E,.

Then the composition of this map with the quotient map Gzo — Ggo0/Gzo+ yields a oot group
parametrization To : G, — U, C Gy.

Moreover, the root group parameterizations {Ea}ae¢(gm) form a Chevalley system for G,.

Proof. Note first that since a € ®(G;), we have a(z — zg) € I', by Lemma Suppose a is
multipliable. Then U,(F,) is the image of

1
Im := {:L’a(U, V)| (U, V) € Hy(Ea, Eara), §V(V) = —a(x — ZEQ)} .
in nyo/Gx70+. Set

U(u) = )%OX(U) . 7D}E(a(fﬂ—ﬁﬂo)+v()\)/2)-361

11
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and

V() = x(w@hao(x(w)wha) @y .
Then V(u) + o(V(u)) = U(uw)o(U(u)), ie. (U(u),V(w)) is in Ho(Eu, Eqrg), and v(V(u)) =
—2a(x — x0). Moreover, every element in Im is of the form (U(u), V (u) + vg) for u € F,, and some
element vy € (E,)° with v(vg) > —2a(z — z¢), because 2a(x — x) ¢ v((E,)?) (by Equation ,
page [9). Note that the images of xq(U(u), V(u) + vo) and 24(U(u),V(u)) in Gapo/Geoy agree.
Thus, by the definition of x4, we obtain an isomorphism of group schemes z, : G, — U,. Similarly,
one can check that T, yields an isomorphism G, — U, for a not multipliable.
In order to show that {fa}aeq)(gz) is a Chevalley system, suppose for the moment that a and b in
®(G,,) are neither multipliable nor divisible, and ®, = {a} and ®;, = {f} each contain only one
root. Let o be the coroot of the root a, and denote by s, the reflection in the Weyl group W of
G corresponding to «. Then, using [Conl4, Cor. 5.1.9.2], we obtain

Ad (a8 (@™ ) (a0 p )l () ) (Lo ()
= Ad (@Y= 7)) Ad (2E ()L (can)el (1) (=57 Lie()(1))
= Ad(@¥(@5" ) (e T Lie(@E (5)(1))

= (sa(B)(@ (@) )ea 5w T Lie(al] (5)(1)

_ ngv,sa(ﬁ))(—a(x J6’0))660[76wEﬁ(90 zo)e Lie(xfa(ﬁ))(l)

_ ng ,,B)a(:c—xo)e—ﬁ(x—:co)e Lle( E(ﬁ))<1)

= eqpLie(z? 22 ) (@g (sa(ﬁ))(x z0)e .

This implies (assuming e3 = 1, otherwise it’s an easy exercise to add in the required constants)
that for m, = Ty (1)T_q(€q,0)Ta(1l) With €, = €4,o We have

Ad(ma)(Lie(jb)(l)) = Ad(fa(l)jfa(Ea,a)fa(l))(l‘ie(fb)(1)) = €, Lie(fsa(b))(l)‘

We obtain a similar result even if ®, and ®;, are not singletons by the requirement that {z2},co
is a Chevalley-Steinberg system, i.e. compatible with the Galois action as described in Section
Similarly, we can extend the result that Ad(m,)(Lie(T)(1)) = +Lie(Z,,))(1) to all non-
multipliable roots a,b € ®(G;) C Pk.

Suppose now that a € ®(G,) C Pk is multipliable, and let « € &, and a = o(«a) € P, as above.
Following [BT84, 4.1.11], we define for (u,v) € Hyo(Eq, Eqra)

me(U, V) = xa(UV_l, U(V_l))$_a(€a7aU, ea’aV)a:a(UU(V_l), O'(V_l)).

Then Bruhat and Tits Loc. cit. show that m,(U, V) is in the normalizer of the maximal torus 7’
and

ma(U, V) =mg1a(V) and 2_4(€n,aU, €0,aV) = ma12,(U, V)m al, (2.6)
where
0O 0 -1 \%4 0 0
mq1 =moResg, ., | 0 -1 0 and a(V) = moResp, 5 | O Vlg(V) 0
-1 0 O 0 0 a(V1
(2.7)

12
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Note that we have

1

ma( TO(_WE)(a(wﬂco)fV(A)/?)eel7w(Ea(ﬂc—ﬂﬁo)—V(/\)/2)e

61U(wj(g(ﬂf—fﬁo)—V(>\)/2)€€1)WE(A)G) € Gao,
and denote its image in G 0/G4 0+ by M. Using that v(\) = 0if p # 2, and o(wg) = +wg = wE
mod w% if p = 2 as well as the compatibility with Galois action properties of a Chevalley-Steinberg
system, we obtain

Mo = Ta(1)T-a(€0,a)Ta(l)  Wwith €0 = 604706(_1)(a(xixo)ivo\)/2)e‘

Moreover, using Equation ([2.6)) and (2.7)), an easy calculation shows that

-1

T_q(€q,alt) = MaZa(u)m,

for all u € Fp. In other words,
Ad(m,)(Lie(Z,)(1)) = €q,q Lie(T_q)(1),

as desired. We obtain analogous results for m_, being defined as above by substituting “a” by
“—a”. Moreover, T, = M_gq, and hence Ad(m_,)(Lie(ZTq)(1)) = €40 Lie(T_q)(1).

In order to show that {To}.ca(q,) forms a Chevalley system, it is left to check that
A1) (Lie(#) (1)) = £ Lie(Z,, ) (1) (28)

holds for a,b € ®(G,) with a # +b and either a or b multipliable. Note that if z, and x_, commute
with zp, then the statement is trivial. Note also that if b is multipliable and 8 € ®;, then S lies in
the span of the roots of a connected component of the Dynkin digram Dyn(G) of ®(G) of type Ay,
for some positive integer n. Hence, for some a € ®,, a and S lie in the span of the roots of such a
connected component. Moreover, by the compatibility of the Chevalley-Steinberg system {zZ},co
with the Galois action, it suffices to restrict to the case where Dyn(G) is of type Ag, with simple
roots labeled by oy, an—1,..., 81, a1, B1, B2, .- ., Pn as in Figure [l and the K-structure of G arises

—eo ---o . ° o ---o
Ay Qpg A a1 B B Bn

Figure 1: Dynkin diagram of type As,

from the unique outer automorphism of Ay, of order two that sends «; to ;. If a root in ®x(G) is
multipliable, then it is the image of £(a; + ... + a5) in ®x for some 1 < s < n. In particular, the
positive multipliable roots are orthogonal to each other, by which we mean that (a",b) = 0 for two
distinct positive multipliable roots a and b. Equation can now be verified by simple matrix
calculations in SLojy1. ]

2.5 Moy—Prasad filtration and field extensions

Let F be a field extension of K of degree d = [F : K], and denote by v : F — 1Z U {cc} the
extension of the valuation v: K — Z U {co} on K. Then there exists a G(K)-equivariant injection

13
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of the Bruhat-Tits building #(G, K) of G over K into the Bruhat-Tits building Z(Gp, F) of
Gr = G xg F over . We denote the image of the point z € #(G,K) in B(Gp,F) by x as
well. Using the definitions introduced in Section but for notational convenience still with the
valuation v (instead of replacing it by the normalized valuation d - v), we can define a Moy—Prasad
filtration of G(F') and gr at x, which we denote by Gir(r > 0) and gfzr(r € R), as well as its
quotients sz .(r € R) and the reductive quotient G£.

Suppose now that Gp is split, and that I}, C v(F') for all restricted roots a € ®(G). This holds,
for example, if F' is an even-degree extension of the splitting field . Then, using Remark i)
and the definition of the Moy-Prasad filtration, the inclusion G(K) < G(F) maps G, into GL,.
Furthermore, recalling that for split tori 7" the subgroup Ty is the maximal bounded subgroup of the
(rational points of) T and using the assumption that I'/, C v(F') for all restricted roots a € Pk (G),
we observe that this map induces an injection

vk Goo/Geoy = GLo/GLoy (2.9)

which yields a map of algebraic groups G, — G£', also denoted by ¢ Kk,r- If p# 2 or d is odd, then
Lk, F is a closed immersion.

Lemma 2.9. For every r € R, there exists an injection

LK, Fyr - Vl”,?" = gﬂ?ﬂ”/glﬂ‘+ — gir/gir—i— = Vﬁ:'r’
such that we obtain a commutative diagram for the action described in Section

Gy x Vg, —— V., (2.10)

JLK,F XLK,F,r JVLK,F,T

F F F
G, xV,, — Vo,

Proof. For p # 2, let 1k r, be induced by the inclusion g — gr = g ®x F. This map is well
defined, and it is easy to see that it is injective on (¢t N gz r)/gzr+ and on (gq N ggr)/Gzr+ for
a € P non-multipliable. Suppose a is multipliable. If r — a(z — z¢) € T, i.e. there exists an
affine root ¥ : y — a(y — xo) + v with ¥(z) = r, and @, (z4(u,v)) = VY(x9) = r — a(z — x9) € T,
then v(u) = $v(v) = r — a(z — x¢). This follows from the trace of £ being one, hence v — $o(u)u
is traceless and therefore has valuation outside 2", while v(v) € 2I',. Hence the image of g, N Ou,r
in VI is non-vanishing if it is non-trivial in V., i.e. if 7 — a(z — z¢) € I';,. Moreover, Diagram

1) commutes.

In case p = 2, if a € ® is multipliable and r — a(z — zg) € I, and ¢4 (z4(u,v)) = r — a(z — x),
then v(u) = r — a(z — z9) — 3v(Aa) for Ay € (Ea)lax by reasoning analogous to that above.
However, recall from Remark that v(A\y) < 0 for p = 2. This allows us to define tx r, as
follows. We define the linear morphism ix r, : g = gr to be the usual inclusion g — gr = gQx F

ont® @ gq, where @3 are the non-multipliable roots in @, and to be the linear map from
acdm

P g, ontogn ¥ e)/2 ( P 9.0, OE&) Cgron € g, such that

1 1 1
agdpn acdpn agdmn

[0}

it (Lie(a) (sl =)0/ 0)) = Lie(y) (sl )2, )

14
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where @%UI denotes the set of multipliable roots in @, a € @?‘ﬂ and a € ®,. By restricting ix r,
to g, and passing to the quotient, we obtain an injection tx g, of V,, into VfZT.

In order to show that ¢ is compatible with the action of G, for p = 2 as in Diagram ({2.10)), it
suffices to show that tx r(G;) stabilizes the subspace

V= LK Fr (gx,r N @ Ga),

mul
acd

where the overline denotes the image in V ,. First suppose that the Dynkin diagram Dyn(G) of
®(G) is of type Ag, with simple roots labeled by ay,, ap—1,...,a2, a1, b1, 52, ..., B, as in Figure
on page [I, and that the K-structure of G arises from the unique outer automorphism of Asg, of
order two that sends «; to ;. If a € @ (G) is multipliable, then a is the image of £(a1 + ...+ as)
for some 1 < s < n. Suppose, without loss of generality, that a is the image of a; + ... + as.
Consider the action of the image of Z; in G£ for b the image of —(ay +. ..+ ;) for some 1 < ¢ < n.

Note that ¢k (xb(HO(E—(al-l-...—i-at)a K))n GI,()) is the image of x€(011+~--+06t+/81+m+,3t)(E) N Gf’,o

in GﬁO/GﬁoJr. Hence the orbit of tx (xb(Hg(E_(alerJrat),K)) N Gx,0> on g Fyr (e N @a) is

contained in

F F F F /
gn gg’r M (ga1+"'+a5 @ 951+~~-+ﬁs ® ‘g—(51+~~~+5t) @ g—(a1+-~~+01t)> cv.

(Note that the last two summands can be deleted unless s = t.) Thus V' is preserved under the
action of the image of @ in G£'. Similarly (but more easily) one can check that the action of the
image of @, in GI for all other b € ®x preserves V', and the same is true for the image of T'N G0
in GL'. Hence tx r(G;) stabilizes V'.

The case of a general group G follows using the observation that, if a € @ is multipliable, then
each a € @, is spanned by the roots of a connected component of the Dynkin diagram Dyn(G) of
® (@) that is of type As,, together with the observation that the above explanation also works for
Dyn(G) being a union of Dynkin diagrams of A, that are permuted transitively by the action of
the absolute Galois group of K. Thus V' is preserved under the action of tx r(G;), and hence the

Diagram (12.10) commutes. O

In the sequel we might abuse notation and identify V, , with its image in Vg » under (i F.

3 Moy—Prasad filtration for different residual characteristics

In this section we compare the Moy—Prasad filtration quotients for groups over nonarchimedean
local fields of different residue-field characteristics. In order to do so, we first introduce in Definition
the class of reductive groups that we are going to work with. We then show in Proposition
that this class contains reductive groups that split over a tamely ramified extension, i.e. those
groups considered in [RY14], but also general simply connected and adjoint semisimple groups,
among others. The restriction to this (large) class of reductive groups is necessary as the main
result (Theorem about the comparison of Moy—Prasad filtrations for different residue-field
characteristics does not hold true for some reductive groups that are not good groups.

Definition 3.1. We say that a reductive group G over K, split over FE, is good if there exist

15
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- an action of a finite cyclic group IV = (') on the root datum R(G) = (X, ®, X, ®) preserving
the simple roots A,

- an element u generating the cyclic group Gal(ENK*™¢/K) and whose order ‘Gal(E N Ktme /K )‘
is divisible by the prime-to-p part of the order of I’

such that the following two conditions are satisfied.

(i) The orbits of Gal(E/K) and I" on ® coincide, and, for every root a € ®, there exists
u1,o € Gal(E/K) such that

’Y/(a) = ul,a(a) and uj o, =u mod Gal(E/E N Ktame>.

(i) There exists a basis B of X stabilized by Gal(E/ENK") and (y'") on which the Gal(E/EN
K'me)_orbits and (v N)—orbits agree, and such that for any B € B, there exists an element
v1,B € Gal(E/K) satisfying

Y (B)=v15(B) and wv;p=u mod Gal(E/EN Ftamey

In the sequel, we will write |I”| = p® - N for some integers s and N with (N, p) = 1.

Remark 3.2. Note that condition |(i)| of Definition is equivalent to the condition

(i) The orbits of Gal(E/K) on ® coincide with the orbits of I'' on ®, and there exist represen-
tatives C1,...,C), of the orbits of IV on the connected components of the Dynkin diagram
of ®(G) satisfying the following. Denote by ®; the roots in ® that are a linear combina-
tion of roots corresponding to C; (1 < i < n). Then for every root a € ®; U...U ®,, and
1 <t; <p°N, there exists ut, o € Gal(E/K) such that

(’Y’)tl (a) = Ut o and Uy o = «'' mod Gal(E/E N Ktame)‘
Condition of Definition is equivalent to the condition

(ii’) There exists a basis B of X stabilized by Gal(E/E N K*m¢) and by (y'") on which the
Gal(E/E N K'*m)-orbits and (v'")-orbits agree, and such that there exist representatives
{Bi1, ..., By} for these orbits on B, and elements v, ; € Gal(E/K) for all 1 <t; < p’N and
1 <1 < n/ satisfying

(7/)751 (Bz) = ’Uch'(Bi) and Vi = w' mod Gal(E/E N Ktame).

Before showing in Proposition that a large class of reductive groups is good, we prove a lemma
that shows some more properties of good groups.

Lemma 3.3. We assume that G is a good group, use the notation introduced in Definition[3.1] and
Remark[3.3, and denote by E; the tamely ramified Galois extension of K of degree N contained in
E. Then the following statements hold.
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(a) The basis B of X given in Property[(ii) is stabilized by Gal(E/E;) and the Gal(E/Ey)-orbits
and (v™)-orbits on B agree.

(b) G satisfies Assumption more precisely, T X g Ey is induced.

(c) We have X7 = xGal(B/By), Moreover, the action of u on XSME/E) qgrees with the action
Of’}/ on X'y’N — XGal(E/Et)’ so XGal(E/K) — xT'

Proof. To show part [(a)] consider a representative B; for a Gal(E/E N K'*™¢)-orbit on B as in
Remark By Property there exists vpsn; € Gal(E/K) such that vysy(B;) = (V)N (B;) =
B; and vpsy; = wPY mod Gal(E/E N K'%me). Choose ug € Gal(E/K) such that uy = u
mod Gal(E/E N K'%™¢). Then we can write vysy; = v-uf ' for some v € Gal(E/E N K%me)
and ugsN(Bi) = v~ (B;) is contained in the Gal(E/E N K*™€)_orbit of B;. Note that the elements
Wb N2 for 1 <ty < [(E N K@) : B are in Gal(E/E;) and form a set of representatives for
Gal(E/E;)/ Gal(E/E N K*¥™m¢) and hence Gal(E/E;)(B;) = Gal(E/E N K'*¥m¢)(B;). Thus B is
stabilized by Gal(E/FE}) and the Gal(E/E})-orbits on B coincide with the Gal(E/ENK%™¢)-orbits,
which coincide with the (y'")-orbits. This proves part

Part @ follows from part @ by the definition of an induced torus.

In order to show part note that XGal(E/Er) i gpanned (over Z) by

Z B}lgz‘gn' - { Z B}1§ign"

BeGal(E/Ey)(B;) Be(y'N)(Bi)

The Z-span of the latter equals X ”/N, which implies X 7N = xGal(B/E), Using Definition
and the observation that v mod Gal(ENK""¢/FE,) is a generator of Gal(E;/K), we conclude that
the action of u on X G (E/Et) aorees with the action of 4/ on X7 = XGal(E/E:) and that

/

X Gal(B/K) _ (XGal(E/Et)>Gal(Et/K) _ <X,Y/N)’Y _ xT B
Proposition 3.4. Examples of good groups include

(a) reductive groups that split over a tamely ramified field extension of K,
(b) simply connected or adjoint (semisimple) groups,
(c) products of good groups,

(d) groups that are the restriction of scalars of good groups along finite separable field extensions.

Proof. [(a)] Part [(a)] follows by taking I = Gal(E/K) and u = 7/

[(b)] Part [(b)] can be deduced from and [(d)] (whose proofs do not depend on [(b)]) as follows.
If G is a simply connected or adjoint group then G is the direct product of restrictions of scalars

of simply connected or adjoint absolutely simple groups. Hence by and @ it suffices to show
that, if G is a simply connected or adjoint absolutely simple group, then G is good. Recall that
these groups are classified by choosing the attribute “simply connected” or “adjoint” and giving a
connected finite Dynkin diagram together with an action of the absolute Galois group Gal(@p /K)
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on it. We distinguish the two possible cases.

Case 1: G splits over a cyclic field extension E of K. Then take IV = Gal(E/K) and u =+ or
u = 1 according as the field extension is tamely ramified or wildly ramified, and choose B to be
the set of simple roots of G, if G is adjoint, and the set of fundamental weights dual to the simple
co-roots of G (i.e. those weights pairing with one simple co-root to 1, and with all others to 0), if
G is simply connected.

Case 2: G does not split over a cyclic field extension. Then G has to be of type D4 and split over
a field extension F of K of degree six with Gal(E/K) ~ S3, where Ss3 is the symmetric group on
three letters. In this case we observe (using that G is simply connected or adjoint) that the orbits
of the action of Gal(E/K) on X are the same as the orbits of a subgroup Z/3Z C Gal(E/K) ~ Ss.
Moreover, as S3 does not contain a normal subgroup of order two, i.e. there does not exist a tamely
ramified Galois extension of K of degree three, this case can only occur if p = 3, and we can choose
I = 7Z/37Z, u the nontrivial element in Gal(E N K% /K ) ~ 7 /27, and B as in Case 1 to see that
G is good.

In order to show part suppose that Gi,...,Gg are good groups with splitting fields
E1, ..., Ey and corresponding cyclic groups I'y = (7]) , ..., T} = (v;) and generators u; € Gal(E; N
Ktme/K) 1 <4 <k Let G=G) X...x G Then G splits over the composition field E of
Eq,...,Eg, and ‘Gal(E N Ktame/K)| is the smallest common multiple of ‘Gal(Ei NK=me/K)|,1<
i < k. Choose a generator u of Gal(E N K% /K). For i € [1,k], the image of u in Gal(E; N
K'*me /K) equals u;’ for some integer r; coprime to ‘Gal(Ei N Ktame/K)’, which we assume to be
coprime to p by adding ‘Gal(Ei N K*@me /K )‘ if necessary. Hence (v/;)" is a generator of I'}, and
we define v = (7/1)™ x ... x (/)™ and I" = (v'). Note that the order [I'| = p°N of T" is the
smallest common multiple of [I}|,1 < i < k, and hence N divides |Gal(E N K**™¢/K)|. By [3.1}i)]
if & € ®(G;), then there exists uy o € Gal(E;/K) such that

7 (a) = ()" (a) = Upa0 with Uy o = u;" = u in Gal(E; N K% /),
Let u;, be a preimage of u; o in Gal(E/K). Using that

|Gal(E/E N E*™)| |Gal(E N E*™/E;)| |Gal(E;/K)
= [Gal(E/K)| = |Gal(E/E N K™°)||Gal(E N K" /E; N K*™)| |Gal(E; N K*™°/K)|,
we obtain by considering the factors prime to p that |Gal(E N Efame/Ei)’ = ’Gal(E N Kme /BN Ktame)| .
Moreover, the kernel of Gal(E N E¥™¢/E;) — Gal(E N K*%¥™¢/E; N K%M where the map arises

from reduction mod Gal(ENE™¢/ENK'™™) has oder a power of p, hence is trivial; so we deduce
that the map is an isomorphism. Thus we can choose an element ug € Gal(E/E;) C Gal(E/K)

such that ug = w|GalBNK = [K)| o q Gal(E/E N K'%me) because wlGalENK e [K)| Gal(E N
K%me /B, N K). Since u1 o = u mod Gal(E/E; N K'*®™¢) and ulGalBNK e[| 4o generator of
Gal(EN K"/ F; N K%M by multiplying u; o with powers of vy € Gal(E/E;) if necessary we can
ensure that u; o = u mod Gal(E/ENK"™°). As Gal(E/E;) fixes o, we also have 7/(a) = uj o (),
and we conclude that G satisfies Property |(i)| of Definition [3.1{for all o € ®(G) = ]_[le O(Gi).
Choosing B to be the union of the bases B; corresponding to the good groups G; (by viewing X
embedded into X := X; X ... x Xj), we conclude similarly that G satisfies Property This
proves that G is a good group and finishes part

(d)| Let G = ResF/Ké for G a good group over F';, K C FF C E. Then there exists a corre-
sponding I' = Gal(E/K)-stable decomposition X = @?:1 X;, where d = [F : K], together with
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a decomposition of ® as a disjoint union ][] ®; such that I' = Gal(E/K) acts transitively on
1<i<f

the set of subspaces X; with Stabr(X;) ~ Gal(E/F), and (Xi,@,Xi,EE) is isomorphic to the
root datum R(é) of G for 1 < i < f. We suppose without loss of generality that the fixed
field of Stabr(X;) is F, i.e. Stabr(Xi) = Gal(E/F), and we write d = dy, - dy, where d), is a
power of p and d,y is coprime to p. As G is good, there exist a cyclic group [ = (7) acting on
(X1,®1, A1) and a generator @ of Gal(E N F*¥m¢ / F) satisfying the conditions in Definition m Fix
a splitting Gal(E N F*¥M¢/F) — Gal(E/F), and let Uy be the image of @ under the composition
Gal(E N F%me/F) — Gal(E/F) < Gal(E/K). Note that we have a commutative diagram (where
N’ = |Gal(E N Ftame/F)|)

Gal(E N Ftame /FY—— Gal(E/F)C Gal(E/K)

| | |

Z/N'Z—— S 7JN'Z x Gal(E/E N Ft¥m¢) 7./(N'd,,)Z x Gal(E/E N Kt*me)
Hence we can choose uy € Gal(E/K) such that
ul =y mod Gal(E/FE N K%me),

and u :=up mod Gal(E/E N K™™") is a generator of Gal(E N K*™¢/K) (because d = dpd,y with
dp, invertible in Z/(N'dy)Z). After renumbering the subspaces X; for i > 1, if necessary, we can
choose elements 4,4, € Gal(E/K) with

ﬂ)/tgdp/ =Uy=1u mod Gal(E N Ktame/K)

for 1 <ty < d, such that if we set Ver+tad, = U0 for 1 <t < dy,0 <ty < dp then v(X;) = Xiq1,
1 <i<dand v4(Xy) = X;. By multiplying v4 by an element in Gal(E/E N K'*™®) if necessary,
we can assume that 4 0v4-1 0 ...07 = Ug. Define 7' € Aut(R(G),A) by

d
X = @XZ =] (xlw . .,.’Ed) — (ﬁoﬂal O YdTd, Y11, Y2X2, - - - 7’7d—1xd—1)'
i=1

Then the cyclic group IV = (7') preserves A, and we claim that I and u satisfy the conditions for
G in Definition [B.11

Property |(i)| of Definition is satisfied by the construction of 7.

In order to check ProNperty let B be a basis of X C X stabilized by Gal(E/ENF%¢) with a set
of representatives { B, ..., By} and vy, ; € Gal(E/F) with (3)"(B;) = vy,.4(B;) (1 < t; < p*N/d)

satisfying all conditions of Property of Remark for G. For1 <i<nand1<j < dy,
define

Bi-1)d,+j = U} (Bi) =7j—10 - om(Bi).

Note that (vM)(X1) = ][] Xi+ia,, and hence, setting n' =n' - dyy, the set
0<i<d,

= U () sy

1<i<n/
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forms a basis of X (because 7'V has order d,,). We will show that B satisfies Property|(ii’)|of Remark
with set of orbit representatives {B;}1<;<,s (and hence satisfies Property of Definition .

For 1 <t <p°N,1<i<n/,1<j<dy, we define Ut (i-1)d,,+j € Gal(E/K) by

. Yooy itj+t<d
t(i-Ddy+5 = fytzo-~'ylofft1,io'yl_lo--~fyjill ifj+t>dt=dti+ta—j+1

Then using (v/)%x, = 5 and 3% (B;) = 0y, +(B;) € X1, we obtain
(Y)U(B;) = vi(B;) forall 1 <t <p°N and 1 <i<n'.
Moreover, since
Ui =4t mod Gal(E/ENF™™) = 7, ,=1uy = gtl =u™ mod Gal(E/E N K'me)
and 7x = u mod Gal(E N K% /K) for all 1 <k < d by definition, we obtain
v =u' mod Gal(E/ENK™") forall1<t<p’N and1<i<n (3.1)

This shows that the action of (/)" on B; for 1 < t; < p*N and 1 < i < n/ is as required by
Condition [(ii")] of Remark [3.2] It remains to show that B is Gal(E/E N K*'*™¢)-stable and that the

Gal(E/FE N K*™¢)_orbits coincide with the ( "Ny_orbits.

In order to do so, note that Equation (3.1) implies in particular that for 1 < to < d,,, we have
UNtyi = uN?2 mod Gal(E/E N Ktme), and hence vy, ; € Gal(E/E;) and

<’y’N> (B;) C Gal(E/E,)(B;), (3.2)

where E; is the tamely ramified degree N field extension of K inside E. Let us denote by E; the
tamely ramified Galois extension of F' of degree N/d, contained in E. Note that E; is the maximal

tamely ramified subextension of Et over K, and [Et : By = dp. As G is good, we obtain from
Property [(ii) m of Definition and Lemma E@ that

<71Ndp>(31.):<7N/d;>( i) = Gal(E/E N F'™™)(B;) = Gal(E/Ey)(B;).

Using <'y’ N> (X1)= ] X 1+id,) and the inclusion , we deduce that

0<i<dyp
d
p ‘<7/N p> (BZ) =

which implies that (y/)(B;) = Gal(E/E,)(B;) D Gal(E/E N K*™)(B;). In order to show that
(vM)(B;) = Gal(E/ENK™°)(B;), we observe that Gal(E/E N F*m¢) is a subgroup of Gal(E/EN
K*'*me) of index d, coprime to the index N/d, of Gal(E/E N F'*™¢) inside Gal(E/F). Therefore
Gal(E/ENnK®™™)NGal(E/F) = Gal(E/ENF*™™) inside Gal(E/K). As Gal(E/F) is the stabilizer
of X7 in Gal(E/K), we deduce that there exist d,, representatives in Gal(E/E N K'*®™¢) of the d,

Gal(B/En)(B)| = | (/™) (B:)| =

- |GallB/ ) (By)| < |Gal(B/By)(B)],
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classes in Gal(E/E N K*%™°)/ Gal(E/E N F*¥™°) mapping X; to d, distinct components X; of X.
In particular, we obtain that

|Gal(E/E N K'*°)(B,)| > d, |Gal(E/E N F**")(B;)| = d, )<7’Ndp> (Bi)‘ - ‘<7'N> (B))

)

and hence the Gal(E/E N K%¢)_orbits on B agree with the (v )-orbits on B. This finishes the

proof that Property of Remark and hence Property of Definition is satisfied for our
choice of I'” and u, and hence G is good. O

From now on we assume that our group G is good.

3.1 Construction of G,

In this section we define reductive groups G, over nonarchimedean local fields with arbitrary positive
residue-field characteristic ¢ whose Moy—Prasad filtration quotients are in a certain way (made
precise in Theorem [3.7]) the “same” as those of the given good group G over K.

For the rest of the thesis, assume = € Z(G, K) is a rational point of order m. Here rational means
that ¢(x) is in Q for all affine roots ¢ € Uk, and the order m of x is defined to be the smallest
positive integer such that y(z) € 2Z for all affine roots 1) € ¥k

Fix a prime number ¢, and let T be the finite cyclic group acting on R(G) as in Definition Let
F be a Galois extension of K containing the splitting field of (¥? — 2) over E, such that

e M :=[F : K] is divisible by the order p*N of the group I",

e M is divisible by the order m of the point x € #(G, K).

This implies that the image of x in (G, F') is hyperspecial, and by the last condition the set of
valuations I'/, (defined in Section [2.2) is contained in v(F') for all a € ®k. In particular, F satisfies
all assumptions made in Section in order to define vk r and tx . For later use, denote by wp

a uniformizer of F' such that wgf Bl = wg mod WE:E]H, and let Of be the ring of integers of F'.

Let K, be the splitting field of M — 1 over Qf", with ring of integers Oy and uniformizer w@,.
Let F, = Kq[z]/(#™ — w,) with uniformizer wp, satisfying w% = w, and ring of integers Op,.
Recall that every reductive group over K, is quasi-split, and that there is a one to one corre-
spondence between (quasi-split) reductive groups over K, with root datum R(G) and elements of
Hom(Gal(Q,/K,), Aut(R(G), A))/Conjugation by Aut(R(G), A), where Aut(R(G), A) denotes the
group of automorphisms of the root datum R(G) that fix A. Thus we can define a reductive group
G, over K by requiring that Gy has root datum R(G) and that the action of Gal(Q,/K,) on R(G)

defining the K -structure factors through Gal(F;,/K,) and is given by

Gal(F,/K,) ~ Z/MZ “275 ' — Aut(R(G), A),

where the last map is the action of IV on R(G) as in Definition This means that G, is already
split over E, := K [z]/(2?"Y — w,). Note that by construction, Definition [3.1| and Lemma the
restricted root data of Gy and G agree:

Ri,(Gq) = Rk (G),
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and we have for all a« € & = ®(G) = ®(G,)
|Gal(E/K) - o] = |Gal(F,/K,) - a. (3.3)

All objects introduced in Section |2 can also be constructed for G4, and we will denote them by the
same letter(s), but with a G in parentheses to specify the group; e.g., we write I, (Gy).

3.2 Construction of z,

In order to compare the Moy-Prasad filtration quotients of GG, with those of G' at =, we need to
specify a point z4 in the Bruhat-Tits building #(G4, K,) of G,. To do so, choose a maximal split
torus Sy in G4 with centralizer denoted by 75, and fix a Chevalley-Steinberg system {:qu}a@p for
G, with respect to T;. For later use, we choose the Chevalley-Steinberg system to have signs €, g
as in Definition ie.

ot = 2’ ()75 (aa)ta’ (1) € Ne, (T,)(Fy),

where Ng, (T,) denotes the normalizer of Ty in G, and
Fyvpr s F . . F,
Ad(ma)(Lie(z,")(1)) = €a,p Lle(:cs;’(ﬁ))(l),

Using the valuation constructed in Section [2.1] attached to this Chevalley-Steinberg system, we
obtain a point x4 in the apartment 7, of (G, K,) corresponding to S,. Fixing an isomorphism
fsq @ Xu(S) = X.(S,) that identifies Ry (G) with Ry, (Gg), we define an isomorphism of affine
spaces fo q: 9 — oy by

1

forq(y) = 20q + fsq(y —20) = 4 > V() -a (3.4)

+,mul
aced

1

max(G) for some a € @, and a

where @}’mlﬂ are the positive multipliable roots in ®x, A\, € (E,)
is the coroot of a, so we have a(a) = 2. We define z, := fo 4(2).

Lemma 3.5. The isomorphism fo 4 @ 9 — <y induces a bijection of affine roots Vg () —
‘IIK("Q{)vl/} = 1/10 f.Qf,q~

Moreover, we have for alla € @ andr € R that r—a(z—x¢) € I',(G) if and only if r—a(xg—xz04) €
I3(Gy).

Proof. As the set of affine roots for G on & (and analogously for G, on <) is
Vg =Vg() = {y|—>a(y—x0)+’y|a€ @K,veffl},

we need to show that, for every a € @y = P (G) = Pk, (Gy), we have

TG =Th(Ge) — ;S ) - bla). (35)

+,mul
bed;
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Let us fix a € P, and a € &, C ¢ = &(G) = ®(Gy). Recall that E,(G) is the fixed subfield of E
under the action of Stabgai(g/ k) (). Using Equation (3.3) on page we obtain

. B |Gal(E/K)| B B
[Eoc(G) : K] - ‘StabGal(E/K)(a)‘ - ‘Gal(E/K) ' O“ - ’Ga‘l(FQ/KQ) 'O“
‘Gal(Fq/Kq)’ o .
[Stabgai(r, /x,) (@)] [BalGa) : Kl
and hence
V(Eo(G) = {0}) = [Ea(G)/K) ™" - Z = [Eo(Gy) [ Kg] ™" - Z = v(Ea(Gg) — {0}). (3.6)

Note that the Dynkin diagram Dyn(G) of ®(G) is a disjoint union of irreducible Dynkin diagrams,
and if @ is a multipliable root, then « is contained in the span of the simple roots of a Dynkin
diagram of type As,. Thus by Equation and the description of I, as in Equation on
page |§|7 the Equality holds for « in the span of simple roots of an irreducible Dynkin diagram
of any type other than As,, n € Z~q, or in the span of an irreducible Dynkin diagram of type Ao,
whose 2n simple roots lie in 2n distinct Galois orbits. We are therefore left to prove the lemma in
the case of Dyn(G) being a disjoint union of finitely many As, whose simple roots form n orbits
under the action of Gal(E/K). An easy calculation (see the proof of Lemma [2.9| for details) shows
that, in this case, the positive multipliable roots of ®x form an orthogonal basis for the subspace
of X*(S) ® R generated by @, where by “orthogonal” we mean that b(a) = 0 if a and b are

distinct positive multipliable roots, and that, if b € &5 and b = >  Kqa is not multipliable,
aE@?}’mul
then > kg € 2-7Z. Moreover, by the definition of K, and Fj, it is easy to check that for
aeq)-l‘—(,mul

A € (Bo)bax(Gy), we have v()\,) € 2-v(E, —{0}). Thus using the description of I'; as in Equation
(2.2) on page |§| and Equation (2.3 on page @ we see that the desired Equation ({3.5)) holds.

The second claim of the lemma follows from combining Equation (3.5 and the definition of z,
using the map in Equation (3.4) on page O
Note that Lemma implies in particular that x, is also a rational point of order m. Let us
denote the reductive quotient of G at ¥, by Gy, ; the corresponding Moy-Prasad filtration groups
by Gg,r, 7 > 0; the Lie algebra filtration by gs, -, 7 € R; and the filtration quotients of the Lie
algebra by V,_,,r € R. Then using Lemma we obtain the following corollary to Lemma,

Corollary 3.6. The root data R(Gz) and R(Gy,) are isomorphic.

3.3 Global Moy—Prasad filtration representation

Since R(G;) = R(Gy,) (Corollary , we can define a split reductive group scheme J# over Z by
requiring that R(7¢) = R(G;), and then A, ~ Gy and g~ Gy ; Le., we can define the reduc-
tive quotient “globally”. In this section we show that we can define not only the reductive quotient

globally, but also the action of the reductive quotient on the Moy—Prasad filtration quotients. More
precisely, we will prove the following theorem.

Theorem 3.7. Let r be a real number, and keep the notation from Section and so G
is a good reductive group over K and x a rational point of (G, K). Then there exists a split
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reductive group scheme S over Z[1/N] acting on a free Z[1/N]|-module ¥ satisfying the following.
For every prime q coprime to N, there exist isomorphisms :%’qu ~ Gy, and ”f/]F ~ Vg, r such that
the induced representation of%’fF on ”VF corresponds to the usual adjoint representatzon of G,
on Vg, . Moreover, there are zsomorphzsms j‘fp ~ G, and ”I/p ~ Vg, such that the induced
representation of %”E on ”//E) is the usual adjoint representation of G, on V.. In other words,
we have commutative diagrams

%”pr“//ﬁp—wl/ﬁp %%qx”f/ﬁq%”//ﬁq
J(ZXZ J{N J{ZXZ J{N
Gy X Vg, ——V,, Gy, X Voo —— Ve r

Remark 3.8. The theorem fails for some reductive groups that are not good groups.

We prove the theorem in two steps. In Section [3.3.1] we construct a morphism from 5# to an
auxiliary split reductive group scheme ¢, and in Section we construct ¥ inside the Lie algebra
of 4 and use the adjoint action of ¢4 on its Lie algebra to define the action of J# on 7.

3.3.1 Global reductive quotient

Let 4 be a split reductive group scheme over Z whose root datum is the root datum of G. In this
section we construct a morphism ¢ : # — ¢ that lifts all the morphisms tx r : Gy 0/Gzo+ —
GQO/G£0+ and tx.F, @ Gey0/Geyor = G /Gw o+ defined in Section In order to do so, let
us first describe the image of ¢k r more expllcltly In analogy to the root group parametrization
x4 defined in Section and using the notation from that section, we define for a € P (G)
multipliable the more general map X, : F x F' — G(F) by

Xo(uw,v) = [ 2f(ug)af, 5(-vs)af(o(u)s).
pe(®a]

Note that Xo|py (£, B, 5) (@ € Po) agrees with z,. We then have the following lemma.

Lemma 3.9. Let x : F, — (’)@y be the Teichmiiller lift, and U, the root group of G, corresponding
to the root a € ®(G,) C ®x(G). Define the map y, : Fp, — Gf,o by

Xo(V2x(u) - ;a(x_xO)'M X(u)w_a(m_x")'Ma(X(u)w;a(x_x")'M)) if a is multipliable and p # 2
N Xa(0, x(u)o(x(u)wp ool M) if a is multipliable and p = 2
X0, x(u) - 20 M) if a is divisible

—a(x—x0)-M
( 0))

za(x(u) - wp otherwise.

Then the composition Y, of y, with the quotient map Gio —» C?io/CJJIiOJr is 1somorphic to L FoT, :
Fp — 1k, r(Ua(Fp)) C GI(Fp).

Proof. If p # 2 or if a is not multipliable, the lemma follows immediately from Lemma
In the case p = 2, note that (using the notation from Lemma

/ /

v (xmio i) - =i M) < 2v (ViAo )
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where s’ = —(a(z — x0) + v(A\)/2)M, because v(\) < 0. Moreover, o(wp) = wp mod wr in
wrOp/w%Op, and hence 7, (v) = 1k p(Ta(u)) by Lemma O

Remark 3.10. An analogous statement holds for G;,. In the sequel we denote the root group
parameterizations constructed for G, analogously to Lemma by Ty, : G4 = Uq,,a € ®(Gy,).

Recall that z is hyperspecial in Z(Gr, F), and hence the reductive quotient GI of G at x is a
split reductive group over F,, with root datum R(GL) = R(G). The analogous statement holds for
zq. Thus % is isomorphic to G , and %Fq is isomorphic to Gfg In order to construct explicit
isomorphlsrns7 let us fix a split maximal torus .7 of ¥ and a Chevalley system {x, : G, = U, C
G }acao)—o for (9, 7) with signs equal to €, as in Definition ﬂ; i.e., the Chevalley system
{xa}aca for (¢,.7) and the Chevalley-Steinberg system {x }aca for (G, T) have the same signs.

Moreover, the split maximal torus T» C Gp and the Chevalley system {z},ce yield a split
maximal torus T of GF and a Chevalley system {zF, : G, = UF ¢ GF},co for (GE TF)
with signs €, g. Similarly, we obtain a split maximal torus ng of Gfg and a Chevalley system
{2y : G, = qu C Gfg }aea for (Gfg, qu) with signs €, g. In addition, we denote by T, and

q
T, the maximal split tori of G, and Gy, corresponding to S and Sj.

Moreover, we define constants c,q € Op, and ¢, € Of for a € ® as follows. We choose v €
Gal(F/K) such that

Y mod Gal(F/E N Ktame) =u c Gal(E N Ktame/K)

and (g € Ok satisfying
Y(wrp) = (gwpr mod wh.
Similarly, let v, € Gal(F,/K,) ~ Z/MZ correspond to 1 € Z/MZ, i.e.

v, mod Gal(F,/E,)=+" € Gal(E,/K)

and (g, € O, such that
Y¢(wF,) = (a,TF,-

Let Cy,...,C, be the representatives for the action of IV = (') on the connected components
of Dyn(G) as given in Remark [3.2(i’)} and recall that ®; denotes the roots that are a linear
combination of simple roots corresponding to C;. For a € ® there exists a unique triple (i, a;, eq(r))
with i € [1,n], a; € ®; and e;(«) minimal in Z>( such that 'yg""(a) () = a. Note that eg(c) is
independent of the choice of prime number g. We also write e(a) = e4(c). We define

(a@)-ai(zq—m0,9)-M — Ce(a)u(xq—:co,q)M and

e(a)-a;(z—z ca(z—x0)-M
Cayg = Ca, G Car ._C( 0) —CG 0)-M

Note that a;(z — 2o) - M is an integer, as the order m of z divides M and I, C v(F) = - Z, where
a is the image of « in P

Finally, we denote by (g and CG the images of (¢ and (g, and by ¢, and ¢, the images of c,
and c, 4 under the surjections Op —» [, and Op, — [, respectively.

Remark 3.11. The integers e(a) depend only on the connected component of Dyn(G) in whose
span « lies.
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The definitions of (g, (¢, and e(a) are chosen so that the following lemma holds.

Lemma 3.12. We keep the notation from above and let r € R.

(i) If ¥ € Gal(F,/K,) with ¥(o;) = a and r' :==r — a(zqy — x04) € T, (Gy), then

’7( ) Ce(cy) r—a(xq—x0,9))M ' M 'rM—i—l

wp, mod wp

(i) If ¥ € Gal(F/K) with ¥(c;) = « and 7" :=r — a(x — x9) € T, (G), then

rMJrl

~ M
) CGa (r—a(z=20)) w}}M mod w7,

Y(wp

Proof. If ¥ € Gal(F,/K,) with fy( i) = a, then ¥ = vs(a)ﬂmxa")‘ for some integer z. As

e, (G,) = mz, we have ng =1 and
! e(a)+z o r/ _ e(a)r'M _p'pp o ce(a)(r—a(zg—z0,q))M 47 r
T L L e g )

which shows part

In order to prove part let ¥ € Gal(F/K) with 3(;) = @, and write ¥ = v°w for some integer &
and w € Gal(F/ENK*m¢). By Property |(i)| of Definition|3.1|and the definition of e(«) there exists
w € Gal(F/E N K*™) such that v*®w(e;) = a, and hence @ 144(®)~w(a;) = o, and therefore
(v)(o;) € Gal(F/E N Ktame)(al) On the other hand, as the I"-orbits on ® agree with the
Gal(F/K) orbits on ® and X7 = X Gal(F/EnKtame) (by Property H of Definition |3.1/ and Lemma
, the Gal(F/E N K%me)_orbits on Gal(F/K)(w;) coincide with the ('™ )-orbits, Wthh are the
same as the (vV') orbits, where Nj is coprime to p such that |Gal(F/K)(a;)| = p*N; for some
integer s;. Thus e(a) —€ =0 mod N;. Note that (G "M _ F,, because 1’ € T,(G) = 7 ZNZZ
if p#2andr €T(G) C WZ if p = 2. Moreover, for g € Gal(F/E N K*%¥™), g(wp) = wp

mod w% as all p-power roots of unity in E, are trivial. Hence

A(wpM) = (@) = G Map = (T MG M mod @M,
which proves part O

Now let fr : T — %, be an isomorphism that identifies the root data R(G;) and R(¥). Then
we can extend fp as follows.

Lemma 3.13. There exists an isomorphism f : GE — %p extending fr such that for o € ® and
u € Go(Fp) we have
f(@fa(u) = x(Ca - w). (3.7)

Proof. Note that there exists a unique isomorphism f : GI — gﬁp extending fr and satisfying

Equation (3.7) for all « € A. So we need to show that this f satisfies Equation (3.7]) for all
a € ®. In order to do so, it suffices to show that the root group parameterizations {;(QFP 0 Catacd

form a Chevalley system of (%Fp, %p) whose signs are e, 3 (o, 8 € @) for {zF}aca. If @ and
[ are linear combinations of roots in different connected components of the Dynkin diagram of
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®, then 6/04,5 = 1 = €4,8. Thus suppose o, € y(P1), and hence also s,(5) € v(P1), for some

~v € Gal(F/K). By Remark [3.11f this implies that Zw = Cze(a) = (76;6(/8) = Ee(sa(ﬁ)). We obtain
(using [Conl4) Cor. 5.1.9.2] for the second equality)

Ad (1a(€a)t-a(€a.a?-a) ta(ea)) (Lie(tsz, 025)(1))
= Ad (@M aleanly T M @S (TN Lie(usg, ) (1)
= Ad (awzi“(”“’”“‘M))Ad( (Dt-alea ) (D) (67 LieCusg, ) (1))
= GO Ad (0@ (ea s Liel, g, ) (1)

(x—zo)-M .
=0 (52l (@Y (@M - €0 Lie(t, 9z, )(1)
(z—z0)M —{aV,50(8))-a(z—z0)-M

(z—z0)-M

— §7 ¢y - €a,6 Lie(%s, (g)5, ) (1)
—=(sa(B))(x—x0)-M .
= e e o Lie(x, 9y, )(1)

= €ap (Lie(x«sa(ﬁ)ﬁp OEsa(B))(l)) .

Thus the signs of the Chevalley system {xan 0Cq}acd are €, as desired. O

Similarly, for each prime g, let fr, : ng — ‘7@ be an isomorphism that identifies the root data
R(Gg,) and R(¥). Then we have the analogous statement.

Lemma 3.14. There exists an isomorphism fq : qu — gﬁq extending fr such that for o € @
and u € G4(F,) we have

fo(@"1a(u) = % (Cayg - w)- (3-8)

This allows us to define a map ¢ from 57 to ¢ as follows.

Let . be a split maximal torus of . Then we have
X() = Xu(Ta) = Xo(8) = X, (T)EEK) o X (T) = X.(T),

where the first identification arises from R(.7°) = R(Gy), the second from Lemma and the
fourth from R(¥) = R(G). This yields a closed immersion fo : . — 7. Note that fo also
corresponds to the injection

X(F) = Xu(Ta,) = Xa(Sy) = X (1) P50 5 X,(T,) = X.(7),

and we have commutative diagrams

f f
pr ?Fp qu %q
F Fy
%
T, —7— Tt Tay e T
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To define ¢ on root groups, let {xw 4 }oca(#)=0x—a(G,) Pe a Chevalley system for (7, %) such that
there exists an isomorphism fr , : %”Fq — G, mapping YFQ to Ty, and identifying (Wa)Fq with
Zg,, O equivalently having the same signs as the Chevalley system {Z,,}aea, , for some ¢ # 2.

Moreover, note that for a € ®x = ®(.#), there exists a unique integer in [1,n], denoted by n(a),
such that ®, N ®,, ) # () (see Remark for the definition of ®;,7 € [1,n]). We label the elements
in @, N®,,) by {O‘i}1<i<\<bam<1> ] 5° that they satisfy the following two properties:

e If ¢ is a multipliable root, we assume that a; € [®,], where [®,] is as defined in Section
(Note that a priori we have either a; or ag in [®,].)

e Let o be the generator of I as in Definition then for all a € & with ’<I>a N CIJn(a)’ =3,
(a)

there exists a minimal integer €'(a) such that ~/ (@) acts non trivially on ®, N ®,,,), and we

require that /¢ (a1) = ay. (Note that this implies 7’6/(a)(a2) = a3.)

We may (and do) assume that [®,] is chosen to be {y"*(a1) |0 < i < |®4] — 1}.

Definition / Proposition 3.15. There exists a unique group scheme homomorphism u : Mg — G5
extending fo such that for all Z-algebras A, a € ®(H) = P and u € G4(A) we have

F’/F;L(w
L(?(Ha(u)) - H &Y'<Fl>(al)(\/iu)?(’Y'(Fl>(a1+a2)(7(*1)_a(m_wO)MU2)X'y/(z‘—ﬂ(az)((71)_a(x_zO)M\/§U)
i=1
(3.9)
if a is multipliable,
)
Lz, (w)) = H ?(:Y/(i—l)(al)(_u) if a is divisible, and (3.10)
=1
L/ )] [@an®a |
U(xwq(u)) = H H %Y'(Fl)(aj)(CFI)Z(FQ:‘;:;@))][/I(]_DU) otherwise, (3.11)
i=1 j=1

where (; is a primitive i-th root of unity, i = 1,2 or 3, and F;(a) = Stabr/ (®,(q))-

Moreover, we have commutative diagrams

My ———— Y Hy ———— G
p P q q
:J fT: :J{ qu:

F F,

GZ‘ LK, F GI qu LKq,Fq Gx:lz

for all primes q.
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Proof. Combining Lemma and Remark with Lemma [3.13] and Lemma we observe
in view of Property of Remark and Lemma that f ot poT, and f; 0k, F, ©Tq,
are described by the (reduction of the) right hand side of the three equations in the definition /
proposition for all primes q. As tx, r, 0T, (and tx poT, ) are isomorphisms from G, to ik, r,(Uq,)
(and vx,#(Uq)) for g # 2 (and for p # 2), the signs of the Chevalley systems {Z,,}aca, coincide
with those of {Z,} and of {xz,} for all ¢. (Note that 1 = —1 in characteristic two, i.e. the previous
statement is trivial in this case.) This implies for every prime ¢ the existence of an isomorphism
G, ~ %%q that identifies T, with YFQ and 7,, with (?(Ha)ﬁq for all a € @k, and similarly for G,.

Note that the Equations (3.9)), (3.10) and (3.11)) in the definition / proposition define group scheme
homomorphisms f, : G, — %z over Z for a € ®(). The maps {fu}sea(#) and fo together

with the requirement that xm,(1)xm_q(€a,a)xmq(1) = fa(l) f-a(€q,a) fa(l) for a € A(SZ) define by
[SGA 3111 news XXIII, Theorem 3.5.1] a unique group scheme homomorphism ¢ : 5% — %;. (The
required relations asked for in [SGA 31 pew, XXIII, Theorem 3.5.1] can be checked to be satisfied
using that they hold in F, for all primes ¢ by the existence of Lk, F, (similar to the subsequent
argument).)

We are left to check that the Equations (3.9), and hold for a € ®—A(s#). For this note
that ¢(x () (€6,aw)) = (Fo(1) fop(enp) fo(1)) el (W) (fo(1) f-p(enp) fo(1)) " for a € B,b € A(H),
where {€,}apcd) are the signs of the Chevalley system {xr, }aca,- For a,b € A(H), the trueness
of the equations in the proposition for s,(a) for all u € G,(A) is therefore equivalent to the vanishing
of a finite number of polynomials with coefficients in Z. As the latter vanish mod ¢ for all primes
q, these polynomials vanish also over Z, and the equations are satisfied for sy(a) (b,a € A(S7)),
and hence by repeating the argument for all roots a € . O

Remark 3.16. The morphism ¢ can be defined over Z[x]/(x® — 1) = Z[(3] or even over Z if none
of the connected components of Dyn(G) is of type Dy with vertices contained in only two orbits.

In order to provide a different construction of # in Section {4} we use the following Lemma.

Lemma 3.17. Let ¢ be as in Definition / Proposition . Then g %@ — 54@ is a closed
1MIMETSION.

Proof.
In order to show that ¢ is a closed immersion, it suffices to show that its kernel is trivial ([Conl4,

Proposition 1.1.1]). As Q is of characteristic zero, the kernel of ‘g (a group scheme of finite type)

is smooth. Hence we only need to show that L Is injective on Q-points. Let g € 7#(Q). Let W be
a set of representatives of the Weyl group of .7 in the normalizer of .. Without loss of generality,
we assume that the elements of W are products of a7, (1)x# g (€a.a)xH4(1). Let U be the unipotent
radical of the Borel subgroup corresponding to A(J#), U~ the one of the opposite Borel, and
Upy=U (Q)NwU~(Q)w~!. By the Bruhat decomposition, we can write g uniquely as ujwtus with

weW,te Q) u €Uy, and ug € U(Q). By the uniqueness 1 = ¢(g) = ¢(u1)e(w)e(t)e(ws) if and
only if 1 = s(u1) = t(w) = o(t) = t(uy). Note that ¢(w) = 1 implies w = 1 by our choice of W, and
t(t) = implies ¢ = 1. Choosing an order of ®}., there is a unique way to write ug = Haecbj{( X o (Uq)
with v, € Q for all a € @}. By choosing a compatible ordering of the roots in ®* and the
uniqueness of writing ¢(u2) = [T,co+ % (ul) with ul, € Q together with the explicit description of
¢ on root groups given in Definition / Proposition we conclude that u, = 0 for all a € O,
and hence uy = 1. Similarly, vy = 1, which shows that the map ¢ is injective as desired. O
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3.3.2 Global Moy—Prasad filtration quotients

F, .
x,, and LK g Fyr qu,r — Vg irin
such a way that we get a lift of the commutative Diagram (2.10]). Using these injections we view

In this section we will also lift the injections vk p, : Vi, — \%4

F,
V. as a subspace of V£ » and Vg .. as a subspace of V.

We begin with the construction of an integral model ¥ for V. Fix r € v(F') = v(F,) (otherwise
the Diagram would be trivial) and let (5; be a primitive M-th root of unity in Z compatible
with (3 in Proposition ie. if 3| M, then C]]\\/[/IB = (3. Let ¥ denote the composition of the
action of 7/ on Lie(.7)(Z[1/N]) induced from its action on R(¥) = R(G) (as given by Definition
, and multiplication by (1M, and define ¥4 to be the free Z[1/N]-submodule of Lie(.7)(Z[1/N])
fixed by 9.

Next consider a € ®x. We recall that I', (a) denotes the stabilizer of the component C,,) of the
Dynkin diagram Dyn(G) inside I, and set X, = Lie(x,)(1) € Lie(4)(Z[1/N)]) for a € ®. We define

|20 oy | [/ T

(—a(zg—0.0)+)|0 /17, ) || @@,y | (i-1)
1)rM (a)
Ya = Z Z <M 041) Jj— T <|‘I>am¢’n(a)| X’Y/<j71)(ozi) (312)
)+r) |17 /T D,NP,, (4 _
(note that g‘q) m; wO‘ O w|leanawle-b {1,-1,C3,¢2}) and let ¥ be the free Z[1/N]-
a n(a)

submodule of Lie(¥)(Z[1/N]) generated by ¥7 and Y, for all a € ®x with r—a(z,—z0,) € T%(Gy),
or equivalently r — a(z — x¢) € I',(G) by Lemma Note that ¥ as a Z[1/N]-module is a direct
summand of the free Z[1/N]-module Lie(¥4)(Z[1/N]).

Also note that the G representatlon er is isomorphic to the adjoint representation of GI on
L1e(GF ) and, s1m11ar1y, the qu representation qu,r is isomorphic to the adjoint representation of
Gmg on Lle(G 7). Hence the isomorphisms f : GE = % and f,: G i> %Fq from Lemma [3.13
and |3 - yleld isomorphisms df := Lie(f) : Vfr ~ Lle(GF)(IF ) = Lle(g)(?p) and df, := Lie(fy) :
Vi, S Lie(9)(Fy).

Proposition 3.18. The adjoint action of %z n; on Lie(94)(Z[1/N)) restricts to an action of
Ay on V.

Moreover, for q coprime to N, we have df (V4 ,) = 7/@, dfy(Va,r) = “//Fq and the following diagrams
commute

t%%px“l/ﬁp*w//ﬁp %%qx”f/ﬁq—wl/ﬁq
flOLdeIJ(: deJ(: fquLqufqlJ: deIlJ(:
Gy x Vg, —— Vg, Gy X Ve, r —— Vo r

Proof. We first show that dfy(Vz,r) = 7/, for ¢ coprime to N and df(V,,) = ”//E) by consid-

ering the intersection of ¥ with the subspaces EBQE(P Lle( Y(Z[1/N])s and Lie(7)(Z[1/N]) of
Lie(¥)(Z[1/N]) separately.
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For a € ®, denote by I, the stabilizer of o in I”, and let X, = Lie(2F1,)(1), ng = @0 N Ppyq)| €

{1,2,3}and ¢y = G, ") = 550D 4 < < n,. The image of (”1/ N Docae Lie(@)(Z]1 /N])a>

Fq under df 1'is then spanned by

/T
_ na n(a) Gty (a0 q)—i-r)‘l_‘ /T oy |Pai=1)__ e
a = Z Z C C Cyl(jfl)(ai)’q 70D (a;)

- F’/Fn(a) )+ )‘F /F/ ( 1)
) —a(xq—x0 r )| i —alzo—z0 YM(i—1)==
_ § E C (j-1) MC q q <'y’ (zq—20,¢)M(j 1)X~/’<j*1>(ai)

\r'/ru | B

= Y g UDbam MY
j=1
[T/

Y )
j=1

(e1)

for a € ®x with r — a(zg — 2z04) € I,(G,) (where (y gets send to (g, under the surjection

Z[1/N] — Fq). Here the action of I on V,,, is the one induced from the action on gfgm. Thus
by definition of the Moy—Prasad filtration and the inclusion tp, ,, constructed in the proof of
Lemma we obtain the equality

%) NP Lie(Gr)(F)a = dfy (7 0 @D Lie@)(Z[1/N))a) @ Fy)
acd acd
= Voo NP Lie(G1)(Fy)a (3.13)
acd

inside V&7, ~ Lie(G5?)(F,).

—a(xqg—x0,q)+T ‘F /Fn(a)

na(i—1)
In order to show the analogous statement for V. ,, we claim that Cn =

( ( n(a a( 1) .. . . .
(naa Ol . This is obviously true for p # 2 as a(z — o) = a(zg—0,¢) in this case.
If p =2, then (2 = —1 =1 in F,, and we only have the to consider the case n, = |<I>a N @n(a)} =
3. However, n, = 3 implies that the corresponding component C),,y of the Dynkin diagram

Dyn(G) is of type Dy, and hence b(a) = 0 for all multipliable roots b € ®™'. Thus a(z —
—a(xq—x0,q)+T ‘1" /T ng(i—1)

n(a)

x0) = a(xq — zo,4) by definition, see Equation (3 , and the claim Cn

(—a(z—20,g)+7)|T"/T7, 4y |na(i=1) — — . ,
gnaa e ) @™ o llows. Let Gy = QGE v al)), X, = Lie(zF4)(1), and use otherwise

the same notation as above. Then there exists a set of representatives [Gal(F/K)/ Stabgar/x)(a)]
of Gal(F/K)/Stabgay(r/k)() such that the image of (”I/ NDuca) Lie(%)(i[l/]\f])a> ®71/N] F,
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under df ~! is spanned by

n F//Fn(a)
_ < ) —a(zqg—20,q)+T) F’/F’ n,l(z 1) _
Yo = Z Z < U= MC o c /%j—l)(az’)X'y’(JFl)(ai)
Jj=
T
e ) a(x xo)+r)| TV /T7 e (i=1) o (me e
= Z Z Gy G=DrM (a) CWI( x0) M (j I)wa(j—l)(ai)
v | B _
- Z C‘,y,(]*U(T—a(xfxo))MX,y,(jq)(al) = Z v (Xal) ,
j=1 vE[Gal(F/K)/ Stabgai(r, i) ()]

where the last equality follows from Lemma [3.12] Thus we obtain

() NP Lie(GE) (Fp)a = Vi, N @D Lie(GL)(Fy)a (3.14)
acd acd

inside VL ~ Lie(GL)(F,).

x,r —
Let us consider #7. From the definition of the Moy-Prasad filtration tEt of the Lie algebra tg, of

the torus Ty, together with Lemma and the observation that all p-power roots of umty in IP‘
are trivial, we deduce (by sending (s ® 1 to (g under the isomorphism Z[1/N] ®7(1/N] F, ~TF,, as

above) that
A (e (E0/44)) = (Lie(Ti) 2(/ND) Oz Fy

Moreover, by combining Proposition 4.6.2 and Proposition 4.6.1 from [Yu, Section 4.6], we have

tpr = (tffT)Gal(Et/ K) as E; is tamely ramified over K, and we obtain (using tameness of E;/K) that
: = ON =\
df (ter/ters) = df ((tf}/titr)Gal(Et/K)) = ((L1e(9H)(Z[1/N])) 71 /N Fp)
= (Lie(In)(Z[1/N]))’ @z /5 Fp = 7 @11/ Fp- (3.15)

For ¢ coprime to N, we denote by F;, the tamely ramified extension of degree N of K,. Then we
obtain by the same reasoning (substituting E; by E},)

dfq (tfl'qﬂ"/tifq,r‘i’) — ,VT ®Z[1/N] Fq . (316)

Combing Equations (3.14]) and (3.15)), and (3.13)) and (3.16[), we obtain for ¢ coprime to N that
df (Vg,) = V5, and dfy(Va,r) = %,

In order to show that the adjoint action of 47, \; on Lie(94)(Z[1/N]) restricts to an action of
%ﬁi[l /N on V', we observe that the following diagram commutes

G % Lie(%)(Z[1/N))g, — Lie(%)(Z[1/N]),

! xdf{llz dfy l

F,
GJ”Z X quv"' quﬂ"
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Since ik, F,(Gz,) preserves V , (Equation (2.10)), we deduce that the induced action of %”Fq
on Lie(¥)(F,) preserves ”//Fq for all ¢ coprime to N. Hence the induced action of *%02[1 /N] Oon

Lie(%4)(Z[1/N]) preserves ¥, and by construction and Lemma [2.9| the diagrams in the proposition
commute. ]

Theorem is now an immediate consequence of Proposition [3.18

4 Moy—Prasad filtration representations and global Vinberg—Levy
theory

In this section we will give a different description of the reductive group scheme 7 and its action
on ¥ from Theorem as a fixed-point group scheme of a larger split reductive scheme ¢ acting
on a graded piece of Lie¥ (see Theorem |4.1)). This means we are in the setting of a global
version of Vinberg—Levy theory and the special fibers correspond to (generalized) Vinberg—Levy
representations for all primes ¢. In order to give such a description integrally (i.e. over Z[1/N]),
we will specialize to reductive groups G that become split over a tamely-ramified field extension in
Section Afterwards, in Section we will then show that such a description holds over Q for
all good groups. This will also allow us to study the existence of (semi)stable vectors in Section

4.1 The case of G splitting over a tamely ramified extension

Let S be a scheme, then we denote by p;, g the group scheme of M-th roots of unity over S. We
will often omit S if it can be deduced from the context. Given an S-group scheme ¢, we denote
by Aute /s its automorphisms functor, i.e. the functor that sends an S-scheme S’ to the group of
automorphisms of ¥s in the category of S’-group schemes, and by Aute /s its representing group
scheme if it exists. We will often omit S if it can be deduced from the context. Given, in addition,
a morphism 6 : p,, ¢ — Auty, we denote by 4% the scheme theoretic fixed locus of ¢ under
the action of p), ¢ via 0, if it exists, i.e. @Y represents the functor that sends an S-scheme S’ to
the elements of ¢(5’) on which ;g acts trivially. If ¥% is a smooth group scheme over S of
finite presentation, we denote by 499 its identity component. Similarly, if F is a quasi-coherent
Og-module, we denote by Aut r /0g 1ts automorphism functor, and by Aut z 10 (or simply Aut r)
the group scheme representing Aut 10 if it exists.

Theorem 4.1. Suppose that G is a reductive group over K that splits over a tamely ramified field
extension E of degree e over K. Letr = % for some nonnegative integer d < M, and let I be the
split reductive group scheme over Z[%] acting on the free Z[%]-module ¥ as provided by Theorem
i.e. such that the special fibers each correspond to the action of a reductive quotient on a
Moy—Prasad filtration quotient. Then there exists a split reductive group scheme & defined over
Z[%] and morphisms

O:py — Autgy  and  dO - py, — AUtLie(g)

that induces a Z/MZ-grading Lie(9) = ®M, Lie(4); such that J is isomorphic to 9%°, ¥ is
isomorphic to Lie(4)n—q(Z[L]) and the action of S on ¥ corresponds to the restriction of the
adjoint action of 4 on Lie(9)(Z[2]) via these isomorphisms.
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In particular, this implies that for q coprime to e we have commutative diagrams

ggf x Lie(9)n—q(Fp) —— Lie(4) ar—a(Fp) ggf x Lie(9)pr—q(Fy) — Lie(94) pr—a(Fy)
J:x: JVZ l:x: J: (41)
G; x Vg, Vi Gy X Vg ———— Vo .

Remark 4.2. If p is odd, not torsion for G and does not divide m, then, if we choose M to be
m, the left diagram in is proven to exist and commute in [RY14], Theorem 4.1]. The proof
given in Loc. cit. does not work for all primes p, because it relies among others crucially on the
assumption that p does not divide m.

Proof of Theorem [4.1]

Let €', f be integers such that e|e/;, M = €'f, ged(e/, f) = 1 and €’ is minimal satisfying these
properties. Let E. be the splitting field of (xe/ — 1) over E, and let O be the ring of integers in
Ey.

We let & be a split reductive group scheme over O[1] C Z[1] whose root datum R(¥) coincides
with the root datum R(G) of G, i.e. ¢ is as defined in Section base changed to O [1], and
7 denotes a split maximal torus of 4. Let Gy be the adjoint group of G. We have an isogeny
G — G4y, and we denote the image of T under this isogeny by T,4y. The isogeny induces an
injection X, (T') < X,(T,q) that yields an isomorphism X, (T) @z R = X, (T,q) ®z R, which we
use to identify the two real vector spaces. This allows us to choose A € X, (T,q) C Xi(T) ® R
such that z = 2o + 1;A. Note that then, using the identification of X,(T') with X, (Tyq), we have
Tq = Toq + 7 A. We also denote by A the corresponding element in X, (Z.q4) C X.(7) ® R under
the identification of X, (7") with X.(.7). Consider the action ) of u,, on ¢ given by composition
of the closed immersion p,, — G,, with A and the adjoint action of ¢4,; on ¥, i.e.

QAIMM—)Gmg%d‘—)gadﬂ)Autg.

Let ¥ € Aut(R(G),A) denote the action of v/ € I'' ~ Gal(E/K) on R(G) given in the Defini-
tion of a good group, and denote by M o1/ the constant group scheme over Spec (’)6/[%]
corresponding to the group Z/eZ. Using the Chevalley system {x, : G, = %, C ¥ }aecp({g):q)
for (¢,.7) (defined in Section , the automorphism ) defines a morphism of Spec Oy[2]-
schemes Z/eZ

Z)e'Z

0.(1/e] — Autg. Note that we have an isomorphism of Spec Oe/[%]-schemes W =

0.[1/¢] that yields the following morphism, which we again denote by J,

’
e

VT i)Z/e'ZO < 7/eZ — Autg .

er[1/¢€]

Fix an isomorphism gy >~ pr X pry. This yields a projection map paser : pps — per, and allows us
to define 6 : pu), — Auty as follows

Ocr[1/e]

di Par.er X1d I%0 )
0: fiay —25 ppy X poy ——— o xuM&Autngutgﬂ)Autg.

By [CGP10, Propostion A.8.10], the fixed-point locus of ¢ under the action of € is representable
by a smooth closed O, [%]-subscheme 47 of 4. Moreover, by [CGP10, Proposition A.8.12], the

e
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fiber %ge 0 is a reductive group for all geometric points 5 of Spec (’)e/[%]. Similarly, 790 = 790 is
a smooth closed subscheme of .7. Hence 779 is a split torus over Spec (’)e/[%].

Let us denote %9 by . We claim that 770 is a maximal torus of #”. In order to prove the
claim for geometric fibers, we use a similar argument to one used in [Hail5, Section 4]. Let ¢ be an
arbitrary prime number coprime to e, % the Borel of ¢4 corresponding to the positive roots, and
7 its unipotent radical. As %’Fq is a closed subgroup of %q, %’Fq/ (%’Fq N %/Fq) is proper in
%ﬁq / '%)qu hence is proper. Thus ,%’E nNA" 7, is a solvable parabolic subgroup, i.e. a Borel subgroup,
and %%0 = %y NA'g . According to [Ste68, 8.2], %Fe is connected, and hence 2%° = 70w 7.9 |

q q g q Fy Fy Fy
This means that %i’o = %eq,o is a maximal torus of %’Fq. Hence fgﬂ’o is a maximal torus in %5
for all geometric points 5 of Spec Oy [%], because the locus of the former points is open. This means
that 770 is a maximal torus of .

In addition, Pic(SpecZ[2]) is trivial (by the principal ideal theorem), and hence the root spaces for
(gz[l Jep Ty e}) are free line bundles. Using that SpecZ[1] is connected, we conclude that 7 Z[1/e]
is a split reductive group scheme.

If g is a large enough prime number, then by [RY14, Theorem 4.1] we have %’Fq ~ Gy,. Hence
R(A") = R(H ) = R(Gg,) = R(H), and A7, ) is (abstractly) isomorphic to # as desired.
p

In order to give a new construction of 7, let d : Autgy — AutLie({f) be the map defined as follows.
For any Oy [%]-algebra R, and g € Auty/(R), define dg := Lie(g) € Aut(Lie(¥)r). Then the action

e

df defines a Z/MZ-grading on Lie(¥), which we write as Lie¥ = @M, (Lie¥);.
We define 7’ to be the free Op/[2]-module Lie(¥4)r—q(Oe[2]), and the action of 7" := %% on ¥’

should be given by the restriction of the adjoint action of ¢ on Lie(%)(Ou[1]).

e
In order to show that the .#7-representation on ¥ corresponds to the %/Z[l / e]—representation on

7/2'[1/6], we observe that 7%[1/e} is the M — d weight space of the action of 9 - Ad(A((ps)) for some

primitive M-th root of unity (ps in Z[%] Using the notation introduced in Section m preceding
Remark we let Cp = C]e\}a)'a(x_xo)'M. By the same arguments as in the proof of Lemma
we see that there exists an automorphism A of gzu Je] that preserves %[1 Je] and sends x, to x, 0 Cy
for all a € ®.

Let ¢ be a large enough prime, to be more precise odd, not torsion for G and not dividing M. Then
we deduce from the arguments used in [RY14, Section 4] that we have commutative diagrams:

C c . —
%’EC—> %, “IfF’qC—> Lie(¢)(Fq) (4.2)
fq_loh\%/?q J: :quloh Lie(fqloh)n,//(ﬂ,-@J(: :JLie(fqloh)
F, F,
G,y Gl Vaur e Vil

Moreover, the diagram on the right hand side is compatible with the action by the groups of the
diagram on the left hand side.

Recall that we constructed in Section amap ¢ : A — Gy 0 and ¥ as a free Z[X)-submodule

of Lie(#)(Z[1]) such that we have the following commutative diagrams for all primes ¢ coprime to
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(&
L C . —
My, ———— %, Vg S Lie(¥)(Fy) (4.3)
k :qu‘l f {Lie(fq‘l)
quc—> Gfg Ve r——F— qu T
LKq,Fq ke LKq,Fq,r kX

where the diagram on the right hand side is compatible with the action of the groups on the left
hand side by Proposition Note that tx, F, is a closed immersion as either ¢ is odd or e is odd

(see Section [2.5).
Thus we conclude that hil(b(%q)) = %”’Fq for large enough q.

Let ¢ now be any prime coprime to e, and let g € #(F,). As J(Z[%]) surjects onto J#(F,)

(because this holds for the root groups and the torus), we can choose g € 5 (Z[21]) whose image in
H#(F,) is g. By combining the Diagrams and ([4.3), we see that the image of h™'.(g) in 4 (F,)
is actually contained in #”(Fy) for all sufficiently large primes ¢’. Hence h™'i(g) € 5#"(Z[1]) C
9G(Z[1)), and h=! o o(H(Fy)) C 5" (F,). Since we observed that jf’m is abstractly isomorphic to

Gy, = h'o folik,7,(Ga,)) ~hto L(,%%q), we conclude that
hlo WH,) = H'5, (4.4)
for all primes g coprime to e. The same arguments show that

hlo L(Jpr) = %'FP. (4.5)

Moreover, we claim that h=! o WHg) = H'G. In order to prove the claim, note that (py)g ~
Z/M Z@, and hence the action of the group scheme p,, on %@ corresponds to the action of the finite

group Z/M7Z generated by ¥ - Inn(A(Cpr)). Therefore, by the construction of ¢ : ‘%ﬂZ[l/e] — gZ[l/e]
(see Proposition D and the definition of h : 97, ,, — ¥, |, We see that h~lou(#(Q)) C 9°(Q).
As 1y 1 Hg — Y is a closed immersion by Lemma [3.17] h=to W) = A ~ %é’o = H'g, and
we conclude that

hil e} L(%@) = %/@ (46)

Thus, as %ﬂ’z[l Je] is smooth over SpecZ[%], hence reduced, we deduce from the Nullstellensatz
that A"l ov: 0 — %Z[l/e] factors via the closed subscheme %/2[1/5] of gi[l/e]v i.e. we may write
h~tou: # — ‘%p/Z[l/e]‘ As we proved that (h™' o), : 4 — (‘%/Z[l/e])s is an isomorphism
for all s € SpecZ[%] (see Equation , , ), we conclude that by [EGA IV, 17.9.5] the
morphism A=t o S — A 7[1/¢) IS an isomorphism.

Moreover, as Lie(h)(”/ff’q) = g, for large enough primes ¢, we deduce that Lie(h) : Lie(¢4)(Z[2])

— Lie(#)(Z[1]) yields an isomorphism of the direct Z[1]-module summands 77 and 7.

Z[1/€]
As the action of " on ¥ was defined via the adjoint action of %7, ,; O (/) onto Lie(%z[l/e])(zg]) D
¥, the isomorphisms

- 9,0 o1y . =1
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map the action of .7 onto ¥ to the action of (%2[1/6])070 on Lie(%z[l/e])M,d(Z[%}) which arises from
the restriction of the adjoint action of %z, ., on Lie(%z[l/e])(zg]).

The commutative diagrams in the theorem now follow by applying Theorem [3.7] O

Remark 4.3. Let E. be as defined in the proof of Theorem Denote by Ep the Hilbert class
field of F. and by Op the ring of integers in Ey. Then the group schemes 57 and ¢ and the
action of J# on ¥ appearing in Theorem can be defined over Spec O H[%]

4.2 Vinberg—Levy theory for all good groups

Even though the Moy—Prasad filtration representation of groups that do not split over a tamely
ramified extension might not be described as in Vinberg-Levy theory, its lift to characteristic
zero can be described using Vinberg theory, i.e. as the fixed-point subgroup of a finite order
automorphism on a larger group acting on some eigenspace in the Lie algebra of the larger group.
To be more precise, we have the following corollary of Theorem combined with Theorem

Corollary 4.4. Let G be a good group over K, r = % for some nonnegative integer d < M, and
let the representation € acting on ¥ be as in Theorem |3.7. Then there exist a reductive group
scheme %@ over Q and morphisms

0:py — Autg@/@ and dO: py — AUtLie(%@)/@
such that A ~ %go and Vg =~ Lie(g@)M_d(@), and the action of g on Vg corresponds via these
isomorphisms to the restriction of the adjoint action of %5 on Lie(%g) (Q).

Proof. Let ¢ be a prime larger than p* N. Then, by construction, the representation over Z[ﬁ]
associated to G via the proof of Theorem agrees with the representation of %ﬂZ[l J(peNY] O
7/2[1 J(p*N)]" As G splits over a tamely ramified extension, Theorem allows us to deduce the
corollary. O

5 Semistable and stable vectors

In this section we apply our results of Section [3] and Section [] to prove that the existence of
stable and semistable vectors in the Moy—Prasad filtration representations is independent of the
characteristic of the residue field. Recall that a vector v in a vector space V over an algebraically
closed field is stable under the action of a reductive group Gy on V if the orbit Gy v is closed and
the stabilizer Stabg,, (v) of v in Gy is finite. A vector v € V is called semistable if the closure of
the orbit Gy v does not contain zero.

5.1 Semistable vectors

The global version of the Moy—Prasad filtration representation as provided by Theorem allows
us to show that the existence of semistable vectors is prime independent as follows.

Theorem 5.1. We keep the notation used in Theorem in particular G is a good reductive
group over K and x € B(G, K). Then the following are equivalent
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(i) V., has semistable vectors under the action of Gy.
(i) Vg, has semistable vectors under the action of G, for some prime q coprime to N.

(iii) Vg, has semistable vectors under the action of G, for all primes q coprime to N.

Proof. We first show that implies Suppose that holds, i.e. that Vg _, contains
semistable vectors under G, for some prime ¢ coprime to N. This implies by [MP94, Propo-
sition 4.3 that ¥G has sermstable vectors under the action of 75 x where . and 7 are as in

Theorem |3 . By [Mum?? p. 41] this means that there exists a jf —1nvariant non-constant ho-

mogeneous element P, in Sym”f/ . Moreover, there exists X € 75 C Vg, such that F, 7(X) # 0,
i.e. X is semistable in “// under the action of Jf . Hence X # O is also ‘semistable in "// under

the action of &5, which 1mphes (Sym “//Q)jf @ » Q. Thus, there does also exist a 5 (Z)-invariant

non-constant homogeneous element P in Sym ”/72. As P is non-constant and homogeneous, we can
assume without loss of generality that the image P of P in Sym 7 ®F, ~ Sym 7/Fp is non-constant.

Note that #(Z) surjects onto H (Fp), which follows from the surjections on all root groups and
the split maximal torus. Hence P is J(F)) ~ G,(F,)-invariant and there exists X € V5, ~ Var

such that f(X) # 0, i.e. X is semistable by [Mum?77, p. 41]. Thus|(i)|is true.

The same arguments show that if G, has semistable vectors, then Gy, has semistable vectors
for all primes ¢ coprime to N, i.e. implies As implies we conclude that all three
statements are equivalent. O

Note that the same holds for the linear duals V%T and \v/'xq,r of Vg, and V,_; using ¥ instead of
¥ in the proof above:

Corollary 5.2. We use the same notation as above. Then Vmﬂn has semistable vectors under the
action of G, if and only if \v/'qu,T has semistable vectors under the action of Gy, for some prime q
coprime to N if and only if Vg, has semistable vectors under the action of G, for all primes q
coprime to N.

Remark 5.3. For semisimple groups G that split over a tamely ramified extension and sufficiently
large residue-field characteristic p, Reeder and Yu classified in [RY14, Theorem 8.3] those x for
which Vx,,n contains semistable vectors in terms of conditions that are independent of the prime p.
Corollary allows us to conclude that these prime independent conditions also classify points x
such that V, , contains semistable vectors for all good semisimple groups G (without any restriction
on the residue-field characteristic).

5.2 Stable vectors

In this section we show an analogous result to the one in Section for stable vectors. This
allows us to generalize the criterion in [RY14] for the existence of stable vectors in the dual of the
first Moy—Prasad filtration quotient to arbitrary residual characteristics p and all good semisimple
groups, which in turn produces new supercuspidal representations.

Theorem 5.4. We keep the notation used above, in particular G is a good reductive group over K
and x € B(G, K). Then the following are equivalent
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(i) V., has stable vectors under the action of G.
(i) Vg, has stable vectors under the action of G, for some prime q coprime to N.

(iii) Vg, has stable vectors under the action of Gy, for all primes q coprime to N.

Proof. We suppose without loss of generality that r = % for some nonnegative integer d < M.

Assume that is satisfied, i.e. there exists a prime ¢ coprime to N such that V,_, contains
stable vectors under the action of G,

As was pointed out to us by Beth Romano, a slight variation of the proof by Moy and Prasad of
[MP96, Proposition 4.3] shows that then %G contains stable vectors under /5 , where 7#” and ¥/
q q

are as in Theorem [3.71
Recall that by Corollary Ay =~ %9 0 and Vg ~ Lie(%g) m— 4(Q) such that the action of Hg on

¥ corresponds via these isomorphlsms to the restriction of the adjoint action of % on Lie(%) (Q).

/(d, M)
Let Cyr be a primitive M-th root of unity in Q, denote g O(Car) 74,0 by ¢', its Weyl group by
W’ and let ¥ be the action of 8({as) on the root datum R(%’ ). Then by [RLYG12, Corollary 14],
‘1
the existence of stable vectors in ”1/@ is equivalent to the action of 6({ys) on gé (or, equivalently,
q q
on ¢4') being principal and % being the order of an elliptic Z-regular element of W1). Hence we

conclude by the same equivalence for the prime p that there exist stable vectors in #5 under the
P
action of ‘% .
P

Thus the set of stable vectors (”l/@ )s in Y%, is non-empty and open (see [Mum77]). Hence there
P P _ _ — —
exists a nonzero polynomial P in O(“l/@p) = (’)(”//Zp) ®7, Qp ~ Lplzi,. .., oy ®z,Qp = Qplz1,. ..\ n]
such that the Q,-points of the closed reduced subvariety V (P) of ”//@ defined by the vanishing locus
P

of P contain (”I/@p - (7/@1)) 5> > 0. We can assume without loss of generality that the coefficients of
P are in Z,, ie. P € (’)(”//Zp) C (’)(”V@p), and that at least one coefficient of P has p-adic valuation
zero. Let P be the image of P under the reduction map O(”i/zp) ~ DLplzi, ..., 20 — (’)(“//Fp) ~
Fylz1,...,2,). Then P is not constant, because P(0) = 0, and there exists X € V5, ~ Ve such
that P(X) # 0.

We claim that X is a stable vector under the action of G,. We will prove the claim using the Hilbert-

Mumford Criterion that states that a vector is stable if and only if it has positive and negative
weights for every non-trivial one-parameter subgroup, see [Mum?77|. Let A : G,,, = G, ~ %%p be a

non-trivial one parameter subgroup. Then X is defined over some finite extension of [Fp, and hence
by [SGA 311 newh IX, Corollaire 7.3] there exists a lift A : G,,, — I of X. The composition of A
with the action of 77 7, on “//ZP yields an action of G,, on ”VZ , and we obtaln a weight decomposition
”f/Z ®mezVm- Denote ez, ¥m by ¥4 and @mez<07/ by 7_, i.e. ”f/p =7_@ Y% ® V.. Let
X e ”f/ be a lift of X, and write X = X_ + X+ X, with X_ € “// , X0 € %, X4+ € 4. Note that
the Welght decomposition of 7/ under the action of G,,, via the composition of A with the action
of 5 on 7% is the image of the decomposition ¥~ & % @ ¥4, ie. (¥5)- = ®mezo(V5,)m =
(P )g,, (75,00 = (W), and (Vg )+ = Smez.o (Y, )m = (P4)g,. Hence X = X_ + Xo + Xy
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(where an overline denotes the image after base change to Fp) has positive and negative weights
with respect to A if and only if v(X_) =0 = v(X4).

Suppose that v(X_) > 0. Then P(X) = P(X( + X+) modulo the maximal ideal of Z,. However,
Xo + X4 is not a stable vector, because it has no negative weights with respect to the non-trivial
one parameter subgroup A X7, @p, which implies P(Xo+ X4 ) = 0. Hence P(X) = 0 contradicting
the choice of X. The same contradiction arises if we assume that v(X_) > 0. Thus, X has

positive and negative weights for every non trivial one parameter subgroup, i.e. X is stable by the
Hilbert-Mumford criterion. Hence, statement of the theorem holds.

The same arguments show that if G, has stable vectors, then Gy, , has stable vectors for all ¢
coprime to N, i.e. implies As implies the three statements are equivalent. O

As in the semistable case, the same proof works for the linear duals of the Moy—Prasad filtration
quotients:

Corollary 5.5. We use the same notation as above. Then \V/'w« has stable vectors under the action
of Gy if and only if V,, has stable vectors under the action of Gy, for some prime q coprime to
N if and only if Vg, has stable vectors under the action of Gy, for all primes q coprime to N.

Denote by r(x) the smallest positive real number such that V) # {0}, and let p = % > a,

acdt
where ®1 are the positive roots of ® = ®(G) (with respect to the fixed Borel B). Then Corollary
allows us to classify the existence of stable vectors in 'V, .,y for arbitrary primes p and good
semisimple groups below. This generalizes the result of [RY14, Corollary 5.1] for large primes p
and semisimple groups that split over a tamely ramified extensions.

Corollary 5.6. Let G be a good semisimple group and x a rational point of order m in <7 (S, K) C
B(G,K). Then Vx,r(x) contains stable vectors under G, if and only if x is conjugate under the
affine Weyl group Wag of the restricted root system of G to xo+ p/m, r(x) = 1/m and there exists
an elliptic Z-reqular element w~' of order m in W+/', where W is the absolute Weil group of G and
v is the automorphism of R(G) given in the definition of a good group (Definition .

Proof. Note that by Lemma the order of x4 is m, and by Theorem we have r(zq) = r(z).
Let g be sufficiently large, i.e. coprime to M, not torsion and odd. Then G| is a semisimple group
that splits over a tamely ramified extension, and we deduce from the proof of [RY14, Lemma 3.1]
that qu,r(xq) can only admit stable vectors under G, if z, is a barycenter of some facet of
oy = o/ (S, K,), and hence r(z,) = 1/m. Therefore, as ¢ is chosen sufficiently large, we obtain by
[RY14, Corollary 5.1] that qum(xq) has stable vectors if and only if z, is conjugate under the affine
Weyl group Wag, of the restricted root system of G, to x4 + p/m, 7(x) = 1/m and there exists
an elliptic Z-regular element wy’ of order m in W+/, because W is isomorphic to the absolute Weil
group of G,;. Note that

: : 1 o
Tq “Wyg, Toq+p/m  ifand only if @~ 2o+ 7 S v -a+ %,

ae@}mml
and xg + 1 v(Ag) - @+ p/m is conjugate to xo + p/m under the extended affine Weyl group
1 P p

aE@;’mul
of the restricted root system of G. However, by checking the tables for all possible points z, whose
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first Moy—Prasad filtration quotient qum(zq) admits stable vectors in [RLYG12| and |[RY14], we
observe that the latter conjugacy can be replaced by conjugacy under the (unextended) affine Weyl
group. Hence using Corollary we conclude that Vx,r(w) contains stable vectors under the action
of G, if and only if x ~yw,; o + p/m, r(z) = 1/m, and there exists an elliptic Z-regular element
of order m in W+/. ]

Recall that k& is a nonarchimedean local field with maximal unramified extension K.

Corollary 5.7. Let G be a good semisimple group, and suppose that G is defined over k. Assume
that W~/ contains an elliptic Z-regular element. Then using the construction of [RY14, Section 2.5]
we obtain supercuspidal (epipelagic) representations of G(k') for some finite unramified field exten-

sion k' of k.

Proof. Let m be the order of an elliptic Z-regular element of W~/ and x = 29+ p/m € (S, K).
By Corollary var(x) contains stable vectors under the action of G,. Since x is fixed under the
action of the Galois group Gal(K/k), the vector space V() is defined over the residue field § of &.
Hence there exists a finite unramified field extension k" of k with residue field f' such Vm,r(z) contains
a stable vector defined over §'. Applying [RY 14 Proposition 2.4] yields the desired result. O

6 Moy—Prasad filtration representations as Weyl modules

In this section we describe the Moy—Prasad filtration representations in terms of Weyl modules.
Recall that for A € X*(.¥) a dominant weight, the Weyl module V (X) (over Z[1/N]) is given by

V(A) = ind”" (—wo))",
““H

where Zy is the Borel subgroup of # corresponding to A(), %, is the opposite Borel subgroup,
wp is the longest element of the Weyl group of ®(#), and (.)" denotes the dual (|[Jan03, 11.8.9]).
We define

D, = {ae@K\r—a(x—wo)GFg(G)}
PP = {a€ePy,|la+bg Py, forallbe d7(H) C Pk ).

6.1 The split case
If G is split over K, then

op={aec®|r—alr—mx)€Za+pgdforal fecd(#)CP}.

Theorem 6.1. Let G be a split reductive group over K, r a real number and x a rational point
of B(G,K). Let ¥ be the corresponding global Moy-Prasad filtration representation of the split
reductive group scheme S over Z (Theorem . Then

» Lie(2#)(Z) if  is an integer
T )] Dircomax V(A)  otherwise .
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Proof. If r is an integer, then we have by Theorem that ¥ ~ Lie(94)y(Z) = Lie(9%)(Z) =
Lie(7)(Z).

Suppose 7 is not an integer. Then ¥ C Lie(¥4)(Z) is spanned by X, = Lie(x,)(1) for a € @,
(Section [3.3.2). Thus the weights in ®'?* are the highest weights of the representation of 7 on

z,r

¥, and we have /g ~ @Aecbg“f;x V(N)g- In order to show that ¥ =~ GBAG‘I"%“,?" V(A), it suffices by
[Jan03, I1.8.3] to prove that {%(Z)(é\.’a)}a@gﬁx spans ¥, i.e. that (J(Z)(X,)) contains

aedpax
X, for all @ € @,,. Let a € ®,,\PP2*. Then there exists B € () such that o + 5 € P.

z,r

Let Nopg > 0 be the maximal integer such that o + Ny g8 € ®, and let Nojﬁ be the maximal
integer such that o — N;56 € ®. We claim that X, + N, gf € <%(Z)(Xa)>

Xo € (H(Z)(Xa))

acpmax implies that
which will imply the theorem by induction.

max ?
acdps

Suppose that X, + Ny g8 € <%”(Z)(Xa)> Note that No,g+ N, 5 € {1,2, 3}, and recall that

max *
acdPy

Na,ptN, g

2 p(W)(XaiN,ps) = D Mapitl Xay(n, p-ips With map; € {£1}, (6.1)
=0

for u € G4(Z). By varying u € G4(Z) and taking linear combinations, we conclude that X, is in
the Z-span of {H(Z)(Xa)}acomas. O

The following corollary follows immediately by combining Theorem [6.1] and Theorem [3.7]

Corollary 6.2. Let G be a split reductive group over K, v a real number and x a rational point of
B(G,K). Then the representation of G5 on Vy, is given by

v Lie(G,)(Fp) if v is an integer
&= @/\E‘bg‘,i" VO‘)FP otherwise .

Remark 6.3. Note that, if p is sufficiently large, then V()\)ﬁp is an irreducible representation of
G, of highest weight .

6.2 The general case
Let a € ®3'7* and let %y be the unipotent radical of Zy. By Frobenius reciprocity, we have
([Jan03, Proof of Lemma I1.2.13a)])

Hom - (V (a), Lie(@)(Z[1/N])) ~ Hom (Lie(g)(ZH/N])V,indg (—woa)>
~ Hom%; (Lie(%)(Z[l/N])v, —woa)
~ Hom,,_ (woa, Lie(4)(Z[1/N])) ~ ((Lie(g)@u/zv])%)a
Using these isomorpisms, the element Y, € ((Lie(%)(Z[l/N])%H) C Lie(9)(Z[1/N]) yields a

morphism V (a) — Lie(4)(Z[1/N]) of representations of . This morphism is an injection, and
we will identify V(a) with its image in Lie(4)(Z[1/N]).
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Theorem 6.4. Let G be a good reductive group over K, r a real number and x a rational point of

2N if & contains multipliable roots
r_
#(G, K). Let N _{ N otherwise .

Then
Yanmnn = 0 znwn + @ VNzu n € Lie(@)(Z[1/N) (6.2)
Aedmax

as representations of ‘%ﬂZ[l/N/]‘

Proof. The subspace 77,y C Lie(4)(Z[1/N"]) is spanned by #7 and Y, for a € ®,, (Section
. Thus, analogously to the argument in the proof of Theorem [6.1} it suffices to show that
<¢%”(Z[1/N'])(Ya),”1/T>ae<1)max contains Yy for all b € ®,,. Let a € &P\, ,, b € &, , with
a+be Py, and Nyyp > Ozy‘Ehe maximal integer such that a + N, b € ®, . We need to show that
YoiNuwb € (HLIL/ND(Ya) V1) yeqmex implies Yo € (H(Z[L/N')(Ya), ¥7) cqpox- We assume
Yain, b € (H(Z[1/N"))(Ya), 7/T>aeq>gl§:x and distinguish four cases. |

Case 1: aR # bR and b is not multipliable. In this case the result follows from the proof of

the split case (Theorem and Equation (3.11]) on page [28 and (3.12]) on page (if b is
non-divisible) or Equation (3.10]) on page [28| and Equation (3.12) (if b is divisible).

Case 2: aR = bR and b is not multipliable. In this case a = —(a + Ngpb), and the element
sp in the Weyl group of J# corresponding to reflection in direction of b sends Y4, ,» to
£V (a4 N, b = £Ya. Hence Yo € (H(Z[1/N'))(Ya), V1)

acPpax’

Case 3: aR # bR and b is multipliable. By taking Galois orbits over different connected component

and using Equation (3.9)) on page and Equation (3.12]) on page it suffices to consider
the case that Dyn(G) = Asg, with non-trivial Galois action. We label the simple roots of

by an,n_1,...,Q2,a1, 51, P2,...,06, as in Figure [I] on page Then b is the image of
a1 +...+ o, for some 1 < s <n, and, as (bY,a+ Ny pb) > 0, the root a + N, b is the image
of

—(@s41 + ...+ ag,) for some s < s; <n, or

gy + ...+ g for some 1 < s9 <'s, or

ar+...+as+P1+ ...+ B forsome 1 <s3 < sors<sz<n.

To simplify notation, we will prove the claim for the case that b is the image of oy and a+ N, b
is the image of —ay. All other cases work analogously. Combining Equation (3.9)) on page

Equation (3.12)) on page [30[and Equation (6.1)) on page and using that %ﬂi[l /v Preserves
the subspace ¥z, /) of Lie(¢)(Z[1/N']), we obtain that
1) Varwan) = (18 (VR a1 (= ()PS0 o, (—1)H 0N Vo))
(g, + (~)erNaahzmmoa 2y )

/ / 2
= Yoin, b+ Mgy \f?uYaHNa,rl)b + Mg 2 Yo (N, ,—2)b
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with mf,, 1, ml,,, € {#1}, for all u € G, (Z[1/N']). Since 2 | N, taking Z[1/N']-linear
combinations of Y1 v, .o +my, 1\/§UYa+(Na b—1)p 10 2U2Ya+(Na ,—2)p for different u implies
that Yoy (n,,—1p and Yoy (v, ,—2)p are contained in <%(Z[1/N’])(Ya),"//T>a€q>mx, so Y, €
(A Z[1/N'))(Ya), V)

max *
a’eq)z,r

Case 4: aR = bR and b is multipliable. Asin Case 3, we can restrict to the case that Dyn(G) = Aa,,
and we may assume that b is the image of a;. Then a+ N, b is the image of a; or the image of
ar1+061. If N;b denotes the largest integer such that a—N(;bb € ®,r, then Ya—Na_bb is conjugate
to £Yuy N, b under the Weyl group. Hence YG*NJ,bb € (H(Z[1/N"))(Ya), WT>ae¢m’(' If
a + Ng b is the image of oy, then N(;b = 0, and we are done. Thus, suppose that a + N, b
is the image of a1 + f;.

Recall that for a € ® and H, := Lie(&)(1), we have (|Conl4, Corollary 5.1.12])

K—a(u)(Xa) = Xy + 6a,o¢'UJH—oz - Ea,auzx—a
x-a(u)(H) = H + Lie(a)(H)uX_,

for all u € G,(Z[1/N']) and all H € Lie(.7)(Z[1/N']). Using these identities, we obtain

i —p (W) (YaiN, ) = (’C—ﬂl(\@U)x—al—ﬁl(—(—1)b(x‘x°)Mu2)?cfa1((—D“””Wﬂu))
(Xoé1+,31)
= Yayng b +ma1V2uYo (v, s+ H +mgsV2u Yo (v, -3y

Vi 4
FmMiga U Yoi (N, ,—4)bs

a,1)'"%a,
are ln <%(Z[]‘/N/])(Ya)7 %T>aeq)max7
Yot (N, ,—3) are contained in <%(Z[1/N’])(Ya), 7/T> n

max *
acdps

with my ,,mg 5 € {£1}, mg, € {£1,£3} and H € 7. As Yo (v, ,—ap = Yo N and H

and since 2 | N, we also obtain that Yor(n, -1 and

Corollary 6.5. Let G be a good reductive group, r ¢ ﬁZ a real number, and x a rational point
of B(G,K). Suppose that either p is odd or that ®x does not contain any multipliable root. Then

Vo= @ Vg,

Aedmax

Proof. If r ¢ ﬁZ, then ¥7 = {0}, and the claim follows by combining Theorem |6.4{ and Theorem
B.17
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