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CHAPTER 1

Introduction and statement of results

One of the highlights in algebraic topology was the invention of generalized homology and
cohomology theories by Whitehead and Brown in the 1960s. Prominent examples are real
and complex K-theories first given by Atiyah and Hirzebruch and bordism theories with
respect to different structure groups first given by Thom. By Brown’s representability
theorem every generalized cohomology theory can be represented by a spectrum and these
spectra are the center of interest in modern algebraic topology.

Bordism theories with respect to some structure group G, e.g. G = O, SO, U , SU , Sp,
and Spin are defined as follows: Let M be a smooth, closed, n-dimensional manifold and
G = {Gn} be a sequence of topological groups with maps Gn → Gn+1 compatible with
their orthogonal representations Gn → O(n).

Definition 1.1. A G-structure on M is a homotopy class of lifts ν̃ of the classifying map
of the stable normal bundle ν

BG

��

M
ν

//

ν̃
;;

BO

A manifold M together with a G-structure is called a G-manifold.

For each of the classical groups this gives us the G-bordism ring ΩG
∗ and a Thom spectrum

MG with ΩG
∗ = MG∗ = MG∗(pt) = π∗MG. Further we have a homology theory MG∗(−)

and a cohomology theory MG∗(−). Since we have inclusion maps on group level and since
the Thom construction is functorial we get the following tower:

MSU //

��

MSpin

��

MU // MSO

��

MO

On the level of homotopy one knows at least rationally that the coefficient groups are
polynomial rings and one asks for a decomposition on the level of spectra. In 1966
Andersen, Brown and Peterson gave an additive 2-local splitting of MSpin

MSpin(2) '
∨

n(J) even, 1/∈J

ko〈4n(J)〉 ∨
∨

n(J) odd, 1/∈J

ko〈4n(J) + 2〉 ∨
∨
i∈I

ΣdiHZ/2

with J = (i1, ..., ik) a finite sequence and n(J) = i1 + ... + ik. Bordism theories are mul-
tiplicative homology theories and their Thom spectra are ring spectra. Moreover they
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6 1. INTRODUCTION AND STATEMENT OF RESULTS

admit even richer structures called E∞ structures, i.e. not only the coherent diagrams of
commutativity and associativity commute up to homotopy but there are also diagrams
of higher coherence. These E∞ structures should be taken into account and therefore we
are interested in a splitting in the category of E∞ ring spectra.

Unfortunately this access raises several other difficulties. Analysing the above addi-
tive splitting of 2-local spin bordism by Anderson, Brown and Peterson, the Eilenberg-
MacLane part HZ/2 turns out to be a difficult problem. In this situation the modern
viewpoint is to apply chromatic homotopy theory and to look at the chromatic tower or
at certain monochromatic layers. In our case we consider localizations with respect to the
first Morava K-theory K(1). At p = 2 we have

LK(1)
∼= LSZ/2LK(2)

and the Eilenberg-MacLane part disappears. This is our approximation to bordism theo-
ries. Algebraically this access offers a lot of extra structure since π0E of a K(1)-local E∞
ring spectrum E admits a θ-algebra structure.

In [Lau01] Laures gives a K(1)-local splitting of E∞ spectra

MSpin ∼= Tζ ∧
∞∧
i=1

TS0

where T is the free functor left adjoint to the forgetful functor from E∞ spectra to spectra
and ∧ is the coproduct in the category of E∞ spectra with

∧
TS0 ∼= T (

∨
S0). Such a

splitting is also desireable for other bordism theories and a lot of different techniques are
involved to get such a splitting.

In this work we study K(1)-local SU bordism. A main result is detecting an E∞ summand
Tζ for a nontrivial element ζ ∈ π−1LK(1)S

0 ∼= Z2

TS−1

T∗
��

ζ
// S0

��

��

TD0 = S0 //

,,

Tζ

##

MSU

meaning that Tζ is the resulting E∞ spectrum when attaching a 0-cell along ζ. To this
end, we construct an Artin-Schreier class b ∈ KO0MSU satisfying ψ3b = b + 1 which
implies that ζ = 0 in π−1MSU .

Another important result is the construction of spherical classes in K∗MSU . Although
we do not have a complete splitting, comparison with the spin bordism case shows that
spherical classes play an important role: They correspond to free E∞ summands TS0.
In this work, we perform the construction of spherical classes via calculations of Adams
operations on K∗(CP∞ × CP∞) whose module generators map to the algebra generators
of K∗BSU . Later we can use Bott’s theory of cannibalistic classes to lift the Adams
operations to the level of Thom spectra.

Since the K-homology of CP∞ is isomorphic to the ring of numerical polynomials, we
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are able to provide an alternative calculation of the Adams operations on K∗CP∞ using
Mahler series expansion in p-adic analysis.
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Norman Schumann and Sieglinde Fernholz. I appreciate the financial support from the
DFG within the Graduiertenkolleg 1150 “Homotopy and Cohomology”.





CHAPTER 2

Some homotopical algebra

1. Generalized cohomology theories and spectra

In this section we want to recall the basic notations of generalized cohomology theories
and spectra as their representing objects. We will see the correspondence between them
and have a look at their fundamental properties. The relevant homotopy category is the
stable homotopy category.

Definition 2.1. A generalized cohomology theory E consists of a sequence {En}n∈Z of
contravariant homotopy functors

En : CWPairs→ AbGroups

together with natural transformations

δ : En(X)→ En+1(X,A)

satisfying the axioms

• Excision: The projection (X,A)→ X/A induces an isomorphism

Ẽn(X/A)→ En(X,A)

for all pairs (X,A).
• Exactness: The long sequence of abelian groups

...→ En(X,A)→ En(X)→ En(A)
δ→ En+1(X,A)→ ...

is exact for all pairs (X,A).
• Strong additivity: For every family of spaces {Xi}i∈I the natural map

En(
∐
i∈I

Xi)→
∏
i∈I

En(Xi)

is an isomorphism.

Proposition 2.1. Every generalized cohomology theory E enjoys the following properties:

(1) For a pointed topological space X there is a natural direct sum splitting

En(X) ∼= Ẽn(X)⊕ En(∗).
(2) For a family {Xi}i∈I of pointed topological spaces the map of reduced cohomology

groups

Ẽn(
∨
i∈I

Xi)→
∏
i∈I

Ẽn(Xi)

is an isomorphism.
(3) For a pointed topological space X we have natural isomorphisms

Ẽn(X)
∼=
δ

// En+1(CX,X) Ẽn+1(ΣX)
excision

∼=
oo

9



10 2. SOME HOMOTOPICAL ALGEBRA

(4) Mayer-Vietoris: For X = X1 ∪ X2 (open covering) we have the long exact
sequence

...→ En(X)
(i∗1,i

∗
2)
→ En(X1)⊕ En(X2)

j∗1−j∗2→ En(X1 ∩X2)
δ→ En+1(X)→ ...

(5) Milnor sequence: For a filtration X = colimXi we get a short exact sequence
with the derived limit

0→ lim 1En−1(Xi)→ En(X)→ limEn(Xi)→ 0

which detects phantom maps.

These cohomology functors are representable by a sequence of spaces and with the sus-
pension isomorphism we naturally get the following definition:

Definition 2.2. A spectrum X is a sequence of pointed topological spaces X0, X1, X2, ...
together with structure maps

σn : Xn ∧ S1 → Xn+1

or the adjoint map σ̃ : Xn → ΩXn+1 respectively. If σ̃ is a weak equivalence X is called
an Ω-spectrum.

By Brown’s representability theorem every generalized cohomology theory can be repre-
sented by an Ω-spectrum. On the other hand every spectrum defines a cohomology (and
homology) theory. It is worth mentioning that every spectrum can functorially be turned
into an Ω-spectrum. As an illustrative example, we define an Ω-spectrum for complex
K-theory.

Example 2.1. (K-theory) First of all we make use of Bott periodicity, i.e. there is a
homotopy equivalence Ω2BU ∼= Z×BU , and we define an Ω-spectrum K by setting

Kn =

{
Z×BU if n is even,

ΩBU if n is odd

with structure maps adjoint to

(σ̃ : Kn → ΩKn+1) =

{
the Bott equivalence Z×BU

∼=−→ Ω2BU if n is even,

the identification ΩBU
∼=−→ Ω(Z×BU) if n is odd.

This is called the complex topological K-theory spectrum. Its homotopy groups are

πnK =

{
π0(Z×BU) ∼= Z if n is even

π1BU = 0 if n is odd.

Example 2.2. (KO-theory) Similarly, we obtain the real topological K-theory spectrum
KO using real Bott periodicity, i.e.

Ω8BO ∼= Z×BO.

Its homotopy groups are given in the following table:

n mod 8 0 1 2 3 4 5 6 7
πnKO Z Z/2 Z/2 0 Z 0 0 0
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In the above examples we recalled the additive homotopy groups, but as we know there
is also a multiplicative structure. For example the coefficient rings of K and KO are
π∗K = Z[u±1] with the Bott element u ∈ π2K as invertible element and

π∗KO = Z[η, α, β±1]/(2η = 0, η3 = 0, ηα = 0, α2 = 4β).

Definition 2.3. A cohomology theory E∗ is called multiplicative if it is equipped with a
product

× : Ẽp(X)⊗ Ẽq(Y )→ Ẽp+q(X ∧ Y )

which is associative, graded commutative, unital and stable.

A multiplicative theory is realized by a ring spectrum, i.e. a spectrum E = (En)n together
with maps

µmn : Em ∧ En → Em+n and ηn : Sn → En
such that the following diagrams representing the properties associativity, commutativity,
unit and stability commute up to homotopy:

Ek ∧ Em ∧ En //

��

Ek+m ∧ En

��

Em ∧ En //

&&MMMMMMM
En ∧ Em

xxrrrrrrr

Ek ∧ Em+n
// Ek+m+n Em+n

Sn ∧ En

((RRRRRRRRRRR
// Em ∧ En

µ
��

Em ∧ Snoo

wwnnnnnnnnn
ΣSn //

��

ΣEn

��

Em+n Sn+1 // En+1

With these notations the product

× : Ẽp(X)⊗ Ẽq(Y )→ Ẽp+q(X ∧ Y )

of the multiplicative cohomology theory E∗ is given by

(f : X → Em , g : Y → En) 7→ (f ∧ g : X ∧ Y → Em ∧ En
µmn−→ Em+n).

Having the above notations for associativity and commutativity of ring spectra in mind,
one might think of higher coherence conditions (i.e. having a smash product of four or
more spaces we want to have commutativity up to homotopy when evaluating in different
order). This leads to the notion of an E∞ ring spectrum, which comes with an E∞
operad controlling the coherence. This is the sort of extra structure all our spectra
(bordism spectra, K-theory spectra, Eilenberg-MacLane spectra) have and in this world
our bordism splitting takes place. Another (in fact Quillen equivalent) model for E∞
spectra are symmetric spectra which come up in the next paragraph.

2. Symmetric spectra over topological spaces

There are a lot of highly structured ring spectra: E∞ spectra, S-algebras, symmetric
ring spectra and strict commutative ring spectra. They are all Quillen equivalent and
their homotopy category is the stable homotopy category. Therefore it does not matter
which model we use, but it gives a good feeling to have safe foundations. In this section
we consider sequential spectra over pointed topological spaces and refer to [HSS00],
[EKMM97] and [Sch08]. Let T∗ denote the category of pointed topological spaces.
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Definition 2.4. A symmetric spectrum X consists of

• a sequence X0, X1, ... ∈ T∗
• structure maps σ : Xn ∧ S1 → Xn+1

• symmetric operations Σn y Xn such that

σp : Xn ∧ Sp
σ∧Sp−1

// Xn+1 ∧ Sp−1 σ∧Sp−2
// ... σ

// Xn+p

are Σn × Σp-equivariant.

A map f : X → Y of symmetric spectra is a family of maps fn : Xn → Yn of Σn-
equivariant maps such that

Xn ∧ S1

fn∧S1

��

σ
// Xn+1

fn+1
��

Yn ∧ S1 σ
// Yn+1

commutes. This gives us the category of symmetric spectra SpΣ.

Example 2.3 (Suspension spectrum). For a pointed topological space X ∈ T∗ the sus-
pension spectrum Σ∞X is defined by (Σ∞X)n := X ∧ Sn and the structure map is given
by the identity morphism

X ∧ Sn ∧ S1 → X ∧ Sn+1.

Example 2.4 (Sphere spectrum). The sphere spectrum S = (S0, S1, S2, ...) is the suspen-
sion spectrum for K = S0.

Example 2.5 (Eilenberg-MacLane spectrum HZ). With S1 = ∆1/∂∆1 the n-sphere is
given a simplicial structure by Sn = S1 ∧ ... ∧ S1. Then let (Z⊗ Sn)k be the free abelian
group on the unpointed k-simplices of Sn. Define the Eilenberg-MacLane spectrum HZ by
(HZ)n := |Z⊗ Sn| to be the realization of the simplicial abelian group. HZn is a K(Z, n)
since for every simplicial abelian group πn|A| = HnA and here we have

πm|Z⊗ Sn| = HmZ⊗ Sn = HmC.S
n =

{
Z forn = m

0 forn 6= m

with C.S
n the singular chain complex. The action Σn y Sn = S1 ∧ ... ∧ S1 is given by

permuting the factors and the structure maps are induced by Sn ∧ S1 → Sn+1.

Example 2.6 (Unoriented bordism spectrumMO). The construction is given for bordism
theory with respect to the orthogonal group but generalizes to other groups in the obvious
way. Construct EO(n) := |k → O(n)k+1| as the realization of the simplicial complex. The
orthogonal group O(n) acts on this space by multiplication on the right. This gives us the
classifying space

BO(n) := EO(n)/O(n).

Take the associated bundle

ξn : EO(n)×O(n) Rn → EO(n)/O(n) = BO(n)

and define its Thom space

Thom(ξn) = Dξ/Sξ =
EO(n)×O(n) D

n

EO(n)×O(n) Sn−1
∼= EO(n)+ ∧O(n) (Dn/Sn−1).
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Since Dn/Sn−1 is O(n)-equivariantly isomorphic to R ∪ {∞} and O(n) acts on R ∪ {∞}
preserving {∞} we have an O(n)-action on Sn. Defining the nth space of MO to be
MOn := EO(n)+ ∧O(n) S

n, the Thom space of ξn gives a symmetric spectrum with sym-
metric operations Σn ⊂ O(n) coming from coordinate permutations.

Definition 2.5 (Symmetric sequences). A symmetric sequence consists of a sequence

X0, X1, ... ∈ T∗

and symmetric operations Σn y Xn. A map f : X → Y is a family of Σn-equivariant
maps fn : Xn → Yn. This category is denoted by TΣ

∗ .

For X, Y ∈ TΣ
∗ we can define their tensor product X ⊗ Y by

(X ⊗ Y )n :=
∨

p+q=n

(Σn)+ ∧Σp×Σq Xp ∧ Yq

with Σp × Σq-diagonal operation: for (g, h) ∈ Σp × Σq ⊂ Σn, α ∈ Σn let (α(g, h), x, y) ∼
(α, gx, hy) be equivalent. The so defined tensor product admits a unit U = (S0, ∗, ∗, ...)

(U ⊗X)n =
∨

p+q=n

(Σn)+ ∧Σp×Σq Up ∧Xq
∼= (Σn)+ΣnXn

∼= Xn,

hence U ⊗ X ∼= X. Furthermore the tensor product admits a twist isomorphism τ :
X ⊗ Y → Y ⊗X sending (α, x, y) to (αs, y, x) with

s(1, ..., q, q + 1, ..., q + p) = (p+ 1, ..., p+ q, 1, ..., p)

the (p, q)-shuffle.

Proposition 2.2. (TΣ
∗ ,⊗, τ) is a symmetric monoidal category.

In the following we want to define a smash-product in the category of symmetric spectra
SpΣ. Let S := (S0, S1, ...) be the symmetric sphere sequence.

Proposition 2.3. S is a commutative monoid in TΣ
∗ , i.e. there exist maps µ : S⊗S → S

and η : U → S such that

S ⊗ S

µ
##HHH

HHH
H

τ
// S ⊗ S

µ
{{vvv

vvv
v

S

commutes.

To get an idea where this multiplication map µ comes from, recall that

Hom∗
G(
∨

Xj, Y ) ∼=
∏

Hom∗
G(Xj, Y )

and for a subgroup H ⊂ G we have

Hom∗
G(G+ ∧H X, Y ) ∼= Hom∗

H(X, resGHY ).

Hence the map µ : S ⊗ S → S reduces to maps

µn :
∨

p+q=n

(Σn)+ ∧Σp×Σq S
p ∧ Sq → Sn

which restrict to µ̃n : Sp∧Sq → Sn when considering the Young-subgroups Σp×Σq ⊂ Σn.
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Definition 2.6 (Category of left S-modules). A left S-module is a symmetric sequence
X ∈ TΣ

∗ with a map S ⊗X → X such that

(S ⊗ S)⊗X

µ⊗id ''PPPPPPPP
// S ⊗ (S ⊗X)

id⊗m
// S ⊗X

m
{{vv

vv
vv

v

S ⊗X m
// X

commutes.

This gives us an equivalence of categories:

left S-modules X ∈ TΣ
∗ ←→ symmeric spectra X ∈ SpΣ

(S ⊗X)n
mn→ Xn Sp ∧Xq → Xp+q

Σp × Σq-equivariant

Definition 2.7 (Smash-Product). Let X,Y ∈ SpΣ ∼= left S-mod. Then

X ∧ Y := X ⊗S Y := coequalizer(X ⊗ S ⊗ Y
1X⊗mY

//

(mX◦τ)⊗1Y

// X ⊗ Y )

is a left S-module since (S ⊗−) preserves colimits.

Proposition 2.4. (SpΣ,∧) is a symmetric monoidal category.

3. Complex oriented theories and computational methods

Complex oriented theories are special generalized cohomology theories which have a big
advantage: They are computable. We briefly recall some basic results. Let E be a
multiplicative cohomology theory.

Definition 2.8. E is called complex orientable if there is a class x ∈ Ẽ2CP∞ mapping to
1 ∈ Ẽ0S0 under the map

Ẽ2CP∞ // Ẽ2CP1 ∼= Ẽ2S2
Σ−2

// Ẽ0S0

induced by the inclusion CP1 ↪→ CP∞. Any choice of x is a complex orientation of E.

Proposition 2.5. The map E∗[x]/(xn+1) → E∗(CPn) mapping x to x|CPn is an isomor-
phism.

Proof. The above map is well defined since one can cover CPn with open contractible
sets U0, ..., Un implying the existence of xi ∈ E2(CPn, Ui) with xi|CPn = x|CPn . Multiplying
all these

x0 · · ·xn ∈ E2(n+1)(CPn,
n⋃
i=0

Ui) = 0

shows that xn+1
|CPn = (x0 · · ·xn)|CPn = 0. Next we set up the Atiyah-Hirzebruch spectral

sequence

Ep,q
2 = Hp(CPn, Eq(pt))⇒ Ep+q(CPn);

with F p,q = ker(Ep+qX → Ep+qXp−1) and X = CPn we consider

F 2,0 = ker(E2CPn → E2(pt)) 3 x|CPn



4. BOUSFIELD LOCALIZATION OF SPECTRA 15

and look at the associated graded F 2,0/F 3,−1 ∼= E2,0
∞ ⊂ E2,0

2 . We have the map

E2,0
∞ = H2(CP1, E0(pt)) = E0(pt) · t

given by x|CPn 7→ t. By multiplicativity the spectral sequence collapses and we have the
following isomorphism of graded rings

E∗(CPn) ∼= E∗[x|CPn ]/(xn+1
|CPn).

�

Corollary 2.1. E∗CP∞ ∼= E∗[[x]].

Corollary 2.2. E∗(CP∞ × ...× CP∞) ∼= E∗[[x1, ..., xn]].

Theorem 2.1. Let E be a complex oriented cohomology theory, X a space and ξ → X a
complex vector bundle. Then there exists a unique system of cohomology classes ci(ξ) ∈
Ẽ2i(X) with the following properties:

• (normalization) For the tautological bundle λ∗ → CP∞ we have c1(λ
∗) = x.

• (naturality) For all maps f : X → Y we have f ∗ci(ξ) = ci(f
∗ξ).

• (Cartan formula) For the total Chern class c = 1+c1 +c2 + ... we have c(ξ⊕η) =
c(ξ)c(η).

Lemma 2.1. Let E be a complex oriented theory with a complex orientation x ∈ E2CP∞:

(1) E∗CP∞ ∼= E∗[[x]] the power series ring in x over E∗.
(2) E∗(CP∞ × CP∞) = E∗CP∞⊗̂E∗E∗CP∞.
(3) E∗CP∞ is a free E∗ module with generators βi ∈ E2iCP∞, i ≥ 0 dual to xi, i.e.
〈xi, βj〉 = δij.

(4) E∗(CP∞ × CP∞) = E∗CP∞ ⊗E∗ E∗CP∞.
(5) The diagonal CP∞ → CP∞×CP∞ induces a coproduct ψ on E∗CP∞ with ψ(βn) =∑

i+j=n βi ⊗ βj.

4. Bousfield localization of spectra

Bousfield localization theory is an analogue and a generalization of arithmetic localization
theory in algebra. While arithmetic localization takes place for example in the category
of rings and is done with respect to some prime ideals, Bousfield localization theory
takes place in the stable homotopy category SHC and can be done with respect to any
generalized homology theory E∗ (represented by the spectrum E).

Definition 2.9. A map of spectra f : X → Y is called an E-equivalence if it induces an

isomorphism f∗ : E∗X
∼=→ E∗Y in E∗-homology. With this a spectrum Z is called E-local

if it has the E-extension property for every E-equivalence f : X → Y :

X //

f
��

Z

Y
∃!

==

Equivalently Z is E-local if the functor [−, Z] takes E-equivalences to isomorphisms.

Definition 2.10. We call γE(X) : X → XE an E-localization if

(1) γE is an E-equivalence
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(2) XE is E-local.

Remark 2.1. This definition is equivalent to the definition given by Bousfield [Bou79]
and Ravenel [Rav84]: A spectrum Y is E-local if for each E-acyclic spectrum X (i.e.
E∗X = 0) follows : [X, Y ] = 0. The reason is that a map f : X → Y gives the cofiber
sequence

X
f→ Y → Z = cofiber(f)

and a long exact sequence

...→ [Z, T ]→ [Y, T ]→ [X,T ]→ ...

i.e. having [X,T ] = 0 for an E-acyclic X we get isomorphisms [Z, T ]
∼=→ [Y, T ] and thus

a lift Z → T (and vice versa).

It follows directly from the definition that γE(X) (if it exists) is unique up to isomorphism.
The existence is given via

Theorem 2.2 (Bousfield). With the above notation we have

(1) γE(X) always exists
(2) γE(X) assembles an idempotent functor

LE : SHC → SHCE-local objects

(3) LE is (up to equivalence) the categorical localization of SHC with respect to E-
equivalences, i.e. given a functor SHC → D such that E-equivalences are inverted
we get the commutative diagram

SHC
E-equiv. inv.

//

��

D

LESHC
∃!

66

Collecting results from [Bou79], [EKMM97] and [Lau01] we formulate an overview
theorem:

Theorem 2.3. The localization functor LE has the following properties:

(1) it is idempotent, i.e. LELE = LE
(2) if W → X → Y is a cofiber sequence, so is LEW → LEX → LEY
(3) the homotopy inverse limit of E-local spectra is E-local
(4) if E is a ring spectrum and X is a E-module spectrum then X is E-local
(5) the localization functor LE can be chosen to preserve E∞-structures
(6) at p = 2 we have LK(1) = LSZ/2LK(2)

Next we introduce the so-called Bousfield classes which compare the localization functors.

Definition 2.11 (Bousfield classes). For spectra E and F we say E ≥ F if f : X
∼E→ Y

implies f : X
∼F→ Y . This defines an equivalence relation by

E ∼ F if E ≥ F and F ≥ E.

The equivalence class 〈E〉 is called the Bousfield class of E.
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Note that the relation E ≥ F gives a canonical factorization:

LESHC

∃!
��

SHC //

55lllllllllll
LFSHC

Example 2.7 (p-localization). For the Moore spectrum E = MZ(p) (i.e. E is connected
π<0E = 0 and the only non-vanishing homology is in degree zero H0(E) ∼= Z(p)) we have

(MZ(p))∗X ∼= π∗X ⊗ Z(p),

and MZ(p)-localization is realized by

X 7→ X ∧MZ(p),

which we also call p-localization due to its effect in homotopy.

Example 2.8 (rationalization). Similarly we have

MQ∗(X) = π∗(X)⊗Q
and rationalization is given by

X 7→ X ∧MQ.
In particular LQS = MQ.

Definition 2.12 (smashing spectrum). If LEX = X ∧ LES, the spectrum E is called
smashing.

We have seen that the above Moore spectra are smahing and will for reasons of notation
denote the rationalization of a spectrum X by XQ and the p-localization by X(p). With
these notations we have a local-global arithmetic square analogy.

Proposition 2.6 (arithmetic square). Let X be a finite spectrum, then

X

∏
p LZ(p)

//

LQ
��

∏
pX(p)

LQ
��

XQ
LQ(

∏
p LZ(p)

)
// (
∏

pX(p))Q

is a homotopy pullback square.

4.1. K-theoretic localization of spectra. Following section 8 of [Rav84] we have

Theorem 2.4. Let K and KO be the spectra representing complex and real K-theory,
respectively. Then K ∧X = pt if and only if KO∧X = pt, so LK and LKO represent the
same functors and we have the same Bousfield classes 〈K〉 = 〈KO〉.

Proof. Consider CP2 = S2∪η e4 with the Hopf map η : S3 → S2 being the attaching
map of e4. Let us denote by S0 ∪η e2 the suspension spectrum with CP2 being the second
suspension. Due to Adams we have

KU = KO ∧ CP2.

Hence having the cofiber sequence

S3 η→ S2 → CP2
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we get by smashing with KO

Σ3KO
Σ2ηst

−→ Σ2KO → KO ∧ CP2 = Σ2KU

and get by applying Σ−2 in the stable homotopy category the famous cofiber sequence

ΣKO
η→ KO → KU.

Looking at this sequence KO ∧X = pt implies K ∧X = pt and conversely if K ∧X = pt
then η induces an automorphism of KO∗X. But since η is nilpotent (η4 = 0) we have
KO∗X = 0. �

5. Algebraic manipulations of spectra

When working with ring spectra algebraically one often looks at them as algebraic rings.
And as the study of rings is often simplified by passage to its quotients and localizations
one also wants to transfer these techniques to ring spectra. As in [HS98] we want to
recall the construction of quotients and localizations. Suppose that E is a ring spectrum
and that π∗E = R is commutative. Given x ∈ R, define the spectrum E/(x) by the
cofibration

Σ|x|E
x·→ E → E/(x).

If x is a non-zero divisor then π∗E/(x) is isomorphic to the ring R/(x) and in ”good”
cases E/(x) is a ring spectrum and the map E → E/(x) is a map of ring spectra. Such
a ”good” situation is given if one has a regular sequence {x1, x2, ..., xn, ...} ⊂ R in which
one can iterate the above situation and form a ring spectrum E/(x1, x2, ..., xn, ...) with

π∗E/(x1, x2, ..., xn, ...) ∼= R/(x1, x2, ..., xn, ...)

such that the natural map

E → E/(x1, x2, ..., xn, ...)

is a map of ring spectra. Considering the case of localizations, suppose that S ⊂ R is a
closed subset. Since S−1R is a flat R-module, the functor

S−1R⊗R E∗(−)

is a homology theory denoted by S−1E. In ”good” cases it is represented by a ring
spectrum, and the localization can be described by a map of ring spectra

E → S−1E.

Now we want to apply the above constructions to the Brown-Peterson spectrum BP
(confer [Rav84]). In this case everything is ”good” and all the constructions can be
made. Recall that

BP∗ ∼= Z(p)[v1, ..., vn, ...] with |vn| = 2pn − 2.

For 0 < n < ∞ the Morava K-theory ring spectra K(n) and the Johnson-Wilson ring
spectra E(n) are defined by the isomorphisms

K(n)∗ ∼= Fp[vn, v−1
n ]

E(n)∗ ∼= Z(p)[v1, ..., vn, v
−1
n ]

with the understanding that they are constructed from BP using a combination of the
above methods.
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5.1. The chromatic framework. In the following paragraph we want to describe
the chromatic framework which gives us the motivation for K(1)-localization.

Theorem 2.5 (chromatic convergence theorem). Let p be a fixed prime and denote lo-
calization with respect to the Johnson-Wilson theories E(n)∗ (n ≥ 0) by Ln. Then there
are natural maps LnX → Ln−1X for all spectra X, and if X is a p-local finite spectrum,
then the natural map

X → holimLnX

is a weak equivalence.

Recall from of [Rav84, p. 361] that the spectra E(n) and K(0) ∨K(1) ∨ ... ∨K(n) have
the same Bousfield classes. As said above there are natural transformations Ln → Ln−1

and compatible transformations 1→ Ln giving the so-called chromatic tower

...

��

L2S

��

L1S

��

S //

77oooooooooooo

??����������������

EE
























L0S

Looking at the tower we are interested in the difference between Ln and Ln−1. On the
one hand the fiber Mn of the transformation Ln → Ln−1 is known as the monochromatic
layer, and on the other hand the difference of Ln and Ln−1 is measured by the functor
LK(n), which is localization with respect to the nth Morava K-theory. From [HG94] we
cite that there are natural equivalences

LK(n)MnF ∼= LK(n)F and MnLK(n)F ∼= MnF,

so the homotopy types of LK(n)F and MnF determine each other.

Theorem 2.6 (arithmetic square). Let K(n)∗ denote the nth Morava K-theory. There is
a natural commutative diagram

LnX

��

// LK(n)X

��

Ln−1X // Ln−1LK(n)X

which for any spectrum X is a homotopy pullback square.

Informally one might say that, having a p-local spectrum X, the basic building blocks for
the homotopy type of X are the Morava K-theory localizations LK(n)X. Comparing the
stable homotopy category with the integers in arithmetic, it is the localization functors
LK(n) which take over the role of the primes.



20 2. SOME HOMOTOPICAL ALGEBRA

6. A resolution of the K(1)-local sphere

In this section we are going to introduce a very useful K(1)-local fiber sequence which
comes up from the resolution of the K(1)-local sphere and which will help us constructing
an Artin-Schreier class and in the construction of spherical classes. Although we only
need this special fiber sequence, we will sketch quite briefly also the general setup for
the resolution of the K(n)-local sphere, which will give us some motivation for all that
stuff: It is the theory of formal group laws which is the starting point. We refer to
[Re97]: Having the Honda formal group law of height n – which is characterized by its
p-series [p]Γn(x) = xp

n
– we apply the theory of Lubin-Tate deformation theories which is

Landweber exact and gives homology theories called Morava E-theories En. Considering
the automorphisms Aut(Γn) of the Honda formal group law Γn (also known as the Morava
stabilizer group Sn) one considers the group

Gn = Aut(Γn) o Gal(Fpn/Fp)

which gives a group action on En∗. The Hopkins-Miller theorem states that Sn gives an
action on the spectrum En itself, and the Adams-Novikov spectral sequence

Es,t
2 := Hs(Sn, (En)t)Gal(Fpn/Fp) ⇒ πt−sLK(n)S

0

provides computational methods for calculating the homotopy groups of the K(n)-local
sphere.

6.1. The case n = 1. For n = 1 the Honda formal group law Γ1 coincides with the
multiplicative formal group law Gm(x, y) = x+ y+ xy = (1 + x)(1 + y)− 1 because their
p-series coincide modulo p

[p]Gm(x) = (1 + x)p − 1 ≡ xp = [p]Γ1(x).

In our p-local setting we have Aut(Gm) ∼= Z×
p and thus we have

G1 = S1
∼= Z×

p ,

where G1
∼= Zp × Cp−1 for p odd and G1

∼= Z2 × C2 for p = 2. Following [GHMR] there
is a short exact sequence of continuous G1-modules

0→ Zp[[G1/F ]]→ Zp[[G1/F ]]→ Zp → 0

where F is the maximal finite subgroup of G1. These resolutions of the trivial module are
analogues of the fibrations

LK(1)S
0 ∼= EhG1

1 → EhF
1 → EhF

1

with the notation meaning the homotopy fixed point spectra with respect to the given
group. We note that p-adic complex K-theory KZp is a model for E1 and the homotopy

fixed point spectrum EhC2
1 can be identified with 2-adic real K-theory KOZ2. Since every

p-adic unit k ∈ Z×
p gives an Adams operation ψk and vice versa, and for example 3 is a

topolocal generator for Z×
2 /{±1}, we can write

LK(1)S
0 → KOZ2

ψ3−1→ KOZ2.

This is a resolution of the K(1)-local sphere – and the K(1)-local sphere is the fiber of
the Adams operation ψ3 − 1. Hence this is our desired fiber sequence.
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Remark 2.2. At this point we want to point out that the profinite group G1/F ∼= Zp

has the pro-group ring Zp[[G1/F ]] which is isomorphic to the power series ring Λ = Zp[[T ]]
called the Iwasawa algebra. The Iwasawa algebra plays an important role in number theory
when studying Zp-extensions of number fields and has been studied by many people for
a long time. We refer to [Wa97] for number theoretic properties and to [HM07] for the
interpretation for K(1)-local spectra. In [HM07] the resolution of the K(1)-local sphere
is stated as

S0 → KO
T→ KO.

for p = 2. Maybe more topology could be deduced from the analysis of the Iwasawa
algebra.

7. Thom isomorphism

Having a complex vector bundle ξ : E → X with X compact Hausdorff one can construct
the Thom space Th(ξ) = D(ξ)/S(ξ). If the bundle ξ admits a Thom class τ ∈ K̃∗(Th(ξ))
we get an isomorphism of modules

K∗(X)
∼=→ K̃∗(Th(ξ))

called the Thom isomorphism. K̃∗(Th(ξ)) is the free K∗(X)-module with single basis
element the Thom class τ ∈ K̃∗(Th(ξ)).

7.1. Generalization. Let E∗ be a generalized multiplicative cohomology theory.

Definition 2.13. A class τ ∈ E∗(D(ξ), S(ξ)) is said to be a Thom class for ξ if for every
x ∈ X the restriction of τ to E∗(D(ξx), S(ξx)) is an E∗(pt)-module generator.

Having a Thom class τ ∈ Ed(D(ξ), S(ξ)) the homotopy equivalence p : D(ξ) → X

inducing an isomorphism p∗ : E∗(X)
∼=→ E∗(D(ξ)) leads us to the definition of the Thom

isomorphism

E∗(X)→ E∗+d(D(ξ), S(ξ)) ∼= Ẽ∗+d(Th(ξ))

by applying the cup product and mapping

α 7→ p∗(α) ∪ τ.
This gives an isomorphism of graded modules over E∗(pt).

Remark 2.3. For a trivial bundle of dimension 1 the Thom isomorphism reduces to the
suspension isomorphism.

To prove the Thom isomorphism for compact X one proceeds by induction over the open
sets in a trivialization of ξ using the suspension isomorphism as the starting case and the
Mayer-Vietoris sequence to carry out the inductive step.

Remark 2.4. There is also a homology Thom isomorphism

Ẽ∗+d(Th(ξ))
∼=→ E∗(X),

using the cap product with the Thom class

∩ : Ẽ∗+d(Th(ξ))× Ẽd(Th(ξ))→ E∗(X)

instead of the cup product.
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7.2. Strong form of the Thom isomorphism. Following along the lines of [MR81]
one can state a strong form of the Thom isomorphism theorem. In this context we assume
given a stable spherical fibration ν : X → BF over a locally finite CW complex X, and a
ring spectrum E orienting ν, i.e. a Thom class τ : Th(ν)→ E whose restriction to a fiber
S0 ↪→ Th(ν) is the unit of E.

Theorem 2.7 (Mahowald, Ray). There is a homotopy equivalence

α(τ) : E ∧ Th(ν)→ E ∧X+

which on homotopy groups induces the traditional Thom isomorphism

φτ : E∗(Th(ν)) = π∗(E ∧ Th(ν))
α(τ)∗→ π∗(E ∧X+) = E∗(X+).

Proof. First suppose that X has finite dimension, so that ν lifts to νn : X → BFn
for suitably large n. Let pn : S(νn) → X be the associated n-sphere fibration, so that
Th(νn) = X ∪pn CS(νn). Now we define the Thom diagonal

∆ : Th(νn)→ Th(νn) ∧X+

to be

∆(x) =

{
(x, pn(x)) for x 6=∞
∞ for x =∞

and consider the composite

α(τ) : E ∧ Th(νn)
id∧∆→ E ∧ Th(νn) ∧X+

id∧τ∧id→ E ∧ Σn+1E ∧X+
µ∧id→ E ∧ Σn+1X+

where µ is the product in E. On homotopy groups this map induces a homomorphism

φτ : E∗+n+1(Th(νn))→ E∗(X+)

which is the usual homology Thom isomorphism, i.e. cap product with τ . �

The above theorem suffices for our purposes, i.e. we haveK∗MU ∼= K∗BU andK∗MSU ∼=
K∗BSU .

Example 2.9. To define the Thom isomorphism Φ : K∗MU → K∗BU we use the Thom
diagonal

MU
∆→ BU ∧MU,

and choose a Thom class MU
τ→ K. Thus we define the Thom isomorphism: An element

f ∈ KnMU represented by Sn
f→MU ∧K is mapped to Φf , more explicitly

Sn
f→MU ∧K ∆∧1−→ BU ∧MU ∧K BU∧τ∧1−→ BU ∧K ∧K BU∧µ−→ BU ∧K.



CHAPTER 3

The algebraic structure of K(1)-local E∞ ring spectra

The following chapter is about an algebraic extra structure which comes up as the homo-
topy of K(1)-local E∞ ring spectra: The so-called θ-algebra structure. In the beginning
we briefly recall the geometric objects: An E∞ ring spectrum is a ring spectrum X with
an E∞ operad E = {E(n)} acting on X. An operad is called E∞ if E(n) ' ∗ for all n
and E(n) has an free action of the symmetric group Σn. The functor being left-adjoint
to the forgetful functor

E∞spectra→ spectra

is the free algebra functor TX =
∨
TnX with

TnX = E(n) ∧Σn X
∧n

where Σn acts on X∧n by permuting the factors.

1. Operads

Historically one can think of loop spaces as monoids up to higher homotopy. A monoid
structure on a set S is a family of maps M(k) : Sk → S (one map M(k) for each k) with
M(1) = id and {M(k)} closed under multivariable composition.

Example 3.1. To think of a loop space as a monoid up to higher homotopy is the follow-
ing: Take S = ΩZ for a based space Z and the composition of loops Mr : (ΩZ)2 → ΩZ
for r ∈ (0, 1) and define

M(k) = {(ΩZ)k → ΩZ};
then M(k) ∼= A(k) is the set of k closed intervals in [0, 1] with disjoint interiors being as
a subset of R2n contractible.

Proposition 3.1. For a loop space Y = ΩZ there exists a sequence of subspaces M(k) ⊂
Map(Y k, Y ) such that

(1) M(1) 3 id
(2) M = {M(k)}k≥0 is closed under multivariable composition
(3) each M(k) is contractible

Theorem 3.1 (Converse theorem). For any connected Y satisfying the above three con-
ditions there exists a space Z with Y = ΩZ.

This leads us to a provisional definition:

Definition 3.1. A non-symmetric operad O is a collection of subspaces O(k) ⊂Map(Y k, Y )
such that

(1) O(1) 3 idY
(2) O is closed under multivariable composition

Example 3.2. A = {A(k)}k≥0 little intervals non-symmetric operad

23
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Example 3.3. End(Y ) = {Map(Y k, Y )}k≥0 endomorphism operad

Definition 3.2. An A∞ operad is a non-symmetric operad with O(k) ' ∗ (associativity
up to higher homotopy)

Definition 3.3. An E∞ operad has also a permutation action Σk y O(k) (commutativity
up to higher homotopy)

Next we want to give a definition of an operad in modern language. Let (C,∧, S) be a
symmetric monoidal category.

Definition 3.4. An operad C in C is a monoid in (CΣ, ◦, U)

This gives us the category of operads in C. Notation: operC = O. Now we want to recall
the notion of the composition product: For X, Y ∈ CΣ define X ◦ Y by

(X ◦ Y )n :=
∨
k≥0

Xk ∧Σk
(Y ⊗k)n.

Then X ∈ CΣ gives a functor X : C→ C by X(A) :=
∨
n≥0Xn ∧Σn A

∧n. This gives us for

X, Y ∈ CΣ, A ∈ C the identity

(X ◦ Y )(A) ∼= X(Y (A)).

Remark 3.1. For C ∈ C the functor C : C→ C, X 7→
∨
n≥0Cn ∧Σn X

⊗n is a triple on C

(or monad), i.e. a monoid on (Fun(C,C), ◦).

Definition 3.5. For T a triple on C, a T -algebra X is an object X in C together with a
map ω : T (X)→ X such that

T (T (X))
Tω

//

∼=
��

T (X)

ω

��

X

=

��
33

33
33

33
33

33
33

3

εX
// T (X)

ω

��

(T ◦ T )(X)

µ
��

T (X)
ω

// X X

A map X
f→ Y is a T -algebra map if

T (X)
Tf

//

��

T (Y )

��

X
f

// Y

This gives us the category of T -algebras AlgT .

Example 3.4. Let C = (AbGr,⊗) and R a monoid in C (i.e. a ring R ∈ AbGr,
µ : R⊗ZR→ R the multiplication map and ε : Z→ R the unit) with T : AbGr→ AbGr,
A 7→ R⊗ A. Then

T ◦ T → T :⇔ R⊗R⊗ A︸ ︷︷ ︸
=T 2(A)

µ⊗A→ R⊗ A︸ ︷︷ ︸
T (A)

id→ T :⇔ A ∼= Z⊗ A→ R⊗ A = T (A).



2. DYER-LASHOF OPERATIONS FOR K(1)-LOCAL E∞ SPECTRA 25

Hence T is a triple: T ∈ Fun(AbGr,AbGr), T 2 → T , id→ T . We now conclude what
the T -algebras are: Take X ∈ AlgT , T (X)→ X, i.e. R⊗X → X implying

AlgT ' R−mod.

Example 3.5. Take C ∈ O in T∗ with Cn = S0. For X ∈ AlgC, C(X)→ X and∨
n≥0

Cn ∧Σn X
n → X,

i.e.
S0 ∧Σn X

n → X
1:1↔ X∧n/Σn → X

Hence AlgC are commutative monoids in (T∗,∧).

Example 3.6. Cn = S0 ∈ SpΣ, C ∈ (SpΣ)Σ gives AlgC = commutative ring spectra.

2. Dyer-Lashof operations for K(1)-local E∞ spectra

An E∞ structure ξ on E determines power operations

Pn : E0X → E0TnX

by setting

Pn(x) : TnX → TX
Tx→ TE

Tξ→ E

for each x ∈ E0X. For X = S0 and n = 2 this gives a map

P2(x) : T2S
0 ' BΣ2+ → E

for each x ∈ π0E. The classifying space BΣ2+ reduces to two copies of S0 in theK(1)-local
world

Lemma 3.1 (Hopkins). The map

BΣ2+
(ε,T r)−→ S0 × S0

is a weak equivalence in the category of E∞ ring spectra. Here ε is induced by Σ2 → {e}
and Tr : BΣ2+ → S0 is the transfer map.

As in [Hop98] and [Lau03] one defines maps

θ, ψ : S0 → BΣ2+

by requiring that the compositions in π0S
0 ∼= Z are

Tr ◦ θ = −1 Tr ◦ ψ = 0
ε ◦ θ = 0 ε ◦ ψ = 1

The map B{e} → BΣ2 gives rise to a map

e : S0 ' B{e}+ → BΣ2+

and by the definition we have

ε ◦ e = 1 : S0 e→ BΣ2+
ε→ S0

and by [Hop98] Tr◦e = 2. Because of ε◦e = e◦ψ−2ε◦θ = 1 and Tr◦e = Tr◦ψ−2Tr◦θ =
2 it follows that e = ψ − 2θ. With θ(x) = P2(x)θ and ψ(x) = P2(x)ψ, the last equation
gives

ψ(x)− 2θ(x) = P2(x)e = x2.
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We refer to [Lau03, pp. 993-994] and state without proof:

Proposition 3.2. The operation θ turns π0E into a θ-algebra.

We briefly recall the properties of a θ-algebra.

Definition 3.6. A θ-algebra over a ring R with unit is a commutative algebra A over R
together with a function θ : A→ A such that:

• θ(1) = 0
• θ(a+ b) = θ(a) + θ(b)− ab
• θ(ab) = θ(a)b2 + a2θ(b) + 2θ(a)θ(b)

A morphism of θ-algebras is an algebra homomorphism compatible with the θ-operation.

Proposition 3.3. ψ(x) = x2 + 2θ(x) is a ring homomorphism and commutes with θ.

Proof.

ψ(a+ b) = (a+ b)2 + 2θ(a+ b) = 2(θ(a) + θ(b)− ab) + (a+ b)2

= ψ(a) + ψ(b)

ψ(ab) = a2b2 + 2θ(ab) = a2b2 + 2(θ(a)b2 + a2θ(b) + 2θ(a)θ(b)

= (a2 + 2θ(a))(b2 + 2θ(b)) = ψ(a)ψ(b)

θψ(a) = θ(a2 + 2θ(a)) = θ(a2) + θ(2θ(a))− 2a2θ(a)

= 2θ(a)a2 + 2θ(a)2 − θ(a)2 + 2θ2(a)− 2a2θ(a)

= θ(a)2 + 2θ2(a) = ψθ(a)

�

Example 3.7. The 2-adic integers Z2 are a θ-algebra with θ(x) = x−x2

2
and ψ(x) = x.

Similarly the ring of continuous functions on the 2-adics C = T(Z2,Z2) is a θ-algebra with
ψ(f) = f .

Remark 3.2. There is no example of a θ-algebra in characteristic 2, since for (a, b) =
(1, 0) we get θ(0) = 0 and for (a, b) = (1, 1) we get θ(0) = θ(2) = 1.

3. The θ-algebra structure of π0K ∧MU

Let g(x) =
∑∞

i=0 bix
i with b0 = 1 be an invertible power series with coefficients in the

polynomial ring π0K ∧MU ∼= Z2[b1, b2, ...].

Theorem 3.2 (Laures). The θ-algebra structure of π0K ∧ MU is determined by the
equation ∑

i≥0

ψ(bi)x
i =

g(1 +
√

1− x)g(1−
√

1− x)
g(2)

.

Equivalently one has to show the identity∑
i≥0

ψ(bi)x
i(2− x)i = ψ(g(x)) =

g(x)g(2− x)
g(2)

.
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Transforming the last equality yields

ψg(x) = g(2)−1
∑
i≥0

( i∑
k=0

bi−k(−1)k
∑
n≥k

bn

(
n

k

)
2n−k

)
xi

=

(∑
i≥0

( i∑
k=0

bi−k(−1)k
∑
n≥k

bn

(
n

k

)
2n−k

)
xi

)(∑
n≥0

(−1)n
(∑
i≥1

bi2
i
)n)

.

Although it is inviting to reduce modulo 2,

ψ(
∑
i≥0

bix
i) ≡

∑
i≥0

( i∑
k=0

bkbi−k
)
xi mod 2

because of ψ(x) = x2 + 2θ(x) one has to reduce modulo 4 to get

Corollary 3.1 (Laures). In π0K ∧MU we have the following formula modulo 2:

θ(br) ≡ (1 + b1)b
2
r +

r∑
i=0

bi(b2r−i + b2r−i+1).

In particular, modulo 2 and decomposables we have (for r > 0)

θ(br) ≡ b2r + b2r+1.

Proof. Since π0K∧MU is torsion-free and 2θ(x) = ψ(x)−x2, it is enough to compute
the action of ψ on the generators. Let

Dk :=
dk

k!dxk
|x=0

be the normalized kth derivative evaluated at 0. Then we get modulo 4

D2rψ(g(x)) ≡ D2r

(∑
i≥0

( i∑
k=0

bi−k(−1)k(bk + 2(k + 1)bk+1)
)
xi

)
(1 + 2b1)

≡ (1 + 2b1)
2r∑
k=0

b2r−k(−1)k(bk + 2(k + 1)bk+1)

≡ (1 + 2b1)

( ∑
i+j=2r

(−1)jbibj + 2
∑

i+j−1=2r

jbibj

)
On the other hand we have modulo 4

D2rψ(g(x)) ≡
∑
i≥0

D2rψ(bi)ψ(xi) =
∑
i≥0

ψ(bi)D2rx
i(2− x)i

≡ (−1)rψ(br)

since

D2rx
i(2− x)i = D2rx

i
∑
j+k=i

2j
(
i

j

)
(−x)k ≡ D2rx

i
(
(−x)i + 2i(−x)i−1

)
=

{
(−1)r for i = r

0 else
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Hence

(−1)rψ(br) = D2rψ(g(x)) = (1 + 2b1)

( ∑
i+j=2r

(−1)jbibj + 2
∑

i+j−1=2r

jbibj

)
.

With ψ(br) = 2θ(br) + b2r we have modulo 4

(−1)r(2θ(br) + b2r) = (1 + 2b1)

(
r∑
i=0

2(−1)ibibj − (−1)rb2r + 2
∑

i+j−1=2r

jbibj

)

and by division by 2 and consideration modulo 2 we conclude

θ(br) = (1 + b1)b
2
r +

r∑
i=0

bi(b2r−i + b2r−i+1).

�

Some further calculations give the following results:

Corollary 3.2. In π0K ∧MU we have the formula modulo 4

θ(br) = (−1 + b1 + 2b2 + 2b21)b
2
r + (1 + 2b1)

r∑
k=0

(−1)r−kbk ×

(b2r−k + (2r + 1− 2k)b2r−k+1 + (2r + 2 + 2k2)b2r−k+2)

In particular we have modulo 4 and decomposables θ(br) = 0 for all r.

Corollary 3.3. In π0K ∧MU we have the formula modulo 16

(−1)r
[
ψ(br)− 4

(
r + 1

2

)
ψ(br+1)

]
= (1− 2b1 − 4b2 − 8b3 + 4b21 − 8b31)

×
2r∑
k=0

b2r−k(−1)k
(
bk + 2

(
k + 1

1

)
bk+1 + 4

(
k + 2

2

)
bk+2 + 8

(
k + 3

3

)
bk+3

)
This gives us the θ-algebra structure since we have modulo 16:

ψ(br) ≡
[
ψ(br)− 4

(
r + 1

2

)
ψ(br+1)

]
+ 4

(
r + 1

2

)[
ψ(br+1)− 4

(
r + 2

2

)
ψ(br+2)

]
and ψ(x) = x2+2θ(x). The θ-algebra structure modulo 2n for all n gives a unique integral
θ-structure since Z2

∼= limn Z/2n.

Corollary 3.4. An easy calculation shows

D2rx
i(2− x)i = (−1)i4i−r

(
i

2i− 2r

)
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This leads to

D2rψ(g(x)) = g(2)−1

2r∑
k=0

b2r−k(−1)k
∑
n≥k

bn

(
n

k

)
2n−k

=
∑
i≥0

ψ(bi)(−1)i4i−r
(

i

2i− 2r

)

=
2r∑
i=r

ψ(bi)(−1)i4i−r
(

i

2i− 2r

)
4. The θ-algebra structure of π0K ∧MSU

We state the θ-algebra structure of π0K ∧MSU as it is given in [Lau03, p. 1011 ff]. Let

f : CP∞+ ∧ CP∞+ → BSU+ → K ∧BSU+

be the map which classifies (1− L1)(1− L2) and f(x, y) =
∑

i,j aijx
iyj be the associated

power series.

Theorem 3.3 (Laures). The θ-algebra structure of π0(K ∧MSU+) is determined by the
identity ∑

i,j

ψ(aij)(x(2− x))i(y(2− y))j = ψf(x, y) =
f(x, y)f(2− x, y)

f(2, y)
.

Proof. The decomposition

(1− L1)(1− L2) = (L1L2 − 1) + (1− L1) + (1− L2)

implies

ι∗f(x, y) =
g(x)g(y)

g(x+Ĝm
y)

with ι : BSU → BU the inclusion and

g : CP∞+ → K ∧BU+

the classifying map of 1−L. Since ι∗ is an injection we omit it from the notation. Using
the naturality of ψ we get with the theorem of the previous section

ψ(g(x+Ĝm
y)) = µ∗ψ(g(x)) =

g(x+Ĝm
y)g(2− (x+Ĝm

y))

g(2)

and hence

ψf(x, y) =
ψg(x)ψg(y)

ψg(x+Ĝm
y)

=
g(x)g(2− x)g(y)g(2− y)

g(2)g(x+Ĝm
y)g(2− (x+Ĝm

y))

=
f(x, y)f(2− x, y)

f(2, y)

�





CHAPTER 4

Splitting off an E∞ summand Tζ

In the K(1)-local world at the prime p = 2, we take the fiber sequence S → KO
ψ3−1→ KO

and look at the homotopy long exact sequence

...→ π0S
0 −→ KO0

ψ3−1−→ KO0 −→ π−1S
0 → ...

Since KO0
∼= Z2 are the 2-adic integers and ψ3 is a ring homomorphism, ψ3 − 1 is the

zero map on KO0. Thus KO0 → π−1S
0 is injective and the image of 1 is a non-trivial

element ζ ∈ π−1S
0 ∼= Z2. Now we are attaching a 0-cell along ζ and take the homotopy

pushout in the category of E∞ spectra:

S−1

∗
��

ζ
// S0 TS−1

T∗
��

ζ
// S0

��

D0 TD0 = S0 // Tζ

This E∞ spectrum Tζ will be an E∞ summand in MSU . For this

TS−1

T∗
��

ζ
// S0

��

��

TD0 = S0 //

,,

Tζ

##

MSU

we have to show that ζ ∈ π−1MSU vanishes. Considering the diagram

KO0S
0 //

��

π−1S
0

��

KO0MSU
ψ3−1

// KO0MSU // π−1MSU

it is sufficient to find an element b ∈ KO0MSU mapping to 1, because on the one hand
the element 1 ∈ KO0S

0 maps to 1 ∈ KO0MSU going to 0 ∈ π−1MSU due to the long
exact sequence, and on the other hand the element 1 ∈ KO0S

0 maps to ζ ∈ π−1S
0, which

has to vanish in π−1MSU because the diagram commutes.

Definition 4.1. An Artin-Schreier class is a class b ∈ KO0MSU with ψ3b = b+ 1.

In the following part we construct such a class rationally and then give a construction of
an SU -manifold which realizes this class.

31
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1. The image of MSU∗ →MU∗

In MSU∗ every torsion is 2-torsion which is the kernel of MSU∗ →MU∗ concentrated in
dimensions 8k + 1 and 8k + 2 for k ≥ 0; in these cases MSU8k+1

∼= MSU8k+2 is an F2

vector space whose dimension is the number of partitions of k (compare [CF66b]). Due
to a theorem by Thom, complex bordism is rationally represented by complex projective
spaces:

Theorem 4.1 (Thom).
MU∗ ⊗Q = Q[CPn|n ≥ 1].

The obstruction for a U -manifold to be an SU -manifold is the first Chern class c1 of the
tangent bundle. Hence a manifold M ∈MSU4 is rationally a linear combination

M = A · CP1 × CP1 +B · CP2 with c21[M ] = 0;

in the above notation we always mean their bordism classes and have omitted the brackets
for brevity. An example of an SU -manifold is the Kummer surface

K = K3 = {z ∈ CP3|z4
0 + z4

1 + z4
2 + z4

3 = 0}
which is U -bordant to K3 ∼U 18(CP1)2 − 16CP2. Indeed MSU4 = Z〈K3〉 since the

Todd-genus (Â-genus respectively) of an SU -manifold is even and Td(K3) = 2. It turns
out that we cannot construct an Artin-Schreier class out of a class in MSU4 since we need
an SU -manifold with Â = 1. Therefore we are interested in the image of MSU8 →MU8.
Rationally this is a linear combination

M = A · CP4 +B · CP1 × CP3 + C · (CP2)×2 +D · (CP1)×4 + E · (CP1)×2 × CP2;

requiring the first Chern class to vanish implies the conditions c41[M ] = c1c3[M ] =
c21c2[M ] = 0 in the Chern numbers. To express them as linear equations in the coef-
ficients we first have to calculate the total Chern classes of the complex projective spaces
and their products:

c(TCP4) = c(1⊕ TCP4) = c(5L∗) = (1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4

c(T (CP1 × CP3)) = pr∗1c(TCP1) · pr∗2c(TCP3) = (1 + x1)
2(1 + x2)

4

= (1 + 2x1)(1 + 4x2 + 6x2
2 + 4x3

2)

= 1 + (2x1 + 4x2) + (8x1x2 + 6x2
2) + (12x1x

2
2 + 4x3

2) + 8x1x
3
2

c(T (CP2 × CP2)) = pr∗1c(TCP2) · pr∗2c(TCP2) = (1 + x1)
3(1 + x2)

3

= (1 + 3x1 + 3x2
1)(1 + 3x2 + 3x2

2)

= 1 + (3x1 + 3x2) + (3x2
1 + 9x1x2 + 3x2

2) + (9x2
1x2 + 9x1x

2
2) + 9x2

1x
2
2

c(T (CP1)×4) = (1 + x1)
2(1 + x2)

2(1 + x2
3)(1 + x4)

2

= (1 + 2x1)(1 + 2x2)(1 + 2x3)(1 + 2x4)

= 1 + 2(x1 + x2 + x3 + x4)

+4(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

+8(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4) + 16x1x2x3x4

c(T ((CP1)2 × CP2)) = (1 + x1)
2(1 + x2)

2(1 + x3)
3 = (1 + 2x1)(1 + 2x2)(1 + 3x3 + 3x2

3)

= 1 + (2x1 + 2x2 + 3x3) + (4x1x2 + 6x1x3 + 6x2x3 + 3x2
3)

+(6x1x
2
3 + 6x2x

2
3 + 12x1x2x3) + 12x1x2x

2
3
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Now we calculate the Chern numbers c41(TM)[M ], c1c3(TM)[M ] and c21c2(TM)[M ] by
evaluating them on the complex projective spaces:

c41(TCP4)[CP4] = (5x)4[CP4] = 625

c41[CP1 × CP3] = (2x1 + 4x2)
4[CP1 × CP3] = 512x1x

3
2[CP1 × CP3] = 512

c41[CP2 × CP2] = 34(x1 + x2)
4[CP2 × CP2] = 486x2

1x
2
2[CP2 × CP2] = 486

c41[(CP1)×4] = 24(x1 + x2 + x3 + x4)
4[(CP1)×4]

= 24 · 4! · x1x2x3x4[(CP1)×4] = 384

c41[(CP1)×2 × CP2)] = (2x1 + 2x2 + 3x3)
4[(CP1)×2 × CP2)]

= 432x1x2x
2
3[(CP1)×2 × CP2)] = 432

gives the equation

c41[M ] = 0 = 625A+ 512B + 486C + 384D + 432E,

evaluation of c1c3(TM)[M ]

c1c3(TCP4)[CP4] = 5x · 10x3[CP4] = 50

c1c3[CP1 × CP3] = (2x1 + 4x2)(12x1x
2
2 + 4x3

2)[CP1 × CP3] = 56x1x
3
2[CP1 × CP3] = 56

c1c3[CP2 × CP2] = (3x1 + 3x2)(x
3
1 + 9x2

1x2 + 9x1x
2
2 + x3

2)[CP2 × CP2]

= 54x2
1x

2
2[CP2 × CP2] = 54

c1c3[(CP1)×4] = 16(x1 + x2 + x3 + x4)(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)[(CP1)×4]

= 64x1x2x3x4[(CP1)×4] = 64

c1c3[(CP1)×2 × CP2)] = (2x1 + 2x2 + 3x3)(6x1x
2
3 + 6x2x

2
3 + 12x1x2x3)[(CP1)×2 × CP2)]

= 60x1x2x
2
3[(CP1)×2 × CP2)] = 60

gives the equation

c1c3[M ] = 0 = 50A+ 56B + 54C + 64D + 60E,

and evaluation of c21c2(TM)[M ]

c21c2(TCP4)[CP4] = (5x)2 · 10x2[CP4] = 250x4[CP4] = 250

c21c2[CP1 × CP3] = (2x1 + 4x2)
2(x2

1 + 8x1x2 + 6x2
2)[CP1 × CP3]

= 224x1x
3
2[CP1 × CP3] = 224

c21c2[CP2 × CP2] = (3x1 + 3x2)
2(3x2

1 + 9x1x2 + 3x2
2)[CP2 × CP2]

= 216x2
1x

2
2[CP2 × CP2] = 216

c21c2[(CP1)×4] = 16(x1 + x2 + x3 + x4)
2 ×

(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)[(CP1)×4]

= 192x1x2x3x4[(CP1)×4] = 192

c21c2[(CP1)×2 × CP2)] = (2x1 + 2x2 + 3x3)
2 ×

(4x1x2 + 6x1x3 + 6x2x3 + 3x2
3)[(CP1)×2 × CP2)]

= 204x1x2x
2
3[(CP1)×2 × CP2)] = 204

gives the equation

c21c2[M ] = 0 = 250A+ 224B + 216C + 192D + 204E.
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Hence we consider the system of linear equations

c41[M ]= 0= 625A + 512B + 486C + 384D + 432E
c1c3[M ]= 0= 50A + 56B + 54C + 64D + 60E
c21c2[M ]= 0= 250A + 224B + 216C + 192D + 204E

which is integrally equivalent to the following system of homogeneous linear equations:

0= 25A + 8B
0= + 4B + 16D + 9E
0= - 27C + 48D + 15E

The space of solutions is 2-dimensional. We know one solution K3×K3, i.e. the square
of the Kummer surface, having the parameter representation

(A,B,C,D,E) = (0, 0, 256, 324,−576)

or

K2 = K3×K3 ∼U 256CP2 × CP2 + 324(CP1)×4 − 576(CP1)×2 × CP2.

Another independent solution is given in parameter representation as (A,B,C,D,E) =
(8,−25,−12,−23, 52) or as

N := 8CP4 − 25CP1 × CP3 − 12CP2 × CP2 − 23(CP1)×4 + 52(CP1)×2 × CP2.

Hence we can rationally describe bordism classes of SU -manifolds under the injection
MSU8 →MU8 via

M = k · (K3)2 + l ·N
with k, l ∈ Q. In the next section we take the values (k, l) = (1

4
, 12) and study its K-

theory class under the map MU∗ → K∗MU using Miscenkos formula which gives us an
Artin-Schreier class.

2. Formal group laws and Miscenkos formula

Formal group laws. In the following part we briefly recall the notions of the theory
of formal group laws which we use to construct the morphism MU∗ → K∗MU . We restrict
to commutative, one-dimensional formal group laws.

Definition 4.2. Let R be a commutative ring with unit. A formal group law over R is a
power series F (x, y) ∈ R[[x, y]] satisfying

(1) F (x, 0) = x = F (0, x)
(2) F (x, y) = F (y, x)
(3) F (x, F (y, z)) = F (F (x, y), z).

These axioms correspond to the existence of a neutral element, commutativity and as-
sociativity in the group case. Obviously we can write F (x, y) = x + y +

∑
i,j≥1 aijx

iyj

with aij = aji, and in terms of the power series it is clear that there exists an inverse,
i.e. a formal power series ι(x) ∈ R[[x]] such that F (x, ι(x)) = 0. Formal group laws are
naturally related to complex oriented theories in the following way: The Euler class of a
tensor product of line bundles defines a formal group law

ĜE(x, y) = e(L1 ⊗ L2) ∈ E∗(CP∞ × CP∞) ∼= π∗E[[x, y]]

with x = e(L1) and y = e(L2).
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Example 4.1. The additive formal group law Ga(x, y) = x+y arises as an orientation of
singular cohomology. The multiplicative formal group law Gm(x, y) = x+y−xy comes up
as an orientation of complex K-theory. In the following we will encounter the universal
formal group law Fu via complex cobordism (MU-theory ).

Definition 4.3. Let F and G be formal group laws. A homomorphism f : F → G is a
power series f(x) ∈ R[[x]] with constant term 0 such that f(F (x, y)) = G(f(x), f(y)). It
is an isomorphism if it is invertible, i.e. if f ′(0) (the coefficient of x) is a unit in R, and
a strict isomorphism if f ′(0) = 1. A strict isomorphism from F to the additive formal
group law Ga is called a logarithm for F , denoted logF (x). Its inverse power series is
called exponential, denoted expF (x).

Example 4.2. Over a Q-algebra every formal group law is isomorphic to the additive
formal group law. Especially the logarithm of the universal formal group law is given by

logMU(x) =
∑
n≥0

[CPn]
n+ 1

xn+1.

Proposition 4.1. If x1, x2 are two complex orientations for E∗(−), then their associated
formal group laws F1 and F2 are isomorphic.

In the context of formal group laws let FMU denote the universal formal group law

FMU(x, y) = x+ y +
∑
i,j≥1

aijx
iyj

with the coefficients aij ∈ L in the Lazard ring with degree |aij| = 2− 2(i+ j). Let

FK(x, y) = x+ y + vxy

denote the multiplicative formal group law corresponding to the K-theory spectrum with
v the inverse Bott element with |v| = −2. Now we are going to construct a morphism

f : MU∗ → K∗MU

such that the induced formal group law

f ∗FMU(x, y) := x+ y +
∑
i,j≥1

f(aij)x
iyj

is the formal group law FK twisted by the invertible power series

g(x) =
∑
i≥0

bix
i+1

(with b0 = 1) defined by

gFK(x, y) := g(FK(g−1(x), g−1(y))) = g(g−1(x) + g−1(y) + vg−1(x)g−1(y))

with g−1(g(x)) = x the inverse function.
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Boardman homomorphism. The element aij ∈ π2(i+j−1) can be represented by a
weakly almost complex manifold. To ask for the (normal) characteristic numbers of this
manifold is (essentially) equivalent to asking for the image of aij under the Hurewicz
homomorphism

π∗MU → H∗MU.

We introduce the Boardman homomorphism, which is (slightly) more general than the
Hurewicz homomorphism. Let E be a (commutative) ring spectrum, then for any (space
or spectrum) Y we consider the map

Y ∼= S0 ∧ Y i∧1→ E ∧ Y.

Composing a map X → Y with this map induces a homomorphism

B : [X, Y ]∗ → [X,E ∧ Y ]∗

called the Boardman homomorphism. The Hurewicz homomorphism is recovered by set-
ting X = S0 and E = H (the Eilenberg-MacLane spectrum representing singular homol-
ogy).
Since E∧Y is at least a module spectrum over the ring spectrum E, we may obtain infor-
mation about [X,E ∧ Y ]r = (E ∧ Y )−r(X) from E∗(X), for example there is a universal
coefficient theorem

[X, Y ]∗
B

//

α ))RRRRRRRRRR
[X,E ∧ Y ]∗

puukkkkkkkkkk

Homπ∗E(E∗X,E∗Y )

where α(f) = f∗ : E∗X → E∗Y is the induced map in E-homology and p is defined by
(p(h))(k) = 〈h, k〉 ∈ E∗Y using the Kronecker pairing

(E ∧ Y )∗(X)⊗ E∗X → E∗Y

with

h⊗ k 7→ 〈h, k〉 : S → E ∧X 1∧h→ E ∧ E ∧ Y µ∧1→ E ∧ Y.

Miscenkos formula. We recall that power series of the form g(x) = x+b1x
2+b2x

3+...
are strict isomorphisms

g : F
∼=−→ gF = g(F (g−1x, g−1y))

and want to give the explicit coefficients of the inverse power series g−1(x) =
∑

i≥0 cix
i+1.

We calculate the first coefficients taking everything modulo x6 and using the identity

x ≡ g−1(g(x)) = g(x) + c1g(x)
2 + c2g(x)

3 + c3g(x)
4 + c4g(x)

5 + ... ( mod x6)

≡ x+ b1x
2 + b2x

3 + b3x
4 + b4x

5

+c1(x
2 + 2b1x

3 + (2b2 + b21)x
4 + (2b3 + 2b1b2)x

5)

+c2(x
3 + 3b1x

4 + (3b2 + 3b21)x
5 + c3(x

4 + 4b1x
5) + c4x

5
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Comparing coefficients gives the system of equations

0 = c1 + b1

0 = c2 + 2b1c1 + b2

0 = c3 + 3b1c2 + c1(2b2 + b21) + b3

0 = c4 + 4b1c3 + c2(3b2 + 3b21) + c1(2b3 + 2b1b2) + b4

resulting in

c1 = −b1
c2 = 2b21 − b2
c3 = −5b31 + 5b1b2 − b3
c4 = 14b41 − 21b21b2 + 6b1b3 + 3b22 − b4.

Applying the residue theorem of complex analysis proves the following (as done in [Ada74,
p. 65 Prop. (7.5)] ):

Proposition 4.2. Denoting the degree 2n-part of an inhomogeneous polynomial with a
lower index n we have

cn =
1

n+ 1
(
∑
i≥0

bi)
−(n+1)
n and bn =

1

n+ 1
(
∑
i≥0

ci)
−(n+1)
n .

Next we explicitly calculate gFK(x, y) = g(g−1x+ g−1y + vg−1xg−1y) :

gFK(x, y) = x+ y + (v + 2b1)xy + (b1v − 2b21 + 3b2)(x
2y + xy2)

+(2vb2 − 2vb21 + 4b3 − 8b1b2 + 4b31)(x
3y + xy3)

+(v2b1 − 3vb21 + 2b31 − 6b1b2 + 6vb2 + 6b3)x
2y2

+(5vb31 − 8vb1b2 + 25b21b2 + 3vb3 − 10b41 − 14b1b3 − 6b22 + 5b4)

×(x4y + xy4)

+(4vb31 − 18vb1b2 − 4b41 + 8b21b2 − 2v2b21 + 3v2b2 − 3b22
−16b1b3 + 12vb3 + 10b4)× (x3y2 + x2y3)

+ higher order terms.

This implies:

a11 7→ v + 2b1

a21 7→ vb1 − 2b21 + 3b2

a31 7→ 2vb2 − 2vb21 + 4b3 − 8b1b2 + 4b31
a22 7→ v2b1 − 3vb21 + 2b31 − 6b1b2 + 6vb2 + 6b3

a41 7→ 5vb31 − 8vb1b2 + 25b21b2 + 3vb3 − 10b41 − 14b1b3 − 6b22 + 5b4

a32 7→ 4vb31 − 18vb1b2 − 4b41 + 8b21b2 − 2v2b21 + 3v2b2 − 3b22 − 16b1b3 + 12vb3 + 10b4

Recall that the complex manifold CPn defines an element [CPn] ∈ π2nMU . The Hurewicz
homomorphism

π∗MU → H∗MU
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tells us that the image of [CPn] in H2nMU is (n+ 1)cn since the formula (
∑

i≥0 bi)
−(n+1)
n

gives the normal Chern numbers of CPn. The most important formula for us will be

[CPn] = (n+ 1)cn = (
∑
i≥0

a1i)
−1
n

leading to

[CP1] = −a11

[CP2] = −a12 + a2
11

[CP3] = −a13 − a3
11 + 2a11a12

[CP4] = −a14 + a4
11 + a2

12 + 2a11a13

Substituting these formulas we get

[N ] = −112vb31 + 340vb1b2 + 256b21b2 − 60vb3 − 184b41 + 40b1b3

+12b22 − 40b4 + 48v2b2 + 58v2b21 + 22v3b1

and

1

4
[K32] = v4 + 24v3b1 + 120v2b21 + 48v2b2 − 288vb31 + 448vb1b2

+144b41 − 576b21 + 576b22.

Defining

M :=
1

4
K32 + 12N

we get

[M ] = v4 + 16 · (18v3b1 + 51v2b21 + 39v2b2 − 102vb31 + 283vb1b2

−45vb3 − 129b41 + 30b1b3 + 156b21b2 + 45b22 − 30b4).

3. Construction of an SU-manifold with Â = 1

To split off the spectrum Tζ from MSU one essentially uses the existence of an Artin-
Schreier class b ∈ KO0MSU satisfying ψ3b = b+ 1. Via Miscenkos formula we have seen
that such a class can be constructed with the logarithm construction if there is a Bott
manifold whose associated K-theory class is congruent to v4 modulo 16. Essentially we
have to find a Bott manifold in SU bordism, i.e. an SU -manifold M with Â([M ]) = 1
giving a periodicity element in MSU∗.

Main idea. The Hopf bundle σ : S7 → S4 with fiber S3 ∼= SU(2) on the one hand

admits an SU structure and on the other hand generates Im(J)7
∼= Ωfr

7
∼= πst7

∼= Z/240.

Since Td(D(σ)) = 1/240 and since 240[σ] = 0 in Ωfr
7 implies the existence of a framed

manifold R8 with ∂R8 = −240σ, we define

B := 240D(σ) ∪240σ R
8

which serves as the desired Bott manifold, i.e. Td(B) = Â(B) = 1.



3. CONSTRUCTION OF AN SU -MANIFOLD WITH Â = 1 39

Sp(1)-principal bundles over S4. With the identifications Sp(1) ∼= SU(2) ∼= S3

and Sp(2)/Sp(1) ∼= S7 and

Sp(2)

Sp(1)× Sp(1)
∼= HP1 ∼= S4

we take the canonical Sp(1)-principal bundle over S4

Sp(1) ∼= S3 // S7

��

S4

i.e. the bundle whose associated line bundle

E := S7 ×Sp(1) H1 → S4

satisfies 〈c2(E), [S4]〉 = 1. We know that every G-principal bundle is given as the pullback
of the universal G-principal bundle via the classifying map

f ∗EG //

��

EG

��

B
f

// BG.

In other words the functor G-Pb(−) is representable by BG and

[B,BG] ∼= G-Pb(B) via f 7→ f ∗EG.

In the case of Sp(1)-principal bundles over S4 we get

[S4, BSp(1)] = [ΣS3, BSp(1)] ∼= [S3,ΩBSp(1)] = [S3, Sp(1)] = [S3, S3] ∼= Z.
The canonical Sp(1)-principal bundle over S4 is associated to 1 ∈ Z. We see that the disk
bundle Q := D(E) with π : Q → S4 has as boundary ∂Q = ∂D(E) = S(E) the original
principal bundle.

Splitting of the tangent bundle TQ. In general for a smooth vector bundle ξ : E →
M the total space E is again a smooth manifold. Now we are interested in the structure of
the tangential bundle TE. There are two induced bundles, namely the induced tangential
bundle and that of the total space:

ξ∗TM //

��

E

ξ
��

ξ∗E //

��

E

ξ
��

TM // M and E
ξ

// M

These already give an isomorphism

TE ∼= ξ∗TM ⊕ ξ∗E.
Such a splitting of a tangent bundle is geometrically called a connection. With the
notation of above restricting the tangent bundle of the vector bundle to the disk bundle
we get the splitting

TQ ∼= π∗E ⊕ π∗TS4;

note that the second summand is stably trivial.
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The Hopf bundle is an SU manifold. The Hopf bundle σ : S7 → S4 with fiber
S3 ∼= SU(2) is not only an SU(2)-bundle but also an SU manifold. A manifold M
has an SU structure if its stable tangent bundle TM is a complex vector bundle with a
trivialization of its determinant bundle det(TM) ∼= 1C.

D(σ) //

��

λtaut

��

// λtaut

��

S4 // BSU // BU.

From the splitting above we see the SU structure, since the 8-dimensional bundle splits
into two 4-dimensional bundles and TS4 is stably trivial and E is chosen to have vanish-
ing c1.

Evaluation of the Todd genus. We recall Td = ec1/2Â and see that for SU mani-
folds the Todd-genus and the Â-genus coincide. From [Hi56] the degree 8-term of the
Todd genus is given in Chern classes by:

T4 =
1

720
(−c4 + c3c1 + 3c22 + 4c2c

2
1 − c41).

For the evaluation the Chern classes c1 and c4 do not contribute, due to the SU structure
and since Q is a homotopy 4-sphere, respectively. Next we emphasize that while for closed
stably almost complex manifolds the Todd genus maps to the integers; the situation for
(U, fr) manifolds is different. A (U, fr) manifold Mn is a differentiable manifold M with a
given complex structure on its stable tangent bundle TM and a given compatible framing
of TM restricted to the boundary ∂M . Their Chern numbers depend only on the bordism
classes in ΩU,fr

n and hence we have a Todd genus

Td : ΩU,fr
2n → Q.

Moreover there is a commutative diagram

0 // ΩU
2n

//

Td
��

ΩU,fr
2n

Td
��

// Ωfr
2n−1

//

eC
��

0

0 // Z // Q // Q/Z // 0

where eC is the Adams e-invariant. This is worked out in [CF66a]. As done on page 95
of [CF66a] we can now evaluate the Todd genus

〈Td(TQ), [Q, ∂Q]〉 = 〈 1

720
3c22(E), [Q, ∂Q]〉 =

1

240
〈c22(E), [Q, ∂Q]〉

=
1

240
〈c2(E), [S4]〉 =

1

240
.

Remark on the relation to K-theory. In modern formulation the Todd genus is
associated to the multiplicative formal group law and therefore to K-theory. Let P (x) be
a power series with 1 as constant coefficient. Its logarithm g is given by

g−1(x) =
x

P (x)
.
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Complex oriented cohomology theories always come with a formal group law F (x, y) which
can be expressed as

F (x, y) = g−1(g(x) + g(y)).

For the Todd genus we have P (x) = x
1−e−x implying y = g−1(x) = 1− e−x. This gives us

g(x) = − ln(1− x) and thus

F (x, y) = 1− exp[−(− ln(1− x)− ln(1− y))]
= 1− exp(ln(1− x) + ln(1− y))
= 1− (1− x)(1− y) = x+ y − xy,

which is the multiplicative formal group law coming from complex K-theory.

Definition of the Bott manifold. Since ∂Q = S7 is framed and [∂Q] ∈ Ωfr
7
∼= πs7

∼=
Z/240 we have 240[∂Q] = 0, i.e. there exists a framed manifold R8 with ∂R8 = −240∂Q.
We define a Bott-manifold by

B := 240Q ∪240∂Q R
8

and see that indeed Â(B) = Td(B) = 240Td(Q) + 0 = 1.

4. Construction of an Artin-Schreier class

Having a Bott manifold with associated K-theory class congruent to v4 modulo 16 we can
use the power series of the logarithm

log(1 + x) =
∞∑
n=0

(−1)n
xn+1

n+ 1

to define

b = − log([M ])

log(34)
.

Proposition 4.3. The class b is an Artin-Schreier class.

Proof.

ψ3b = − log([M ]/34)

log(34)
= − log([M ])

log(34)
+

log(34)

log(34)
= b+ 1.

Here the stable Adams operation ψk : K → K is defined levelwise by Ψk

kn : K2n → K2n

with Ψk being the unstable Adams operation. Inverting powers of k ∈ Z×
2 is not a problem

since everything is 2-completed. �

5. Construction of an E∞ map Tζ →MSU

The fiber sequence X → KO ∧ X ψ3−1−→ KO ∧ X induces the unit map π0KO → π−1S
0

mapping 1 7→ ζ. Now we define Tζ to be the homotopy pushout in the category of
K(1)-local E∞ ring spectra:

TS−1 T∗
//

ζ
��

T∗ = S0

��

S0 // Tζ



42 4. SPLITTING OFF AN E∞ SUMMAND Tζ

with TX the free E∞ spectrum generated by the pointed space X. As the Hurewicz image
of ζ ∈ π−1MSU is zero we get a map Tζ →MSU :

TS−1 T∗
//

ζ
��

T∗ = S0

��

��

S0 //

,,

Tζ

&&

MSU

6. Split map - direct summand argument

To get Tζ as a direct summand, one has to construct a split p such that the composition

Tζ
i→MSU

p→ Tζ

is the identity. This can be done using the Spin splitting of Laures [Lau03]

Tζ

i
�� ��

Tζ ∧
∧∞
i=1 TS

0

p
GG

MSpin
'

oo

and showing that the extended triangle commutes

MSU

g

��

Tζ

h
66mmmmmmmmmmmm

i
�� ��

Tζ ∧
∧∞
i=1 TS

0

p
GG

MSpin
'

oo

6.1. Comparison of the Artin-Schreier classes. The SU Artin-Schreier class
constructed above is naturally also a Spin Artin-Schreier class. Refering to [Lau02] we
have

Lemma 4.1. Let b and b′ be two Artin-Schreier elements of π0KO∧MSpin. Then there
is an E∞ self homotopy equivalence κ of MSpin which carries b to b′.

Proof. The short exact sequence

0→ π0MSpin→ π0KO ∧MSpin
ψ3−1→ π0KO ∧MSpin→ 0

with (ψ3−1)b = (ψ3−1)b′ = 1 tells us that b and b′ can only differ by a class a ∈ π0MSpin.
Let κ be the E∞ map of

MSpin ∼= Tζ ∧
∧

TS0

which is the identity on each TS0 and restricts to

ι+ aδ : Cζ →MSpin

on Tζ . Then its inverse is defined in the same way with a replaced by −a. �
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With the notations T SUζ and T Spinζ for the E∞ spectra we get from the different Artin-
Schreier classes, we have the following diagram with E∞ maps:

T SUζ //

'
��

MSU

��

cc

T Spinζ

ι
�� ��

Tζ ∧
∧∞
i=1 TS

0

(id,∗,∗,...)
II

MSpin
'

oo





CHAPTER 5

Detecting free E∞ summands TS0

1. Introduction to Adams operations in K-theory

1.1. Basics. In K-theory we have not only the ring structure, but also certain ring
homomorphisms ψk : K(X)→ K(X).

Theorem 5.1 (Adams). There exist ring homomorphisms ψk : K(X) → K(X), defined
for all compact Hausdorff spaces X and all integers k ≥ 0, satisfying:

(1) ψkf ∗ = f ∗ψk for all maps f : X → Y (naturality)
(2) ψk(L) = Lk if L is a line bundle
(3) ψk ◦ ψl = ψkl

(4) ψp(α) ≡ αp mod p for p prime

At first we consider the special case when E is a sum of line bundles Li

ψk(L1 ⊕ ...⊕ Ln) = Lk1 + ...+ Lkn.

Next we are looking for a general definition of ψk(E) which specializes to the above. We
use the exterior powers λi(E) to define

λt(E) =
∑
i

λi(E)ti ∈ K(X)[[t]].

By naturality of the exterior power construction we have

λt(E1 ⊕ E2) =
∑
i

λi(E1 ⊕ E2)t
i =

∑
i

i⊕
k=0

(λk(E1)⊗ λi−k(E2))t
i

= (
∑
i

λi(E1)t
i)⊗ (

∑
k

λk(E2)t
k) = λt(E1)⊗ λt(E2).

In the case E = L1 ⊕ ...⊕ Ln we get

λt(E) =
∏
i

λt(Li) =
∏
i

(1 + Lit) = 1 + σ1 + ...+ σn;

thus comparing the coefficients, λj(E) = σj(L1, ..., Ln) is the jth elementary symmetric
polynomial. Hence we take the Newton polynomials sk and define

ψk(E) = sk(λ
1(E), ..., λk(E)),

which specializes to the formula above when E is a sum of line bundles. Finally we prove
that the stated properties are fulfilled.

Proof. The naturality

f ∗(ψk(E)) = ψk(f ∗(E))

45
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follows from f ∗(λi(E)) = λi(f ∗(E)). The additivity ψk(E1 ⊕ E2) = ψk(E1) + ψk(E2)
is done via the naturality and the splitting principle. Since p : F (E) → X induces an
injection p∗ : K∗(X)→ K∗(F (E)) we get

p∗ψk(E1 ⊕ E2) = ψkp∗(E1 ⊕ E2) = ψk(L1 ⊕ ...⊕ Lm ⊕ L′1 ⊕ ...⊕ L′n)
= ψk(p∗E1 ⊕ p∗E2) = p∗ψkE1 ⊕ p∗ψkE2.

Since ψk is additive on vector bundles, we get via the Grothendieck construction an
additive operation on K(X) defined by

ψk(E1 − E2) = ψk(E1)− ψk(E2).

Next we prove multiplicativity: If E is the sum of line bundles Li and E ′ is the sum of
line bundles L′j then E ⊗ E ′ is the sum of line bundles Li ⊗ L′j implying

ψk(E ⊗ E ′) =
∑
i,j

ψk(Li ⊗ Lj) =
∑
i,j

(Li ⊗ L′j)k

=
∑
i,j

Lki ⊗ L′kj =
∑
i

Lki
∑
j

L′kj = ψk(E)ψk(E ′).

Thus ψk is multiplicative on vector bundles and it follows formally that it is multiplicative
on elements of K(X). For ψk ◦ ψl = ψkl the splitting principle and additivity reduce to
the case of line bundles where

ψk(ψl(L)) = Lkl = ψkl(L).

Likewise for ψp(α) ≡ αp mod p, since for E = L1 + ...+ Ln we have modulo p

ψp(E) = Lp1 + ...+ Lpn ≡ (L1 + ...+ Ln)
p = Ep.

�

1.2. Adams operations on the K-theory spectrum. One recalls that Adams
operations ψk : K → K are operations on the ring spectrum K itself and that we have
naturality, i.e. for every map f : X → Y the diagram

K ∧X
K∧f

��

ψk∧X
// K ∧X

K∧f
��

K ∧ Y
ψk∧Y

// K ∧ Y

commutes. Also Adams operations behave well with respect to the complexification map
from KO-theory to K-theory, i.e. the diagram

X //

%%KKK
KKK

KK
KO ∧X
c∧1

��

ψk∧1
// KO ∧X

c∧1
��

K ∧X
ψk∧1

// K ∧X

commutes. Having u ∈ K∗X we get ψk(u) by

S
u

//

ψk(u)

99
K ∧X

ψk∧X
// K ∧X.
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1.3. The Kronecker pairing.

Lemma 5.1. We have 〈ψka, ψkb〉 = ψk〈a, b〉 and ψk
−1

is adjoint to ψk via the Kronecker
pairing 〈, 〉 : K∗X ⊗K∗X → K∗.

Proof. With f representing b ∈ K∗X and g representing a ∈ K∗X we have

S

ψk(f) $$IIIIIII
f

// K ∧X
ψk∧1

��

1∧g
// K ∧K

ψk∧ψk

��

µ
// K

ψk

��

K ∧X
1∧ψk(g)

// K ∧K
µ

// K

The line above gives 〈a, b〉, and the lower line 〈ψka, ψkb〉, giving the first statement. For

the second one we know that ψk is a ring map, and with b′ = ψk
−1
b we get

〈ψka, b〉 = 〈ψka, ψkb′〉 = ψk〈a, b′〉 = 〈a, b′〉 = 〈a, ψk−1

b〉.

�

2. Calculating operations on K∗CP∞

2.1. Adams operations on K∗CP∞. As for any complex oriented theory, we have
K∗CP∞ ∼= π∗K[[x]] ∼= Zp[[x]] (the last isomorphism is due to the K(1)-local point of view).
With βi being dual to xi the statement in homology is K∗CP∞ ∼= Zp〈βi〉. Next we want
to apply the pairing

K∗X ⊗K∗X → π∗K

and show its compatibility with Adams operations. Given a ∈ K∗X (i.e. S → K ∧ X)
and x ∈ K∗X (i.e. X → K) we have the commuting diagram

S //

ψk
∗a

$$

K ∧X
ψk∧1

��

K ∧X 1∧x
// K ∧K

µ
// K.

Since ψk is a ring homomorphism and ψk(L) = Lk for line bundles L, we have for the
generator x = 1− L (here we take the tautological line bundle over CP∞

ψk(xn) = (1− (1− x)k)n.

The Kronecker pairing gives us 〈ψkx, a〉 = 〈x, ψk−1
a〉, the duality was 〈xk, βk〉 = 1, hence

basis expansion gives us

ψk
−1

βn =
∑
j≥0

〈xj, ψk−1

βn〉βj

with 〈xj, ψk−1
βn〉 = 〈ψkxj, βn〉 = 〈(1− (1− x)k)j, βn〉. We calculate

(1− (1− x)3)j = xj(3 + x(x− 3))j = xj
j∑
s=0

(
j

s

)
3j−sxs(x− 3)s

= xj
j∑
s=0

(
j

s

)
3j−sxs

s∑
t=0

(
s

t

)
xt(−3)s−t
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Hence we have

〈ψ3xj, βi〉 = (−1)i−j
∑

s+t=i−j

(
j

s

)(
s

t

)
3j−t.

Explicitly we have

(3x− 3x2 + x3)2 = 9x2 − 18x3 + 15x4 − 6x5 + x6

(3x− 3x2 + x3)3 = 27x3 − 81x4 + 108x5 − 81x6 + 36x7 − 9x8 + x9

(3x− 3x2 + x3)4 = 81x4 − 324x5 + 594x6 − 648x7 + 459x8 − 216x9 + 66x10

−12x11 + x12

(3x− 3x2 + x3)5 = 243x5 − 1215x6 + 2835x7 − 4050x8 + 3915x9 − 2673x10

+1305x11 − 450x12 + 105x13 − 15x14 + x15

(3x− 3x2 + x3)6 = 729x6 − 4374x7 + 12393x8 − 21870x9 + 26730x10 − 23814x11

+15849x12 − 7938x13 + 2970x14 − 810x15 + 153x16 − 18x17 + x18

(3x− 3x2 + x3)7 = 2187x7 − 15309x8 + 51030x9 − 107163x10 + 158193x11

−173502x12 + 145719x13 − 95175x14 + 48573x15 − 19278x16

+5859x17 − 1323x18 + 210x19 − 21x20 + x21

(3x− 3x2 + x3)8 = 6561x8 − 52488x9 + 201204x10 − 489888x11 + 847098x12

−1102248x13 + 1115856x14 − 896184x15 + 576963x16 − 298728x17

+123984x18 − 40824x19 + 10458x20 − 2016x21

+276x22 − 24x23 + x24

(3x− 3x2 + x3)9 = 19683x9 − 177147x10 + 767637x11 − 2125764x12 + 4212162x13

−6337926x14 + 7501410x15 − 7138368x16 + 5535297x17

−3523257x18 + 1845099x19 − 793152x20 + 277830x21 − 78246x22

+17334x23 − 2916x24 + 351x25 − 27x26 + x27

(3x− 3x2 + x3)10 = 59049x10 − 590490x11 + 2854035x12 − 8857350x13 + 19781415x14

−33776028x15 + 45730170x16 − 50257260x17 + 45522405x18

−34314030x19 + 21640365x20 − 11438010x21 + 5058045x22

−1861380x23 + 564570x24 − 138996x25 + 27135x26

−4050x27 + 435x28 − 30x29 + x30.

Ordering the terms we get

ψ3−1

β1 = 3β1

ψ3−1

β2 = −3β1 + 9β2

ψ3−1

β3 = β1 − 18β2 + 27β3

ψ3−1

β4 = 15β2 − 81β3 + 81β4

ψ3−1

β5 = −6β2 + 108β3 − 324β4 + 243β5

ψ3−1

β6 = β2 − 81β3 + 594β4 − 1215β5 + 729β6

ψ3−1

β7 = 36β3 − 648β4 + 2835β5 − 4374β6 + 2187β7
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ψ3−1

β8 = −9β3 + 459β4 − 4050β5 + 12393β6 − 15309β7 + 6561β8

ψ3−1

β9 = β3 − 216β4 + 3915β5 − 21870β6 + 51030β7 − 52488β8 + 19683β9

ψ3−1

β10 = 66β4 − 2673β5 + 26730β6 − 107163β7 + 201204β8 − 177147β9 + 59049β10.

2.2. Adams operations on K∗(CP∞ × CP∞). Analogously we have

K∗(CP∞ × CP∞) ∼= π∗K[[x, y]] ∼= Zp[[x, y]]

and with βi ⊗ βj being dual to xiyj, we have

K∗(CP∞ × CP∞) ∼= Zp〈βi ⊗ βj〉.

Now the pairing above gives us

〈xiyj, ψk−1

(βm ⊗ βn)〉 = 〈ψkxiψkyj, βm ⊗ βn〉
= 〈(1− (1− x)k)i(1− (1− y)k)j, βm ⊗ βn〉

and by basis expansion we have

ψk
−1

(βi ⊗ βj) =
∑
m,n

〈xmyn, ψk−1

(βi ⊗ βj)〉βm ⊗ βn.

With the map CP∞ ×CP∞ f→ BSU classifying the virtual SU bundle (1− L1)(1− L2),
the module generators βi ⊗ βj are mapped by f∗ to algebra generators in K∗BSU . By
naturality of the Adams operations this allows us to calculate the Adams operations on
K∗BSU . We can calculate the pairing factor by factor:

ψ3−1

βi ⊗ βj =
∑
m,n

〈ψ3(xmyn), βi ⊗ βj〉βm ⊗ βn

=
∑
m,n

〈ψ3xm, βi〉〈ψ3yn, βj〉βm ⊗ βn

=
∑
m

〈ψ3xm, βi〉βm
⊗∑

n

〈ψ3yn, βj〉βn

= (ψ3−1

βi)⊗ (ψ3−1

βj)

The following table contains the mod 2 coefficients ak of ψ3−1
βi =

∑
akβk.

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

ψ3−1
β1 = 1

ψ3−1
β2 = 1 1

ψ3−1
β3 = 1 1

ψ3−1
β4 = 1 1 1

ψ3−1
β5 = 1

ψ3−1
β6 = 1 1 1 1

ψ3−1
β7 = 1 1

ψ3−1
β8 = 1 1 1 1 1

ψ3−1
β9 = 1 1 1

ψ3−1
β10 = 1 1 1 1
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2.3. Integral Adams operations on K∗BSU and 2-structures. First we recall
from [Lau02] the structure of K∗BSU : Let L be the tautological line bundle over CP∞
and βi ∈ K2iCP∞ be dual to c1(L)i. As above let f be the map CP∞ × CP∞ → BSU
that classifies the bundle (1 − L1)(1 − L2) with Li the tautological line bundle over the
ith factor. Now choose for each natural number k and 1 ≤ i ≤ k− 1 integers nik such that

k−1∑
i=1

nik

(
k

i

)
= gcd{

(
k

1

)
, ..,

(
k

k − 1

)
}.

Defining elements dk =
∑k−1

i=1 n
i
kf∗(βi ⊗ βk−i) ∈ K2kBSU we get

K∗BSU ∼= Z2[d2, d3, ...].

With the notation aij = f∗(βi ⊗ βj) ∈ π2(i+j)K ∧BSU and the fact that

K∗(CP∞ × CP∞) ∼= Z2[[x, y]]

with βi ⊗ βj ∈ K∗(CP∞ × CP∞) being dual to xiyj, we calculate the Adams operations
by applying basis expansion:

ψkaij =
∑
m,n

〈xmyn, ψkaij〉amn.

Here again the Kronecker pairing gives

〈xmyn, ψkf∗(βi ⊗ βj)〉 = 〈ψk−1

f ∗(xmyn), βi ⊗ βj〉
= 〈ψk−1

(xmyn), βi ⊗ βj〉
= 〈ψk−1

xm, βi〉 · 〈ψk
−1

yn, βj〉.
It is easily seen that

gcd{
(
k

1

)
, ...,

(
k

k − 1

)
} =

{
p for k = ps

1 else.

The generators aij defined above satisfy certain relations which we want to describe in
the following.

Definition 5.1. The binomial coefficients associated to the formal group law F(
k

i, j

)
F

∈ π2(i+j−k)E

are defined by the equation

(x+F y)
k =

∑
i,j

(
k

i, j

)
F

xiyj.

Example 5.1 (K-theory and the multiplicative formal group law). For E = K and

F = Ĝm with Ĝm(x, y) = x+ y − v−1xy we have

(x+Ĝm
y)k = (x+ y − v−1xy)k =

k∑
s=0

s∑
t=0

(
k

s

)(
s

t

)
(−v)s−kxk−s+tyk−t

and hence (
k

i, j

)
Ĝm

=

(
k

2k − i− j

)(
2k − i− j
k − j

)
(−v)k−i−j.
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Lemma 5.2 (Laures). The following relations hold for i, j, k:

a0,0 = 1 ; a0i = ai0 = 0 for all i 6= 0

aij = aji∑
l,s,t

(
l

s, t

)
Ĝm

aj−s,k−tail =
∑
l,s,t

(
l

s, t

)
Ĝm

alkai−s,j−t.

For our calculations we choose the following non-vanishing coefficients nik for our basis
elements dk:

k \ i 1 2 3 4 5 6 7 8 9 10
2 1
3 1
4 -1 1
5 1
6 1 1 -1
7 1
8 9 -1
9 -9 1

10 1 11 -2

ψ3−1

d2 = ψ3−1

f∗(β1 ⊗ β1) = f∗(ψ
3−1

(β1 ⊗ β1))

= f∗(3β1 ⊗ 3β1) = 9f∗(β1 ⊗ β1) = 9d2

ψ3−1

d3 = f∗(ψ
3−1

β1 ⊗ β2) = f∗(3β1 ⊗ (−3β1 + 9β2))

= 27d3 − 9d2

ψ3−1

d4 = ψ3−1

(−f∗(β1 ⊗ β3) + f∗(β2 ⊗ β2))

= −f∗(3β1 ⊗ (β1 − 18β2 + 27β3)) + f∗((−3β1 + 9β2)⊗ (−3β1 + 9β2))

= −9a11 + 54a12 − 81a13 + 9a11 − 54a12 + 81a22 = 81(−a13 + a22) = 81d4.

To calculate the Adams operation on the higher dk, one has to invest the 2-structure
condition from above. An equivalent way to handle this is to see K ∧BSU+ as a complex
oriented ring theory with complex orientation xK∧BSU∗ = (1∧η)∗xK . The classifying map

(CP∞ × CP∞)∗
f+→ BSU+

η∧1→ K ∧BSU+

can be regarded as a power series

f(x, y) = 1 +
∑
i,j≥1

bijx
iyj ∈ (K ∧BSU)0(CP∞ × CP∞)

for some bij ∈ K2(i+j)BSU . Indeed we have bij = aij (compare [Lau02])

bij =
∑
k,l≥1

bij(1 ∧ η)∗〈βi ⊗ βj, xkyl〉

= 〈(1 ∧ η)∗βi ⊗ (1 ∧ η)∗βj, 1 +
∑
k,l≥1

bklx
kyl〉

= 〈(1 ∧ η)∗(βi ⊗ βj), f∗(η ∧ 1)〉
= (µf(1 ∧ η))∗(βi ⊗ βj) = aij.
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Lemma 5.3. For the power series f(x, y) above, the following is straightforward to check:

f(x, 0) = f(0, y) = 1

f(x, y) = f(y, x)

f(x, y)f(x+Ĝm
y) = f(x+Ĝm

y, z)f(y, z).

In the sense of [AHS01] such an f is called a 2-structure.

Comparison of the coefficients of x2yz gives the relation

a21 + 2a22 = a2
11 + a31.

With this we calculate

ψ3−1

d5 = ψ3−1

f∗(β1 ⊗ β4) = f∗(3β1 ⊗ (15β2 − 81β3 + 81β4))

= 243d5 − 243a13 + 45a12

= 243d5 − 243a13 + 45a12 + 243(2a22 + a21 − a2
11 − a31)

= 243d5 + 486(−a13 + a22) + 288a12 − 243a2
11

= 243d5 + 486d4 + 288d3 − 243d2
2.

To calculate further operations we need some additional relations:

coefficient of relation
x2yz 2a22 − a31 + a21 + a2

11

x3yz 2a14 + a11a12 − a13 − a23

x2y2z 6a14 − 6a13 + 2a22 − a2
11 − a11

x3yz2 3a33 − 2a23 + a11a13 − a11a22 − a2
12

x4yz 5a15 − 2a24 − 3a14 + 2a11a13 + a2
12

With this we compute:

ψ3−1

d6 = ψ3−1

(f∗(β1 ⊗ β5) + f∗(β2 ⊗ β4)− f∗(β3 ⊗ β3))

= f∗(3β1 ⊗ (−6β2 + 108β3 − 324β4 + 243β5))

+f∗((−3β1 + 9β2)⊗ (15β2 − 81β3 + 81β4))

−f∗((β1 − 18β2 + 27β3)⊗ (β1 − 18β2 + 27β3))

= 729d6 − 1215a14 + 243a23 + 513a13 − 189a22 − 27a12 − a11

[+243(2a14 − a23 + a11a12 − a13)]

= 729d6 − 729d5 + 270a13 − 189a22 + 243a11a12 − 27a12 − a11

[−81(−a13 + 2a22 + a12 + a2
11)]

= 729d6 − 729d5 − 351d4 + 243d2d3 − 108d3 − 81d2
2 − d2.

Analogously we can go on

ψ3−1

d7 = ψ3−1

f∗(β1 ⊗ β6) = 37d7 + 3a12 − 243a13 + 1782a14 − 3645a15

and reduce the term above to polynomials in the dk.

3. Bott’s formula and cannibalistic classes

Due to Bott [Bot69], one can calculate Adams operations on the Thom space by calculat-
ing them on the base space, multiplying with the cannibalistic class θk(E) and applying
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the Thom isomorphism. Here the Thom space is constructed with respect to the bundle
E. Let

i! : K(X)→ K̃(XE)

denote the Thom isomorphism; then we have

ψk(i!x) = i!θk(E)ψk(x)

for x ∈ K(X).

3.1. Stable cannibalistic classes in K. In order to calculate Adams operations
on K∗MSU using the formula above, one has to calculate cannibalistic classes. These
classes are introduced by Bott in [Bot69] and are defined for complex vector bundles
over compact spaces X and are characterized by the properties

• θk(L) = 1 + L∗ + ...+ (L∗)k−1 for all line bundles L
• θk(ξ + ξ′) = θk(ξ)θk(ξ′) for all complex bundles ξ, ξ′.

In particular, this implies that for the trivial bundle of rank n (simply denoted by n) we

have θk(ξ+n) = knθk(ξ). To define stable operations θ̂k we assume k to be an odd number
and set

θ̂k(ξ) :=
θk(ξ)

kdimCξ
∈ K(X).

Next we calculate the cannibalistic classes for the universal SU -bundle

(1− L1)(1− L2)

��

CP∞ × CP∞ // BSU.

Notice that it is indeed an SU bundle because the first Chern class vanishes:

c(1 + L1L2 − L1 − L2) =
1 · c(L1L2)

c(L1)c(L2)
=

1 + x1 + x2

(1 + x1)(1 + x2)

= (1 + x1 + x2)(1− x1 + x2
1...)(1− x2 + x2

2...)

= 1 + (x1 + x2 − x1 − x2) + ...

Since θk(1) = k and θk(L) = 1 + L∗ + ...+ (L∗)k−1 = 1−(L∗)k

1−L∗ (formally) we have

θk((1− L1)(1− L2)) = θk(1)θk(L1L2)θ
k(−L1)θ

k(−L2)

= k
(1− (L∗1L

∗
2)
k)(1− L∗1)(1− L∗2)

(1− L∗1L∗2)(1− (L∗1)
k)(1− (L∗2)

k)
.

Remark 5.1. Choosing x = 1− L1 and y = 1− L2 as the generators of

K∗(CP∞ × CP∞) ∼= Z2[[x, y]]

we can change to another orientation x′ = 1− 1
1−x = −

∑
k≥1 x

k. Hence we get x′ = 1−L∗1
and y′ = 1− L∗2, respectively. We compute

θ̂k((1− L1)(1− L2)) = k
qk(x

′ + y′ − x′y′)
qk(x′)qk(y′)

where qk(x
′) = 1−(1−x′)k

x′
.
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We notice that 1−L = −L⊗ (1−L∗) and with the notations x = 1−L1 and y = 1−L2

we get
L∗1 = (1− x)−1 and L∗2 = (1− y)−1.

Hence for k = 3 we can write

θ3((1− L1)(1− L2)) = 3
1 + (1− x)−1(1− y)−1 + (1− x)−2(1− y)−2

(1 + (1− x)−1 + (1− x)−2)(1 + (1− y)−1 + (1− y)−2)

= 3
(1− x)(1− y) + 1 + (1− x)−1(1− y)−1

((1− x) + 1 + (1− x)−1)((1− y) + 1 + (1− y)−1)

and see that the cannibalistic class is invariant under ψ−1 : L 7→ L∗.

3.2. Calculating θ3((1− L1)(1− L2)).

Lemma 5.4. For the cannibalistic class θ3 we have the description

θ3((1− L1)(1− L2)) = 3
1 + (1− x)(1− y) + (1− x)2(1− y)2

(3− 3x+ x2)(3− 3y + y2)

and the coefficients of the power expansion

1

3− 3x+ x2
=
∑
k≥0

akx
k

satisfy the recurrence relation a0 = a1 = 1
3

and an+2 = an+1 − 1
3
an, or more explicitly,

a6n = a6n+1 = (−1)n 3−(3n+1)

a6n+2 = (−1)n 2 · 3−(3n+2)

a6n+3 = (−1)n 3−(3n+2)

a6n+4 = (−1)n 3−(3n+3)

a6n+5 = 0.

Proof. Let f(x) =
∑

k≥0 akx
k denote the generating function of the recurrence rela-

tion a0 = a1 = 1
3

and ak+2 = ak+1 − 1
3
ak. Then we have

f(x) =
∑
k≥0

akx
k = a0 + a1x+

∑
k≥2

(ak−1 −
1

3
ak−2)x

k

= a0 + a1x+ x(f(x)− a0)−
1

3
x2f(x)

= a0 + f(x)(x− 1

3
x2),

hence

f(x) =
1

3− 3x+ x2
.

�

Corollary 5.1. The coefficients cmn of the power expansion of the cannibalistic class

θ3((1− L1)(1− L2)) = 3
1 + (1− x)(1− y) + (1− x)2(1− y)2

(3− 3x+ x2)(3− 3y + y2)
=
∑
m,n≥0

cmnx
myn
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are given by

cmn = 9aman − 9am−1an − 9aman−1 + 3am−2an + 15am−1an−1 + 3aman−2

−6am−2an−1 − 6am−1an−2 + 3am−2an−2.

The coefficents with negative indices are understood to be zero.

Corollary 5.2. The coefficients cmn are symmetric, i.e. cmn = cnm and we have

c0n =

{
1 for n = 0

0 for n ≥ 1
and c1n = 3an+1.

If both indices are ≥ 2 we have with 0 ≤ i, k ≤ 5:

c6m+i,6n+k = (−1)m+n · 3−(3m+3n+b i+k
2 c)bik

with

bik =


2 if i− k = 0

1 if i− k = ±1,±2

0 if i− k = ±3

−1 if i− k = ±4,±5.

Corollary 5.3. We can also write this as

cmn = 3−b
m+n

2 c


2 if m− n ≡ 0 mod 6

1 if m− n ≡ ±1,±2 mod 12

0 if m− n ≡ 3 mod 6

−1 if m− n ≡ ±4,±5 mod 12

for positive indices, whereas

c0n =

{
1 for n = 0

0 else.

4. Spherical classes in K∗MSU

We are now able to calculate spherical classes in K∗MSU . For this purpose we collect all
relevant notions: Let a = τ ∗b ∈ K0MSU be an arbitrary class, f the classifying map of
the virtual SU -bundle (1− L1)(1− L2) and

dk =
k−1∑
i=1

nikf∗(βi ⊗ βk−i)

the generators of K∗BSU ∼= π∗K[d2, d3, ...]. Writing

θ3((1− L1)(1− L2)) =
∑
m,n≥0

cmnx
myn
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for the cannibalistic class of the SU -bundle above we get:

〈a, ψ3−1

M dk〉 = 〈ψ3
M(τ ∗b), dk〉 = 〈θ3τψ3

B(b), dk〉

= 〈θ3((1− L1)(1− L2))ψ
3
B(b),

k−1∑
i=1

nikf∗(βi ⊗ βk−i)〉

=
k−1∑
i=1

nik
∑
m,n≥0

cmn〈f ∗(ψ3
B(b)), βi−m ⊗ βk−i−n〉

=
k−1∑
i=1

nik
∑
m,n≥0

cmn〈b, ψ3−1

B f∗(βi−m ⊗ βk−i−n)〉.

Lemma 5.5. The Adams operations on K∗MSU are computable via the formula

ψ3−1

M Φ∗dk = Φ∗
( ∑
m,n≥0

cmn

k−1∑
i=1

nikψ
3−1

B f∗(βi−m ⊗ βk−i−n)
)
,

where Φ∗ is the Thom isomorphism.

Sample calculations (dropping the Thom isomorphism from the notation and writing ψ3−1

M

for the Adams operation on the level of the Thom spectrum) give with respect to the nik
chosen above:

ψ3−1

M d2 = 9d2 +
2

3

ψ3−1

M d3 = 27d3 − 9d2 +
1

3

ψ3−1

M d4 = 81d4 + 2d2 +
1

3

ψ3−1

M d5 = 243d5 + 486d4 + 288d3 − 243d2
2.

4.1. Construction of spherical classes. Modulo 2 and omitting the Thom isomor-
phism, we get:

ψ3−1

M d2 = d2

ψ3−1

M d3 = d3 + d2 + 1

ψ3−1

M d4 = d4 + 1

ψ3−1

M d5 = d5 + d2
2.

These calculations give the following spherical classes modulo 2:

• d2 in degree 4

• d2
3 + d5 + d4 + d2

2 in degree 12

• d2
4 + d4 in degree 16

• d2
5 + d2

2d5 in degree 20.

Remark 5.2. We observe that there is no spherical class in degree 6 and conjecture that
there is no spherical class in degree 4k + 2.
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Corollary 5.4. Since π6Tζ = 0, this gives MSU6 = 0 in the K(1)-local world.

4.2. Lifting mod p spherical classes. Having mod p spherical classes we are in-
terested in getting integral spherical classes and constructing a spherical class basis for
K∗MSU . We use the following algebraic lemma.

Lemma 5.6. Assume A and B to be p-complete. Let f : A → B ∼= Zp[bi] be such that
there are ai ∈ A with f(ai) ≡ bi modulo p. Then f : A→ B is surjective.

We want to apply this lemma for A = K∗MSU and assume that we have a basis of
mod p spherical classes A ∼= Zp[ai] with ψ3ai ≡ ai modulo p.

Proposition 5.1. There are elements bi such that

(1) A ∼= Zp[bi] and
(2) ψ3bi = bi

Proof. We make use of the bootstrap method: Assume ψ3ai = ai + pa′ with a′ =∑
cjaj. Then we have

ψ3pa′ = pψ3a′ = pψ3(
∑

ciai) = p(
∑

ciψ
3ai) + p2a′′,

and go on the same way. �

5. Umbral calculus

5.1. Mahler series in p-adic analysis. The binomial polynomials define continuous
functions (

·
k

)
: Zp → Zp, x 7→

(
x

k

)
.

Since N is dense in Zp, we have
∥∥( ·

k

)∥∥ = supN
∣∣(n
k

)∣∣ ≤ 1. Because of
(
k
k

)
= 1, equality holds

in fact. In p-adic analysis we know that for a given sequence (ai)i≥0 in Cp with |ai| → 0,
the series

∑
k≥0 ak

( ·
k

)
is a continuous function f : Zp → Cp. It is quite remarkable that

conversely, every continuous function Zp → Cp can be represented this way. This result
has been obtained by Mahler.

Definition 5.2. A Mahler series is a series
∑

k≥0 ak
( ·
k

)
with coefficients |ak| → 0 in Cp.

With the notation of the norm ‖f‖ = supZp
|f(x)| and the finite-difference operator ∇

(∇f)(x) = f(x+ 1)− f(x),

and its k-fold iterated version ∇k, we have:

Theorem 5.2 (Mahler). Let f : Zp → Cp be a continuous function and put ak = ∇kf(0).
Then |ak| → 0, and the series

∑
k≥0 ak

( ·
k

)
converges uniformly to f . Moreover ‖f‖ =

supk≥0 |ak|.
5.2. The ring of numerical polynomials. Let A denote the ring

A := {f ∈ Q[ω] such that f(Z) ⊂ Z},
which we call the ring of numerical poynomials.

Remark 5.3. This ring has been studied for a long time - historically Pascal considered

elements
(
w
i

)
= w(w−1)...(w−i+1)

i!
and Fermat studied wp−w

p
for p a prime. In fact Newton

found out that 1, w,
(
w
2

)
,
(
w
3

)
, ... are a basis for A.
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In p-adic analysis the p-completion of A, i.e.

Âp = {f ∈ Qp[[ω]] : f(Zp) ⊂ Zp}
is, by a theorem of Mahler, the ring of continuous functions f : Zp → Zp, and its elements
can be written as Mahler series

f(ω) =
∞∑
i=0

ai

(
ω

i

)
with ai → 0.

Integrally we can identify K0CP∞ ∼= A, i.e. the K-homology of CP∞ equals the ring of
numerical polynomials. The duality

K0CP∞ ∼= Hom(K0CP∞,Z)

is given as follows: The series
∑
ait

i ∈ Z[[t]] ∼= K0CP∞ maps to the homomorphism given
by
(
w
i

)
7→ ai on basis elements.

5.3. Alternative description of the Adams operations. We have seen that
K∗CP∞ is the ring of continuous functions on Zp which are given as Mahler series. Its

module generators βi ∈ K2iCP∞ represent the function βi(T ) =
(
T
i

)
. Application of a

base change leads to an interesting observation: At the prime 2 we have:(
3T

1

)
= 3

(
T

1

)
(

3T

2

)
= 9

(
T

2

)
+ 3

(
T

1

)
(

3T

3

)
= 27

(
T

3

)
+ 18

(
T

2

)
+

(
T

1

)
(

3T

4

)
= 81

(
T

4

)
+ 81

(
T

3

)
+ 15

(
T

2

)
(

3T

5

)
= 243

(
T

5

)
+ 324

(
T

4

)
+ 108

(
T

3

)
+ 6

(
T

2

)
(

3T

6

)
= 729

(
T

6

)
+ 1215

(
T

5

)
+ 594

(
T

4

)
+ 81

(
T

3

)
+

(
T

2

)
and this is exactly the Adams operation ψ3−1

on βk with respect to the generator x =
L − 1 ∈ K∗CP∞. The generator used before results in the same operation up to an
alternating sign.

Lemma 5.7. The Adams operation ψ3−1
on K∗CP∞ is given by

ψ3−1

βi(T ) = βi(3T ),

or, equivalently as the Mahler series

ψ3−1

(
T

i

)
=

(
3T

i

)
=
∑
j≥1

aj

(
T

j

)
,

where

aj =
∑

s+t=i−j

(
j

s

)(
s

t

)
3j−t.
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Proof. Due to Mahler’s theorem, the jth coefficient satisfies

aj = ∇j

(
3x

i

)∣∣
x=0

,

i.e. it can be expressed using the j-fold iterated finite difference operator. Starting the
calculations we get

∇
(

3T

i

)
= 3

(
3T

i− 1

)
+ 3

(
3T

i− 2

)
+

(
3T

i− 3

)
.

Comparing this to the calculation of the Adams operation in K∗CP∞ with respect to the
generator x = L− 1 we get

ψ3x = 3x+ 3x2 + x3

and see that taking the jth power of 3x + 3x2 + x3 is exactly the same as taking the
jth iterated finite difference operator ∇j. Hence the calculations coincide and the claim
follows. �

Corollary 5.5. For a 2-adic unit k ∈ Z×
2 we have(

ψk
−1

βi

)
(T ) = βi(kT ) =

(
kT

i

)
.

Proof. Since 3 is a topological generator of Z×
2 , the sequence an = 3n contains a

subsequence (ain)n converging to k, and we have

ψk
−1

βi(T ) = lim
n
ψa

−1
in βi(T ) = lim

n
ψ3−ain βi(T )

= lim
n
ψ3−1 · · ·ψ3−1

βi(T ) = lim
n
βi(3

ainT )

= βi(kT ).

�





CHAPTER 6

Open questions and concluding remarks

Working towards a full E∞ splitting of the K(1)-local bordism spectrum MSU one has to
know that the quotient MSU/Tζ is free in the K(1)-local stable homotopy category. This
implies a basis corresponding to the spherical classes which is geometrically realized as
free E∞ summands TS0. I conjecture that MSU splits at p = 2 as MSU ∼= Tζ∧

∧∞
i=1 TS

0,
which looks very similar to the E∞ splitting of MSpin. Maybe the E∞ comparison map
MSU → MSpin is close to an E∞ equivalence. An indication for this is the vanishing
of MSU6 after K(1)-localization. Integrally this is false, because the comparison map is
neither injective nor surjective on the level of homotopy. To give examples we mention that
HP2 is not a complex manifold, but it is spin, thus the comparison map is not surjective.
While the 3-connected manifold HP2 represents a non-trivial spin bordism class, it does
not admit a stably complex structure (since its signature is odd, cf. [CF66a]). On the
other hand we have MSpin6 = 0, but by construction the projective variety

K = {z ∈ CP4|z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = 0}

has vanishing first Chern class and represents a non-zero class in MSU6. Recall from
[ABP66] that an SU -manifold is null bordant if and only if its Chern numbers and KO-
characteristic numbers vanish.

n 0 1 2 3 4 5 6 7 8
πsn Z(2) Z/2 Z/2 Z/8 0 0 Z/2 Z/16 Z/2⊕ Z/2

Im(J)n Z(2) Z/2 Z/2 Z/8 0 0 Z/2 Z/16 Z/2
KOn Z(2) Z/2 Z/2 0 Z(2) 0 0 0 Z(2)

MSUn Z(2) Z/2 Z/2 0 Z(2) 0 Z(2) 0 Z(2) ⊕ Z(2)

MSpinn Z(2) Z/2 Z/2 0 Z(2) 0 0 0 Z(2) ⊕ Z(2)

The 2-primary part of some relevant homotopy groups

Desiring progress in a full SU -splitting, one has to get a better understanding of the
spherical classes. One approach is to apply better arithmetic techniques, another approach
is to interpret the Adams operations as a precomposition of automorphisms as in the
example of K∗CP∞. Again another access is the study of symmetric 2-cocycles in the
sense of [Lau02] and [AHS01]. This is an interesting arithmetic problem and it poses
quite a challenge to calculate the corresponding spherical classes.

Another problem which is not solved yet is a K(1)-local additive decomposition of MSU
in terms of K-theory. In [Pen82] Pengelley gives a 2-local additive splitting of MSU

MSU(2)
∼=
∨
i

ΣdiBoP ∨
∨
j

Σd′jBP
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into a wedge of suspensions of Brown-Peterson spectra BP and a wedge of suspensions
of other indecomposable spectra BoP , which bear similarities to the BP spectrum and
connective K-theory ko. In [Ho97] Marc Hovey conjectures that the spectrum BoP splits
into a wedge of suspensions of K-theory spectra K and KO, so that in this case MSU
splits additively like

MSU ∼=
∨

K ∨
∨

KO.

Using results from [Hop98], more specifically that π∗K ∧ K ∼= Homcts(Z×
2 , π∗K) and

π∗K ∧KO ∼= Homcts(Z×
2 /{±1}, π∗K), we see that

K∗MSU ∼=
⊕

K∗K ⊕
⊕

K∗KO

∼=
⊕

Homcts(Z×
2 , π∗K)⊕

⊕
Homcts(Z×

2 /{±1}, π∗K).

It is highly desirable to get a precise additive splitting. Such a description would offer
comforting methods to calculate Adams operations.
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