Generalized Torelli Groups

Inaugural-Dissertation
zur
Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von
Marc Siegmund
aus Düsseldorf

8. August 2007

Diese Forschung wurde gefördert durch die Deutsche
Forschungsgemeinschaft im Rahmen des Graduiertenkollegs
'Homotopie und Kohomologie' (GRK 1150)

Aus dem Mathematischen Institut der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Fritz Grunewald
Korreferent: Prof. Dr. Wilhelm Singhof

Tag der mündlichen Prüfung: 31.10.2007

Abstract

Let F_{n} be the free group on $n \geq 2$ elements and $\operatorname{Aut}\left(F_{n}\right)$ its group of automorphisms. A well-known representation of $\operatorname{Aut}\left(F_{n}\right)$ is given by

$$
\rho_{1}: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n} / F_{n}^{\prime}\right) \cong \operatorname{GL}(n, \mathbb{Z}),
$$

where F_{n}^{\prime} is the commutator subgroup of F_{n}. The kernel of ρ_{1} is called the classical Torelli group. In [5] Grunewald and Lubotzky construct more representations of finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$. By choosing a finite group G and a presentation $\pi: F_{n} \rightarrow G$ they obtain an integral linear representation $\rho_{G, \pi}: \Gamma(G, \pi) \rightarrow \mathcal{G}_{G, \pi}(\mathbb{Z})$, where $\Gamma(G, \pi)$ is a finite index subgroup of $\operatorname{Aut}\left(F_{n}\right)$.

In this thesis I study the special case $G=C_{2}$ of this construction. The map $\rho_{C_{2}, \pi}$ leads to the integral linear representation

$$
\sigma_{-1}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z})
$$

Let K_{n} denote the kernel of σ_{-1}, which fits into the following exact sequence

$$
\begin{equation*}
1 \rightarrow K_{n} \rightarrow \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z}) \rightarrow 1 \tag{0.1}
\end{equation*}
$$

We call the kernel K_{n} a generalized Torelli group. The first main theorem of this thesis states that K_{n} is finitely generated as a group. In the proof we give a set of generators explicitly. Note that this theorem corresponds to the famous theorem of Nielsen and Magnus, which states that the classical Torelli group is finitely generated.

Further we study the abelianized group $K_{n}^{\text {ab }}$, which becomes by the exaxt sequence (0.1) a GL($n-1, \mathbb{Z}$)-module. Finally we consider higher quotients of the lower central series

$$
K_{n}=\gamma_{0}\left(K_{n}\right) \geq \gamma_{1}\left(K_{n}\right) \geq \gamma_{2}\left(K_{n}\right) \geq \gamma_{3}\left(K_{n}\right) \geq \ldots
$$

Our second main theorem states the surprising fact that for $i \geq 1$ the quotients $\gamma_{i}\left(K_{n}\right) / \gamma_{i+1}\left(K_{n}\right)$ are finite abelian groups of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{n, i}}$ with some $b_{n, i} \in \mathbb{N}_{0}$.

Contents

INTRODUCTION vi
Acknowledgment xi
Notation xii
1 Presentation of Groups 1
1.1 Basic concepts 1
1.2 Presentations of $\operatorname{SL}(n, \mathbb{Z})$ and $\operatorname{GL}(n, \mathbb{Z})$ 3
1.3 Some facts about finitely presented groups 9
2 Commutator Calculus 14
3 The classical Torelli Groups 22
3.1 Fundamentals 22
3.2 Series of $\operatorname{IA}\left(F_{n}\right)$ 24
4 Generalized Torelli Groups 28
4.1 Construction of the representation $\rho_{G, \pi}$ 28
4.2 The representation σ_{-1} 30
4.3 The kernel of σ_{-1} 35
5 Some matrix groups 55
5.1 A modified Euclidean algorithm 55
5.2 Generators for the matrix groups 57
6 Lower central series quotients of K_{n} 63
6.1 Modules over $\mathrm{SL}(n, \mathbb{Z})$ and $\mathrm{GL}(n, \mathbb{Z})$ 63
6.2 The abelianized group $K_{n}^{\text {ab }}$ 71
6.3 The special case $n=2$ 78
6.4 Higher quotients of the lower central series 80
7 Further results 85
7.1 $\mathrm{IA}\left(F_{n-1}\right)$ as a subgroup of K_{n} 85
7.2 The relation between $\operatorname{IA}\left(F_{n}\right)$ and K_{n} 87
8 Appendix 91
Bibliography 93

Introduction

Let F_{n} be the free group on $n \geq 2$ elements and $\operatorname{Aut}\left(F_{n}\right)$ its group of automorphisms. A theorem of Nielsen says that $\operatorname{Aut}\left(F_{n}\right)$ is a finitely presented group. A well-known representation of $\operatorname{Aut}\left(F_{n}\right)$ is given by

$$
\rho_{1}: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n} / F_{n}^{\prime}\right) \cong \operatorname{GL}(n, \mathbb{Z}),
$$

where F_{n}^{\prime} is the commutator subgroup of F_{n} and $\rho_{1}(\varphi)$ is the automorphism of the abelian group F_{n} / F_{n}^{\prime} induced by $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. The kernel of ρ_{1} is called the classical Torelli group and is denoted by $\operatorname{IA}\left(F_{n}\right)$.

A theorem of Nielsen and Magnus ([13], [11]) says that the classical Torelli group is finitely generated. Taking a free basis x_{1}, \ldots, x_{n} of F_{n} they prove:

Theorem: The group $\mathrm{IA}\left(F_{n}\right)$ is generated by the following automorphisms

$$
K_{i j}:\left\{x_{i} \mapsto x_{j} x_{i} x_{j}^{-1}\right\} \quad \text { and } \quad K_{i j k}:\left\{x_{i} \mapsto x_{i} x_{j} x_{k} x_{j}^{-1} x_{k}^{-1}\right\}
$$

(values not given are identical to the argument).

By the exactness of the sequence

$$
1 \rightarrow \mathrm{IA}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n}\right) \rightarrow \mathrm{GL}(n, \mathbb{Z}) \rightarrow 1
$$

the abelianized group $\operatorname{IA}\left(F_{n}\right)^{\text {ab }}$ becomes a $\operatorname{GL}(n, \mathbb{Z})$-module. It is a wellknown theorem of Formanek (see [6]) that

$$
\operatorname{IA}\left(F_{n}\right)^{\mathrm{ab}} \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}^{n} \oplus V_{n}
$$

as a $\operatorname{GL}(n, \mathbb{C})$-module, where V_{n} is a certain irreducible $\mathrm{GL}(n, \mathbb{C})$-module of dimension $\operatorname{dim}_{\mathbb{C}}\left(V_{n}\right)=n(n+1)(n-2) / 2$.

In [5] Grunewald and Lubotzky construct more representations of finite index subgroups of $\operatorname{Aut}\left(F_{n}\right)$. Let G be a finite group and $\pi: F_{n} \rightarrow$
G a surjective homomorphism with kernel R. Define the finite index subgroup $\Gamma(G, \pi)$ of $\operatorname{Aut}\left(F_{n}\right)$ by
$\Gamma(G, \pi):=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid \varphi(R)=R, \varphi\right.$ induces the identity on $\left.F_{n} / R\right\}$.
Define further $\bar{R}:=R / R^{\prime}=R^{\text {ab }}$ to be the abelianization of R. Let t denote the \mathbb{Z}-rank of this finitely generated free abelian group. The group G acts on \bar{R} by conjugation. Every automorphism $\varphi \in \Gamma(G, \pi)$ induces a linear automorphism $\bar{\varphi}$ of \bar{R} which is G-equivariant. Let

$$
\mathcal{G}_{G, \pi}:=\operatorname{Aut}_{G}\left(\mathbb{C} \otimes_{\mathbb{Z}} \bar{R}\right) \leq \operatorname{GL}(t, \mathbb{C}) .
$$

The group $\mathcal{G}_{G, \pi}$ is the centralizer of the group G acting on $\mathbb{C} \otimes_{\mathbb{Z}} \bar{R}$ through matrices with rational entries. Define

$$
\mathcal{G}_{G, \pi}(\mathbb{Z}):=\left\{\Phi \in \mathcal{G}_{G, \pi} \mid \Phi(\bar{R})=\bar{R}\right\} .
$$

Choosing a \mathbb{Z}-basis of \bar{R}, we obtain an integral linear representation

$$
\begin{aligned}
\rho_{G, \pi}: \Gamma(G, \pi) & \rightarrow \mathcal{G}_{G, \pi}(\mathbb{Z}) \\
\varphi & \mapsto \bar{\varphi} .
\end{aligned}
$$

In the special case $G=\{1\}$ this construction leads to the classical representation $\rho_{1}: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{GL}(n, \mathbb{Z})$. Thus the kernel of $\rho_{G, \pi}$ can be considered as a natural generalization of $\operatorname{IA}\left(F_{n}\right)$. Therefore it is called a generalized Torelli group.

In my work I study another special case of the construction by Grunewald and Lubotzky. Let $F_{n}(n \geq 2)$ be the free group generated by $x, y_{1}, \ldots, y_{n-1}$ and C_{2} the cyclic group of order two generated by g. Moreover let $\pi: F_{n} \rightarrow C_{2}$ be the surjective homomorphism defined by

$$
\pi(x):=g, \pi\left(y_{1}\right):=1, \ldots, \pi\left(y_{n-1}\right):=1 .
$$

The kernel R of this map is, by the formula of Reidemeister and Schreier, a free group of rank $2 n-1$, which means that $t=2 n-1$. By the construction above we obtain a homomorphism

$$
\rho_{C_{2}, \pi}: \Gamma\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(\bar{R}) \cong \mathrm{GL}(2 n-1, \mathbb{Z})
$$

We set

$$
\Gamma^{+}\left(C_{2}, \pi\right):=\left\{\varphi \in \Gamma\left(C_{2}, \pi\right) \mid \operatorname{det}\left(\rho_{1}(\varphi)\right)=1\right\} .
$$

This is a subgroup of index two in $\Gamma\left(C_{2}, \pi\right)$. An important feature is that we are able to present a finite set of generators of $\Gamma^{+}\left(C_{2}, \pi\right)$ (see Chapter 4.2). The restriction of $\rho_{C_{2}, \pi}$ leads to the representation

$$
\rho_{C_{2}, \pi}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(\bar{R}) \cong \mathrm{GL}(2 n-1, \mathbb{Z}) .
$$

The \mathbb{Q}-vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \bar{R}$ decomposes as $\mathbb{Q} \otimes_{\mathbb{Z}} \bar{R}=V_{1} \oplus V_{-1}$, where V_{1}, V_{-1} are the ± 1 eigenspaces of g, respectively. Set $\bar{R}_{1}:=\bar{R} \cap V_{1}$ and $\bar{R}_{-1}:=\bar{R} \cap V_{-1}$. It turns out that the \mathbb{Z}-rank of \bar{R}_{1} equals n and the \mathbb{Z}-rank of \bar{R}_{-1} equals $n-1$. Since $\Gamma^{+}\left(C_{2}, \pi\right)$ leaves \bar{R}_{1} and \bar{R}_{-1} invariant, we obtain representations

$$
\sigma_{1}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n, \mathbb{Z}), \quad \sigma_{-1}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z})
$$

The map σ_{1} is equivalent to ρ_{1} restricted to $\Gamma^{+}\left(C_{2}, \pi\right)$. In contrast the representation σ_{-1} is somewhat less expected and is studied in this work. In Chapter 4.2 it is shown, that the map σ_{-1} is surjective by analysing the images of the generators of $\Gamma^{+}\left(C_{2}, \pi\right)$. Let K_{n} denote the kernel of σ_{-1}, which fits into the following exact sequence

$$
1 \rightarrow K_{n} \rightarrow \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z}) \rightarrow 1 .
$$

By the exactness of this sequence, the index of K_{n} in $\Gamma^{+}\left(C_{2}, \pi\right)$ is infinite for $n \geq 3$ and two for $n=2$. The first main theorem of this thesis states that K_{n} is finitely generated as a group. The proof, in which the generators are given explicitly, is provided in Chapter 4.3. As a corollary we obtain the following theorem.

Theorem: Let $n \geq 2$. The group K_{n} is generated by the following automorphisms:

$$
\begin{aligned}
& \varepsilon_{i}:\left\{x \mapsto x y_{i}\right\}, \\
& \psi_{i}^{2}:\left\{y_{i} \mapsto y_{i} x^{2}\right\}, \\
& \alpha_{i}:\left\{\begin{array}{rll}
x & \mapsto & x^{-1} \\
y_{i} & \mapsto & x y_{i}^{-1} x^{-1}
\end{array}\right\}
\end{aligned}
$$

for $1 \leq i \leq n-1$ (values not given are identical to the argument). In particular K_{n} is finitely generated as a group.

Note that this theorem corresponds to the theorem of Nielsen and Magnus. The idea of the proof is the following. Starting with a finite presentation of $\mathrm{GL}(n-1, \mathbb{Z})$ and the generator set of $\Gamma^{+}\left(C_{2}, \pi\right)$ we are able to construct a finite number of elements in K_{n} whose normal closure coincides with K_{n}. Then we show that the group generated by these elements is already a normal subgroup of $\Gamma^{+}\left(C_{2}, \pi\right)$. This means that K_{n} is finitely generated as a group.

As above K_{n}^{ab} becomes a $\mathrm{GL}(n-1, \mathbb{Z})$-module. In Chapter 6 we study the structure of this module.

Proposition: Let $n \geq 2$. Then the group K_{n}^{ab} is generated by $\left[\varepsilon_{i}\right]$, $\left[\alpha_{i}\right]$ and $\left[\psi_{i}^{2}\right]$ for $i=1, \ldots, n-1$. The order of $\left[\alpha_{i}\right]$ is either one or two. For $n \geq 3$ the order of $\left[\psi_{i}^{2}\right]$ is also either one or two.

In Chapter 6.2 we construct for $n \geq 3$ a surjective $\mathrm{GL}(n-1, \mathbb{Z})$-equivariant homomorphism

$$
\Phi_{n}: V_{n-1} \oplus M_{n-1} \rightarrow K_{n}^{\mathrm{ab}}
$$

where $V_{n-1} \oplus M_{n-1}$ is a certain $\operatorname{GL}(n-1, \mathbb{Z})$-module with underlying abelian group $\left(\mathbb{Z}^{n-1} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{n-1}\right) \oplus(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$. For the precise structure of $V_{n-1} \oplus M_{n-1}$ see Chapter 6.1. It is difficult to compute the kernel of Φ_{n}, but I conjecture that the kernel is trivial:

Conjecture: Let $n \geq 3$. Then the $\mathrm{GL}(n-1, \mathbb{Z})$-equivariant epimorphism

$$
\Phi_{n}: V_{n-1} \oplus M_{n-1} \rightarrow K_{n}^{\mathrm{ab}}
$$

is an isomorphism.

Chapter 6.4 is concerned with higher quotients of the lower central series

$$
K_{n}=\gamma_{0}\left(K_{n}\right) \geq \gamma_{1}\left(K_{n}\right) \geq \gamma_{2}\left(K_{n}\right) \geq \gamma_{3}\left(K_{n}\right) \geq \ldots
$$

The second main theorem states the surprising fact that the quotients $\gamma_{i}\left(K_{n}\right) / \gamma_{i+1}\left(K_{n}\right)$ are finite for $i \geq 1$.

Theorem: Let $n \geq 2$ and $i \geq 1$. Then the group $\gamma_{i}\left(K_{n}\right) / \gamma_{i+1}\left(K_{n}\right)$
is a finite abelian group of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{n, i}}$ with

$$
0 \leq b_{n, i} \leq(3 n-3)^{i-1} \cdot\left(3 n^{2}-7 n+4\right)
$$

In the special case $n=2$ we give a finite presentation of K_{2} and obtain that the group $K_{2}^{\text {ab }}$ is isomorphic to $\mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}$. Furthermore, in this case it is possible to compute the exponents $b_{2, i}$. Here is the result for $b_{2,1}, \ldots, b_{2,9}$:

$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$	$b_{2,6}$	$b_{2,7}$	$b_{2,8}$	$b_{2,9}$	\ldots
2	4	6	10	14	22	32	48	70	

More information on the $b_{2, i}$ is contained in Chapter 6.3.

Acknowledgment

First of all, I would like to thank Prof. Dr. Fritz Grunewald for being an excellent doctoral adviser. He suggested this project and I am grateful for his continuous encouragement. He always answered my questions and helped me to enhance this work. His support also enabled me to visit various national and international conferences.

Also, I thank Prof. Dr. Wilhelm Singhof for being the second examiner of this thesis.

During the last two years I was financially supported by the Graduiertenkolleg 1150 'Homotopie und Kohomologie'. This made this work possible in the given time. Therefore I would like to thank the organizers of the GRK 1150.

Further, I thank Daniel Appel and Saeid Hamzeh Zarghani for proofreading this thesis. Their helpful suggestions and comments made my work more readable and understandable.

I would like to thank Daniel Appel, Ferit Deniz, Christian Löffelsend, Dr. Evija Ribnere and Saeid Hamzeh Zarghani for all the mathematical discussions and their helpful suggestions.

Especially, I thank my girlfriend Nora Sokoließ and my parents for their understanding and the non-mathematical support.

Notation

In this thesis we generally apply functions on the left, i.e. the image of x under a function φ is written as $\varphi(x)$. If $\varphi: X \rightarrow Y$ and $\psi: Y \rightarrow Z$ are two functions, we write $\psi \circ \varphi: X \rightarrow Z$ for the product of φ and ψ, i.e. $(\psi \circ \varphi)(x)=\psi(\varphi(x))$.

G, H, \ldots	Groups
$\alpha, \beta, \gamma, \ldots$	Homomorphisms
x, y, z, \ldots	Elements of a group
$[x, y]$	$x y x^{-1} y^{-1}$
$H \cong G$	H is isomorphic to G
$H \leq G, H<G$	H is a subgroup, a proper subgroup of G
$\left\langle G_{i} \mid i \in I\right\rangle$	subgroup generated by subsets G_{i} of a group
$\langle X \mid R\rangle$	Group presented by generators X
	and relators R
F_{n}	Free group on n generators
$\operatorname{Aut}(G)$	Automorphism group of a group G
$\operatorname{Hom}_{\Omega}(G, H)$	Set of Ω-homomorphisms from G to H
$G^{\prime}=\gamma_{1}(G)=[G, G]$	Derived subgroup of a group G
$G^{\text {ab }}$	G / G^{\prime}
$\gamma_{i}(G)$	i-th term of the lower central series of G
$\mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$	Sets of natural numbers, natural numbers
	with 0, integers, rational numbers, real
C_{n}	numbers, complex numbers
$\mathrm{GL}(V)$	$\mathbb{Z} / n \mathbb{Z}$
	Group of nonsingular linear transformations
$\mathrm{GL}(n, \mathbb{Z}), \mathrm{SL}(n, \mathbb{Z})$	of a vector space V I_{n}
	General linear and special linear groups
$(n \times n)$-identity matrix	

Let us introduce some elementary matrices in $\operatorname{SL}(n, \mathbb{Z})$ and $\operatorname{GL}(n, \mathbb{Z})$ for $n \geq 2$ and $1 \leq i, j \leq n$ (our convention is that entries not given are identical to zero):

- Let $E_{i j} \in \operatorname{SL}(n, \mathbb{Z})$ be the $(n \times n)$-identity matrix with an additional 1 in the (i, j)-th position $(i \neq j)$

$$
E_{i j}:=\left(\begin{array}{cccccccccccc}
1 & & & \mid & & & & \mid & & & \\
& \ddots & & & & & & & & & \\
& & 1 & \mid & & & & \mid & & & \\
- & - & - & 1 & - & - & - & 1 & - & - & - \\
& & & \mid & 1 & & & \mid & & & \\
& & & & & \ddots & & & & & \\
& & & \mid & & & 1 & \mid & & & \\
- & - & - & 0 & - & - & - & 1 & - & - & - \\
& & & \mid & & & & \mid & 1 & & \\
& & & & & & & & & \ddots & \\
& & & \mid & & & & \mid & & & 1
\end{array}\right) \leftarrow i \text {-th row }
$$

- Let $E_{i j}(a) \in \mathrm{SL}(n, \mathbb{Z})$ be the $(n \times n)$-identity matrix with an additional $a \in \mathbb{Z}$ in the (i, j)-th position $(i \neq j)$

$$
E_{i j}(a):=\left(\begin{array}{cccccccccccc}
1 & & & \mid & & & & \mid & & & \\
& \ddots & & & & & & & & & \\
& & 1 & \mid & & & & \mid & & & \\
- & - & - & 1 & - & - & - & a & - & - & - \\
& & & \mid & 1 & & & \mid & & & \\
& & & & & \ddots & & & & & \\
& & & \mid & & & 1 & \mid & & & \\
- & - & - & 0 & - & - & - & 1 & - & - & - \\
& & & \mid & & & & \mid & 1 & & \\
& & & & & & & & & \ddots & \\
& & & & & & \mid & & & 1
\end{array}\right) \leftarrow i \text {-th row }
$$

- Let $P_{i j} \in \mathrm{SL}(n, \mathbb{Z})$ be the following permutation matrix $(i \neq j)$

$$
P_{i j}:=\left(\begin{array}{cccccccccccc}
1 & & & \mid & & & & \mid & & & \\
& \ddots & & & & & & & & & \\
& & 1 & \mid & & & & \mid & & & \\
- & - & - & 0 & - & - & - & 1 & - & - & - \\
& & & \mid & 1 & & & \mid & & & \\
& & & & & \ddots & & & & & \\
& & & \mid & & & 1 & \mid & & & \\
- & - & - & 1 & - & - & - & 0 & - & - & - \\
& & & \mid & & & & \mid & 1 & & \\
& & & & & & & & & \ddots & \\
& & & \mid & & & \mid & & & 1
\end{array}\right) \leftarrow j \text {-th row }
$$

- Let $O_{i} \in \mathrm{GL}(n, \mathbb{Z})$ be the following diagonal matrix with a -1 in the (i, i)-th position

$$
O_{i}:=\left(\begin{array}{ccccccc}
1 & & & \mid & & & \\
& \ddots & & & & & \\
& & 1 & \mid & & & \\
- & - & - & (-1) & - & - & - \\
& & & \mid & 1 & & \\
& & & & & \ddots & \\
& & & \mid & & & 1
\end{array}\right) \leftarrow i \text {-th row }
$$

- Let $O_{1 i} \in \mathrm{SL}(n, \mathbb{Z})$ be the following diagonal matrix with a -1 in the $(1,1)$-th and in the (i, i)-th position $(i \neq 1)$

$$
O_{1 i}:=\left(\begin{array}{cccccccc}
-1 & & & & \mid & & & \\
& 1 & & & & & & \\
& & \ddots & & \mid & & & \\
& & & 1 & & & & \\
- & - & - & - & (-1) & - & - & - \\
& & & & \mid & 1 & & \\
& & & & & & \ddots & \\
& & & & & \mid & & \\
& 1
\end{array}\right) \leftarrow i \text {-th row }
$$

Chapter 1

Presentation of Groups

In this thesis, we often work with finite presentations of groups. The aim of this chapter is to give an introduction to this subject. In Section 1.1 the definition and notations of presentations are given. Section 1.2 is devoted to finite presentations of $\operatorname{SL}(n, \mathbb{Z})$ and $\mathrm{GL}(n, \mathbb{Z})$. These fundamental presentations are used consistently in the whole thesis. The last Section 1.3 is concerned with the following problem. Given a surjective homomorphism $\varphi: G \rightarrow H$ of a finitely generated group G onto a finitely presented group H. What can we say about the kernel of φ, i.e. is the kernel finitely generated? If the answer is positive, we give a method to find a set of generators. These ideas will be very useful in the proof of the main theorem in Chapter 4.

1.1 BASIC CONCEPTS

A well-known theorem in the theory of free groups states that every group G is a homomorphic image of some free group. This means that for every group G, there exists a surjective homomorphism $\pi: F \rightarrow G$ of a free group F onto G. This homomorphism π is called a presentation of the group G.

Let $R:=\operatorname{ker}(\pi)$ be the kernel of π. Then R is a normal subgroup of F and $F / R \cong G$. The elements in R are called the relators of the presentation.

Now choose a set of free generators for F, say Y, and a subset $S \subseteq R$ with the property that the normal closure of S equals R. Then the image $X:=\pi(Y)$ is clearly a set of generators of the group G.

The presentation π in combination with the choice of Y and S, determines a set of generators and defining relators for G. We denote this
in the following way

$$
\begin{equation*}
G=\langle Y \mid S\rangle . \tag{1.1}
\end{equation*}
$$

In practice it is often more convenient to list the generators of G and the defining relations $s(X)=1$ for $s \in S$:

$$
\begin{equation*}
G=\langle X \mid s(X)=1, s \in S\rangle \tag{1.2}
\end{equation*}
$$

Here $s(X)$ denotes the word obtained from s by replacing formally the generators Y by the generators X of the group G. We refer to (1.1) or (1.2) as a presentation of the group G.

A group G is said to be finitely generated if there is a presentation $G=\langle Y \mid S\rangle$ such that the set Y is finite. Moreover, it is said to be finitely presented if there exists a presentation such that both Y and S are finite sets. This definition is independent of the particular presentation chosen in the sense of the following proposition.

Proposition 1.1 (B. H. Neumann). Let G be a finitely presented group and let g_{1}, \ldots, g_{n} be generators of G. Then there are defining relations $r_{1}=1, \ldots, r_{m}=1$ such that

$$
G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}=1, \ldots, r_{m}=1\right\rangle .
$$

Proof. See for example [15].

Examples of finitely presented groups, which are interesting for us, are

- cyclic groups of finite order m :

$$
C_{m}=\left\langle g \mid g^{m}=1\right\rangle,
$$

- free groups of finite rank n :

$$
\left.F_{n}=\left\langle g_{1}, \ldots, g_{n}\right| \text { no relations }\right\rangle=\left\langle g_{1}, \ldots, g_{n}\right\rangle
$$

- all finite groups,
- the special linear group $\operatorname{SL}(n, \mathbb{Z})$ with $n \in \mathbb{N}$ and
- the general linear group $\operatorname{GL}(n, \mathbb{Z})$ with $n \in \mathbb{N}$.

1.2 Presentations of $\operatorname{SL}(n, \mathbb{Z})$ and $\operatorname{GL}(n, \mathbb{Z})$

Let $E_{i j} \in \mathrm{SL}(n, \mathbb{Z})$ be the $(n \times n)$-identity matrix with an additional 1 in the (i, j)-th position $(i \neq j)$ and $O_{i}:=\operatorname{diag}(1, \ldots, 1,-1,1, \ldots, 1)$ be the diagonal matrix with a -1 at the (i, i)-th position (see Notation).

The aim of this section is to give finite presentations of $\operatorname{SL}(n, \mathbb{Z})$ and $\mathrm{GL}(n, \mathbb{Z})$ with the matrices $E_{i j}$ and O_{i} as generators. Such a presentation of $\operatorname{SL}(n, \mathbb{Z})$ can be found in the literature (see [12]) and is listed below. However, a finite presentation of this kind of $\operatorname{GL}(n, \mathbb{Z})$ seems not to be published.

Proposition 1.2 (Presentation of $\operatorname{SL}(n, \mathbb{Z})$).
(a) $\mathrm{SL}(1, \mathbb{Z})=1$.
(b) $\mathrm{SL}(2, \mathbb{Z})$ has a finite presentation with the two generators E_{12} and E_{21} subject to the following relations

$$
\begin{aligned}
& E_{12} E_{21}^{-1} E_{12} E_{21} E_{12}^{-1} E_{21}=1, \\
& \left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1
\end{aligned}
$$

(c) For $n \geq 3$, the group $\mathrm{SL}(n, \mathbb{Z})$ has a finite presentation with $n(n-1)$ generators $E_{i j}(i \neq j)$ subject to the following relations

$$
\begin{aligned}
& {\left[E_{i j}, E_{k l}\right]=1 \text { if } j \neq k, i \neq l,} \\
& {\left[E_{i j}, E_{j k}\right]=E_{i k} \text { if } i, j, k \text { are pairwise distinct, }} \\
& \left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1 .
\end{aligned}
$$

Proof. (a) is clear and (c) can be found in [12]. Let us now prove (b). We know from [16] Chapter 1.5, that

$$
\mathrm{SL}(2, \mathbb{Z})=\left\langle X, Y \mid X^{4}=1, X^{2}=Y^{3}\right\rangle,
$$

where $X=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $Y=\left(\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right)$. We now apply Tietze transformations (a good reference for the notion of Tietze transformations is [16]). First notice that

$$
Y^{-1} X=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=E_{12}
$$

$$
Y X^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=E_{21}
$$

Thus, we see that

$$
\begin{aligned}
& \left\langle X, Y \mid X^{4}=1, X^{2}=Y^{3}\right\rangle \\
= & \left\langle X, Y, E_{12}, E_{21} \mid X^{4}=1, X^{2}=Y^{3}, E_{12}=Y^{-1} X, E_{21}=Y X^{-1}\right\rangle \\
= & \left\langle X, Y, E_{12}, E_{21} \mid X=Y E_{12}, X^{4}=1, Y^{-1} X^{2}=Y^{2}, E_{21}=Y X^{-1}\right\rangle \\
= & \left\langle Y, E_{12}, E_{21} \mid\left(Y E_{12}\right)^{4}=1, E_{12} Y E_{12}=Y^{2}, E_{21}=Y E_{12}^{-1} Y^{-1} E_{12}^{-1} E_{12}\right\rangle \\
= & \left\langle Y, E_{12}, E_{21} \mid\left(Y E_{12}\right)^{4}=1, E_{12} Y E_{12}=Y^{2}, E_{21}=Y Y^{-2} E_{12}\right\rangle \\
= & \left\langle Y, E_{12}, E_{21} \mid\left(Y E_{12}\right)^{4}=1, E_{12} Y E_{12}=Y^{2}, Y=E_{12} E_{21}^{-1}\right\rangle \\
= & \left\langle E_{12}, E_{21} \mid\left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1, E_{12} E_{21}^{-1} E_{12} E_{21} E_{12}^{-1} E_{21}=1\right\rangle .
\end{aligned}
$$

Our next aim is to find a finite presentation of $\operatorname{GL}(n, \mathbb{Z})$ in terms of the matrices $E_{i j}$ and O_{i}. To do this, we use the following exact sequence

$$
1 \rightarrow \mathrm{SL}(n, \mathbb{Z}) \rightarrow \mathrm{GL}(n, \mathbb{Z}) \xrightarrow{\text { det }}\{-1,1\} \rightarrow 1
$$

More general, let G be an extension of H by N, say

$$
1 \rightarrow N \xrightarrow{i} G \xrightarrow{\pi} H \rightarrow 1
$$

Assume further that N has the following finite presentation

$$
N=\left\langle n_{1}, \ldots, n_{r} \mid R_{1}\left(n_{1}, \ldots, n_{r}\right), \ldots, R_{k}\left(n_{1}, \ldots, n_{r}\right)\right\rangle
$$

and that H has the finite presentation

$$
H=\left\langle h_{1}, \ldots, h_{s} \mid W_{1}\left(h_{1}, \ldots, h_{s}\right), \ldots, W_{l}\left(h_{1}, \ldots, h_{s}\right)\right\rangle .
$$

We wish to find a finite presentation of G.
Since π is surjective, there are $g_{1}, \ldots, g_{s} \in G$ with $\pi\left(g_{i}\right)=h_{i}$ for $1 \leq i \leq s$. By identifying N with the kernel of π in G, it is easy to see that G is generated by g_{1}, \ldots, g_{s} and n_{1}, \ldots, n_{r}. Thus, we have found generators for G. We start collecting relations in terms of g_{1}, \ldots, g_{s} and n_{1}, \ldots, n_{r} :

- The relations $R_{1}\left(n_{1}, \ldots, n_{r}\right), \ldots, R_{k}\left(n_{1}, \ldots, n_{r}\right)$ in N are, of course, also relations in G.
- Let $W_{i}\left(g_{1}, \ldots, g_{s}\right)$ be the word obtained from $W_{i}\left(h_{1}, \ldots, h_{s}\right)$ by replacing each h_{j} by g_{j}. We have

$$
\pi\left(W_{i}\left(g_{1}, \ldots, g_{s}\right)\right)=W_{i}\left(\pi\left(g_{1}\right), \ldots, \pi\left(g_{s}\right)\right)=W_{i}\left(h_{1}, \ldots, h_{s}\right)
$$

Hence $W_{i}\left(g_{1}, \ldots, g_{s}\right) \in \operatorname{ker}(\pi)$, i.e. $W_{i}\left(g_{1}, \ldots, g_{s}\right) \in N$. This means that we can write $W_{i}\left(g_{1}, \ldots, g_{s}\right)$ as a product of the n_{i}, say

$$
W_{i}\left(g_{1}, \ldots, g_{s}\right)=\widetilde{W}_{i}\left(n_{1}, \ldots, n_{r}\right)
$$

This gives us more relations in G.

- Finally, we mention that, since N is a normal subgroup in G, each conjugate $g_{i} n_{j} g_{i}^{-1}$ and $g_{i}^{-1} n_{j} g_{i}$ is in N. Thus, we get relations

$$
g_{i} n_{j} g_{i}^{-1}=V_{i j}\left(n_{1}, \ldots, n_{r}\right) \quad g_{i}^{-1} n_{j} g_{i}=U_{i j}\left(n_{1}, \ldots, n_{r}\right) .
$$

The next proposition tells us that the above relations are sufficient for a presentation of G.

Proposition 1.3 (P. Hall). Let G be an extension of H by N

$$
1 \rightarrow N \xrightarrow{i} G \xrightarrow{\pi} H \rightarrow 1 .
$$

If N has the finite presentation

$$
N=\left\langle n_{1}, \ldots, n_{r} \mid R_{1}\left(n_{1}, \ldots, n_{r}\right), \ldots, R_{k}\left(n_{1}, \ldots, n_{r}\right)\right\rangle
$$

and H has the finite presentation

$$
H=\left\langle h_{1}, \ldots, h_{s} \mid W_{1}\left(h_{1}, \ldots, h_{s}\right), \ldots, W_{l}\left(h_{1}, \ldots, h_{s}\right)\right\rangle
$$

then G has the following finite presentation

$$
\begin{aligned}
G=\left\langle n_{1}, \ldots, n_{r}, g_{1}, \ldots, g_{s}\right| & R_{1}\left(n_{1}, \ldots, n_{r}\right), \ldots, R_{k}\left(n_{1}, \ldots, n_{r}\right), \\
& g_{i} n_{j} g_{i}^{-1}=V_{i j}\left(n_{1}, \ldots, n_{r}\right), \\
& g_{i}^{-1} n_{j} g_{i}=U_{i j}\left(n_{1}, \ldots, n_{r}\right), \\
& \left.W_{i}\left(g_{1}, \ldots, g_{s}\right)=\widetilde{W}_{i}\left(n_{1}, \ldots, n_{r}\right)\right\rangle,
\end{aligned}
$$

where $g_{i}, V_{i j}\left(n_{1}, \ldots, n_{r}\right), U_{i j}\left(n_{1}, \ldots, n_{r}\right)$ and $\widetilde{W}_{i}\left(n_{1}, \ldots, n_{r}\right)$ are as above.

Proof. For a proof see [10] Chapter 13. But be careful, in the theorem and in the proof the relations $g_{i}^{-1} n_{j} g_{i}=U_{i j}\left(n_{1}, \ldots, n_{r}\right)$ are missing.

Now we can use Proposition 1.3 and the presentation of $\operatorname{SL}(n, \mathbb{Z})$ given in Proposition 1.2 to compute a finite presentation of $\mathrm{GL}(n, \mathbb{Z})$. In order to do this define $O_{1}:=\operatorname{diag}(-1,1, \ldots, 1)$ to be the diagonal matrix with an entry -1 at the first position (see Notation).

Proposition 1.4 (First Presentation of $\mathrm{GL}(n, \mathbb{Z})$).
(a) $\operatorname{GL}(1, \mathbb{Z})=\left\langle O_{1} \mid O_{1}^{2}=1\right\rangle=C_{2}$.
(b) $\mathrm{GL}(2, \mathbb{Z})$ has a finite presentation with the three generators E_{12}, E_{21} and O_{1} subject to the following relations

$$
\begin{aligned}
& E_{12} E_{21}^{-1} E_{12} E_{21} E_{12}^{-1} E_{21}=1, \\
& \left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1, \\
& \left(O_{1} E_{12}\right)^{2}=1, \\
& \left(O_{1} E_{21}\right)^{2}=1, \\
& O_{1}^{2}=1 .
\end{aligned}
$$

(c) For $n \geq 3$, the group $\mathrm{GL}(n, \mathbb{Z})$ has a finite presentation with $n(n-$ $1)+1$ generators $E_{i j}$ and O_{1} subject to the following relations

$$
\begin{aligned}
& {\left[E_{i j}, E_{k l}\right]=1 \text { if } j \neq k, i \neq l,} \\
& {\left[E_{i j}, E_{j k}\right]=E_{i k} \text { if } i, j, k \text { are pairwise distinct, }} \\
& \left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1, \\
& O_{1} E_{i j} O_{1} E_{i j}^{-1}=1 \text { if } i, j \neq 1, \\
& \left(O_{1} E_{1 j}\right)^{2}=1 \text { if } j \neq 1, \\
& \left(O_{1} E_{i 1}\right)^{2}=1 \text { if } i \neq 1, \\
& O_{1}^{2}=1 .
\end{aligned}
$$

Proof. (a) is clear.
(b) We have

$$
1 \rightarrow \mathrm{SL}(2, \mathbb{Z}) \rightarrow \mathrm{GL}(2, \mathbb{Z}) \xrightarrow{\text { det }}\{-1,1\} \rightarrow 1
$$

where $\{-1,1\} \cong\left\langle g \mid g^{2}=1\right\rangle$. We now apply Proposition 1.3. Since $\operatorname{det}\left(O_{1}\right)=-1$, we conclude that $\mathrm{GL}(2, \mathbb{Z})$ is generated by E_{12}, E_{21} and O_{1}. According to Proposition 1.3 the defining relations corresponding to these generators are:

1. The relations of $\operatorname{SL}(2, \mathbb{Z})$ (see Proposition 1.2).
2. $O_{1}^{2}=1$.
3. The conjugates of the generators E_{12} and E_{21} by O_{1} and O_{1}^{-1} expressed in terms of E_{12} and E_{21}. Since $O_{1}=O_{1}^{-1}$ it suffices to consider $O_{1} E_{12} O_{1}$ and $O_{1} E_{21} O_{1}$ and express both matrices in terms of $E_{i j}$:

$$
\begin{aligned}
O_{1} E_{12} O_{1} & =\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)=E_{12}^{-1}, \\
O_{1} E_{21} O_{1} & =\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=E_{21}^{-1} .
\end{aligned}
$$

(c) We have

$$
1 \rightarrow \mathrm{SL}(n, \mathbb{Z}) \rightarrow \mathrm{GL}(n, \mathbb{Z}) \xrightarrow{\text { det }}\{-1,1\} \rightarrow 1,
$$

where $\{-1,1\} \cong\left\langle g \mid g^{2}=1\right\rangle$. We apply Proposition 1.3 again. By the same argument as above $\mathrm{GL}(n, \mathbb{Z})$ is generated by O_{1} and $E_{i j}(i \neq j)$. The defining relations corresponding to these generators are:

1. The relations of $\operatorname{SL}(n, \mathbb{Z})$ (see Proposition 1.2).
2. $O_{1}^{2}=1$.
3. The conjugates of the generators $E_{i j}(i \neq j)$ by O_{1} and O_{1}^{-1} expressed in terms of $E_{i j}$. As before, it suffices to consider $O_{1} E_{i j} O_{1}$. We show that $O_{1} E_{i j} O_{1}=E_{i j}$ if $i, j \neq 1$:

For this let us write $E_{i j}$ and O_{1} in the following form

$$
E_{i j}=\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & A
\end{array}\right), \quad O_{1}=\left(\begin{array}{c|c}
-1 & 0 \\
\hline 0 & I_{n-1}
\end{array}\right)
$$

where A is a $(n-1) \times(n-1)$-matrix and I_{n-1} the $(n-1) \times(n-1)$ identity matrix. Thus, we have

$$
\begin{aligned}
O_{1} E_{i j} O_{1} & =\left(\begin{array}{c|c}
-1 & 0 \\
\hline 0 & I_{n-1}
\end{array}\right)\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & A
\end{array}\right)\left(\begin{array}{c|c}
-1 & 0 \\
\hline 0 & I_{n-1}
\end{array}\right) \\
& =\left(\begin{array}{c|c}
-1 & 0 \\
\hline 0 & A
\end{array}\right)\left(\begin{array}{c|c}
-1 & 0 \\
\hline 0 & I_{n-1}
\end{array}\right) \\
& =\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & A
\end{array}\right)=E_{i j} .
\end{aligned}
$$

Finally, a short calculation (similar to the one in part (b)) yields

$$
\begin{aligned}
& O_{1} E_{1 j} O_{1}=E_{1 j}^{-1} \text { if } j \neq 1 \text { and } \\
& O_{1} E_{i 1} O_{1}=E_{i 1}^{-1} \text { if } i \neq 1 .
\end{aligned}
$$

In Chapter 4 we will need a special presentation of $\operatorname{GL}(n, \mathbb{Z})$. We obtain this presentation from Proposition 1.4 by applying Tietze transformations. For this let $O_{i}:=\operatorname{diag}(1, \ldots, 1,-1,1, \ldots, 1)$ be the diagonal matrix with a -1 at the (i, i)-th position (see Notation). We add these elements to the set of generators from Proposition 1.4 and get the following presentation.

Proposition 1.5 (Second Presentation of $\operatorname{GL}(n, \mathbb{Z})$).
(a) $\operatorname{GL}(1, \mathbb{Z})=\left\langle O_{1} \mid O_{1}^{2}=1\right\rangle=C_{2}$.
(b) $\mathrm{GL}(2, \mathbb{Z})$ has a finite presentation with four generators E_{12}, E_{21}, O_{1} and O_{2} subject to the following relations
1.) $E_{12} E_{21}^{-1} E_{12} E_{21} E_{12}^{-1} E_{21}=1$,
2.) $\left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1$,
3.) $\left(O_{1} E_{12}\right)^{2}=1$,
4.) $\left(O_{1} E_{21}\right)^{2}=1$,
5.) $O_{1}^{2}=1$,
6.) $E_{12}^{-1} E_{21}^{2} O_{1} E_{12} E_{21}^{-2} O_{2}^{-1}=1$.
(c) For $n \geq 3$ the group $\mathrm{GL}(n, \mathbb{Z})$ has a finite presentation with $n(n-$ 1) $+n$ generators $E_{i j}$ and O_{i} subject to the following relations
1.) $\left[E_{i j}, E_{k l}\right]=1$ if $j \neq k, i \neq l$,
2.) $\left[E_{i j}, E_{j k}\right] E_{i k}^{-1}=1$ if i, j, k are pairwise distinct,
3.) $\left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1$,
4.) $\left(O_{1} E_{1 j}\right)^{2}=1$ if $j \neq 1$,
5.) $\left(O_{1} E_{i 1}\right)^{2}=1$ if $i \neq 1$,
6.) $O_{1} E_{i j} O_{1} E_{i j}^{-1}=1$ if $i, j \neq 1$,
7.) $O_{1}^{2}=1$,
8.) $E_{1 j}^{-1} E_{j 1}^{2} O_{1} E_{1 j} E_{j 1}^{-2} O_{j}^{-1}=1$ if $j \neq 1$.

Proof. Part (a) is clear.
For (b) it suffices to express the new generator O_{2} in terms of the other generators. Thus, we just have to show that $O_{2}=E_{12}^{-1} E_{21}^{2} O_{1} E_{12} E_{21}^{-2}$:

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
-2 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

For (c) we have to show that $E_{1 j}^{-1} E_{j 1}^{2} O_{1} E_{1 j} E_{j 1}^{-2} O_{j}^{-1}=1$ if $j \neq 1$. The proof is analogous to the case $n=2$.

1.3 Some facts about finitely presented groups

Let G and H be two finitely presented groups and let $\varphi: G \rightarrow H$ be a surjective homomorphism. We are now interested in the kernel of φ. If H is a finite group, then the index of $\operatorname{ker}(\varphi)$ in G is finite. By the
following proposition, we conclude that in this case $\operatorname{ker}(\varphi)$ is also finitely presented.

Proposition 1.6. Let G be a finitely presented group and K a subgroup of finite index in G. Then K is also finitely presented.

Proof. See [16] Chapter 2.3.
In the case that the index of a subgroup K in a group G is infinite, it is not easy to decide whether or not K is finitely presented. Actually, it is already difficult to decide whether K is finitely generated. However, in the rest of this chapter we supply some results, which we are going to use later to prove that the Torelli groups are finitely generated.

Let $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be a finitely generated group, H a finitely presented group and $\varphi: G \rightarrow H$ a surjective homomorphism of G onto H. Define $h_{i}:=\varphi\left(g_{i}\right)$ for $1 \leq i \leq n$. The set $\left\{h_{i} \mid 1 \leq i \leq n\right\}$ is then a set of generators of H. Since H is finitely presented, it follows by Proposition 1.1 that there exist defining relations R_{1}, \ldots, R_{m} such that

$$
H=\left\langle h_{1}, \ldots, h_{n} \mid R_{1}\left(h_{1}, \ldots, h_{n}\right), \ldots, R_{m}\left(h_{1}, \ldots, h_{n}\right)\right\rangle .
$$

Notice, that the following diagram commutes

where $F_{n}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is the free group on n generators and $g: F_{n} \rightarrow G$ and $h: F_{n} \rightarrow H$ are the homomorphisms which send x_{i} to g_{i} and x_{i} to h_{i}, respectively.

Proposition 1.7. Let G, H and $\varphi: G \rightarrow H$ be as above. Then we have

$$
\operatorname{ker}(\varphi)=\operatorname{NC}\left(R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)\right),
$$

where $\operatorname{NC}\left(R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)\right)$ denotes the normal closure of $R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)$ in G.

Proof. Since

$$
\varphi\left(R_{j}\left(g_{1}, \ldots, g_{n}\right)\right)=R_{j}\left(\varphi\left(g_{1}\right), \ldots, \varphi\left(g_{n}\right)\right)=R_{j}\left(h_{1}, \ldots, h_{n}\right)
$$

for $1 \leq j \leq m$, it is clear, that $\mathrm{NC}\left(R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)\right) \subseteq$ $\operatorname{ker}(\varphi)$. We now show the inverse inclusion

$$
\operatorname{ker}(\varphi) \subseteq \operatorname{NC}\left(R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)\right)
$$

Let $g_{0} \in \operatorname{ker}(\varphi)$. Remember that the following diagram commutes.

Since $g: F_{n} \rightarrow G$ is onto, we find a word $w\left(x_{1}, \ldots, x_{n}\right) \in F_{n}$ such that $g\left(w\left(x_{1}, \ldots, x_{n}\right)\right)=g_{0}$. It follows that

$$
1=\varphi\left(g_{0}\right)=\varphi\left(g\left(w\left(x_{1}, \ldots, x_{n}\right)\right)\right)=h\left(w\left(x_{1}, \ldots, x_{n}\right)\right)
$$

and we conclude that $w\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{ker}(h)$. Hence

$$
w\left(x_{1}, \ldots, x_{n}\right) \in \mathrm{NC}\left(R_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, R_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

This means that

$$
g_{0}=g\left(w\left(x_{1}, \ldots, x_{n}\right)\right) \in \operatorname{NC}\left(R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)\right)
$$

Corollary 1.8. Let G be finitely generated abelian group. Further let H and $\pi: G \rightarrow H$ be as above. Then we have

$$
\operatorname{ker}(\varphi)=\left\langle R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)\right\rangle
$$

In particular $\operatorname{ker}(\varphi)$ is finitely generated as a group.
Proof. This is clear, since in an abelian group the normal closure of a subgroup is just the same subgroup.

Proposition 1.9. Let G, H and $\varphi: G \rightarrow H$ be as above and let $K \leq G$ be a subgroup of G with the following properties:
1.) K is a normal subgroup of G,
2.) $R_{j}\left(g_{1}, \ldots, g_{n}\right) \in K$ for $1 \leq j \leq m$ and
3.) $K \subseteq \operatorname{ker}(\varphi)$.

Then we have $K=\operatorname{ker}(\varphi)$.
Proof. By 3.) it is sufficient to show that $\operatorname{ker}(\varphi) \subseteq K$:

$$
\operatorname{ker}(\varphi) \stackrel{\text { Prop. }}{=}{ }^{1.7} \mathrm{NC}\left(R_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, R_{m}\left(g_{1}, \ldots, g_{n}\right)\right) \stackrel{1 .)}{\subseteq} \stackrel{2 .)}{ }_{\subseteq} K
$$

The most difficult part when applying Proposition 1.9 might be to verify, whether or not K is a normal subgroup of G. But if K is finitely generated as a group, this can be done with the help of the following lemma.

Lemma 1.10. Let $G=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ be a finitely generated group and let $K=\left\langle u_{1}, \ldots, u_{t}\right\rangle$ be a finitely generated subgroup of G. Then K is a normal subgroup of G if and only if

$$
g_{i} u_{j} g_{i}^{-1} \in K \quad \text { and } \quad g_{i}^{-1} u_{j} g_{i} \in K
$$

for $1 \leq i \leq s$ and $1 \leq j \leq t$.
Proof. If K is a normal subgroup of G then we obviously have $g_{i} u_{j} g_{i}^{-1} \in$ K and $g_{i}^{-1} u_{j} g_{i} \in K$. Hence we have to show that if $g_{i} u_{j} g_{i}^{-1} \in K$ and $g_{i}^{-1} u_{j} g_{i} \in K$ for $1 \leq i \leq s$ and $1 \leq j \leq t$, then K is a normal subgroup of G.

Since $g_{i} u_{j} g_{i}^{-1} \in K$ and $g_{i}^{-1} u_{j} g_{i} \in K$, their inverses are also in K

$$
\begin{equation*}
g_{i} u_{j}^{-1} g_{i}^{-1} \in K, \quad g_{i}^{-1} u_{j}^{-1} g_{i} \in K \tag{1.3}
\end{equation*}
$$

Let $g=g_{i_{1}}^{e_{i_{1}}} \cdot \ldots \cdot g_{i_{n}}^{e_{i_{n}}}$ be an element of G and $u=u_{j_{1}}^{d_{j_{1}}} \cdot \ldots \cdot u_{j_{m}}^{d_{j_{m}}}$ be an element of K with $e_{i_{j}}, d_{j_{k}} \in\{-1,1\}$. We have to show, that $g u g^{-1} \in K$. Since

$$
g u g^{-1}=g u_{j_{1}}^{d_{j_{1}}} g^{-1} \cdot \ldots \cdot g u_{j_{m}}^{d_{j_{m}}} g^{-1}
$$

it suffices to show that $g u_{j}^{\delta} g^{-1} \in K$ for each $j \in\{1, \ldots, t\}$ and $\delta \in$ $\{-1,1\}$. We do this by induction on the length n of g :

In case $n=1$ the assertion follows directly from the assumptions and (1.3). Now suppose that the assertion holds for n and let $g=$ $g_{i_{1}}^{e_{i_{1}}} \cdot \ldots \cdot g_{i_{n}}^{e_{i_{n}}} \cdot g_{i_{n+1}}^{e_{i_{n+1}}}$ be of length $n+1$. Define $h:=g_{i_{2}}^{e_{i_{2}}} \cdot \ldots \cdot g_{i_{n+1}}^{e_{i_{n+1}}}$. Because h is of length n we can apply the induction hypothesis and get $h u_{j}^{\delta} h^{-1} \in K$, say $h u_{j}^{\delta} h^{-1}=u_{k_{1}}^{d_{k_{1}}} \cdot \ldots \cdot u_{k_{m}}^{d_{k_{m}}}$ with $d_{k_{l}} \in\{-1,1\}$. Then we have

$$
\begin{aligned}
g u_{j}^{\delta} g^{-1} & =g_{i_{1}}^{e_{i_{1}}} \cdot h u_{j}^{\delta} h^{-1} \cdot g_{i_{1}}^{-e_{i_{1}}} \\
& =g_{i_{1}}^{e_{i_{1}}} \cdot\left(u_{k_{1}}^{d_{k_{1}}} \cdot \ldots \cdot u_{k_{m}}^{d_{k_{m}}}\right) \cdot g_{i_{1}}^{-e_{i_{1}}} \\
& =g_{i_{1}}^{e_{i_{1}}} \cdot u_{k_{1}}^{d_{k_{1}}} \cdot g_{i_{1}}^{-e_{i_{1}}} \cdot \ldots \cdot g_{i_{1}}^{e_{i_{1}}} u_{k_{m}}^{d_{k_{m}}} \cdot g_{i_{1}}^{-e_{i_{1}}} \\
& =\left(g_{i_{1}}^{e_{i_{1}}} \cdot u_{k_{1}}^{d_{k_{1}}} \cdot g_{i_{1}}^{-e_{i_{1}}}\right) \cdot \ldots \cdot\left(g_{i_{1}}^{e_{i_{1}}} u_{k_{m}}^{d_{k_{m}}} \cdot g_{i_{1}}^{-e_{i_{1}}}\right) .
\end{aligned}
$$

This is in K by assumption and (1.3).

Chapter 2

Commutator Calculus

In this chapter we first recall some elementary definitions and facts about commutator calculus. After introducing commutator subgroups, we define the lower central series

$$
G=\gamma_{0}(G) \geq \gamma_{1}(G) \geq \gamma_{2}(G) \geq \ldots
$$

of a group G. After this, we study the quotients $\gamma_{i}(G) / \gamma_{i+1}(G)$ for $i \geq 0$. For example, we give a set of generators for these quotients if G is a finitely generated group. At the end of the chapter, we show that if

$$
1 \longrightarrow K \longrightarrow G \xrightarrow{\varphi} H \longrightarrow 1
$$

is an exact sequence, then $\gamma_{i}(K) / \gamma_{i+1}(K)$ carries the structure of an H-module. We will apply this to the generalized Torelli groups K_{n} in Chapter 6.

We start by recalling the following definition.
Definition 2.1. Let G be a group and let $g_{1}, g_{2}, \ldots \in G$. The commutator $\left[g_{1}, g_{2}\right]$ is defined by

$$
\left[g_{1}, g_{2}\right]=g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}
$$

More generally we inductively define

$$
\left[g_{1}, \ldots, g_{n}\right]:=\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right]
$$

for $n \geq 3$. Commutators of the form $\left[g_{1}, \ldots, g_{n}\right]$ are called simple commutators.

Lemma 2.2. Let G be a group and $a, b, c \in G$. Then the following commutator identities hold:
a) $[a, b]^{-1}=[b, a]$,
b) $[a b, c]=[a,[b, c]] \cdot[b, c] \cdot[a, c]=[a, b, c] \cdot[b, c] \cdot[a, c]$,
c) $[a, b c]=[a, b] \cdot[b,[a, c]] \cdot[a, c]=[a, b] \cdot[b, a, c] \cdot[a, c]$.

Proof. Part a) is obvious. The proof of b) and c) is given by the following short calculation:

$$
\begin{aligned}
{[a b, c] } & =a b c b^{-1} a^{-1} c^{-1} \\
& =a b c b^{-1} c^{-1} a^{-1} c b c^{-1} b^{-1} b c b^{-1} c^{-1} a c a^{-1} c^{-1} \\
& =[a,[b, c]] \cdot[b, c] \cdot[a, c], \\
{[a, b c] } & =a b c a^{-1} c^{-1} b^{-1} \\
& =a b a^{-1} b^{-1} b a c a^{-1} c^{-1} b^{-1} c a c^{-1} a^{-1} a c a^{-1} c^{-1} \\
& =[a, b] \cdot[b,[a, c]] \cdot[a, c] .
\end{aligned}
$$

Definition 2.3. Let G be a group and let G_{1}, G_{2}, \ldots be non-empty subsets of G. Define

$$
\left[G_{1}, G_{2}\right]:=\left\langle\left[g_{1}, g_{2}\right] \mid g_{1} \in G_{1}, g_{2} \in G_{2}\right\rangle
$$

to be the commutator subgroup of G_{1} and G_{2}. More generally, we inductively define

$$
\left[G_{1}, \ldots, G_{n}\right]:=\left[G_{1},\left[G_{2}, \ldots, G_{n}\right]\right]
$$

for $n \geq 3$.
Remark 2.4. By Lemma 2.2 part a), we have

$$
\left[G_{1}, G_{2}\right]=\left[G_{2}, G_{1}\right] .
$$

Definition 2.5. Let G be a group. We define

$$
\gamma_{0}(G):=G \quad \text { and } \quad \gamma_{k}(G):=\left[G, \gamma_{k-1}(G)\right] \text { for } k \geq 1
$$

The resulting series

$$
G=\gamma_{0}(G) \geq \gamma_{1}(G) \geq \gamma_{2}(G) \geq \ldots
$$

is called the lower central series of G.

By definition, the subgroups $\gamma_{k}(G)$ are normal in G. Actually they are fully invariant subgroups of G, i.e. they are closed under every endomorphism of G. Notice that $\gamma_{k}(G) / \gamma_{k+1}(G)$ lies in the center of $G / \gamma_{k+1}(G)$. Hence $\gamma_{k}(G) / \gamma_{k+1}(G)$ is an abelian group.

The following proposition is taken from [8] Chapter 10:
Proposition 2.6. Let G be a finitely generated group with generators x_{1}, \ldots, x_{r}, then $\gamma_{k}(G) / \gamma_{k+1}(G)$ is generated by the simple commutators $\left[y_{1}, y_{2}, \ldots, y_{k+1}\right] \bmod \gamma_{k+1}(G)$, where $y_{i} \in\left\{x_{1}, \ldots, x_{r}\right\}$.

Lemma 2.7. Let G be a group, $\left[g_{1}, \ldots, g_{n}\right] \in \gamma_{n-1}(G)$ and $m \in \mathbb{N}$. Then

$$
\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]^{m}\right] \equiv\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right]^{m} \quad \bmod \gamma_{n}(G)
$$

Proof. Induction on m :
The case $m=1$ is obvious. Suppose that the assertion holds for m. We have

$$
\begin{array}{cl}
& {\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]^{(m+1)}\right]=\left[g_{1},\left[g_{2}, \ldots, g_{n}\right] \cdot\left[g_{2}, \ldots, g_{n}\right]^{m}\right]} \\
\stackrel{\text { L. 2.2 }}{=} & {\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right] \cdot\left[\left[g_{2}, \ldots, g_{n}\right],\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]^{m}\right]\right] \cdot\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]^{m}\right]} \\
\equiv & {\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right] \cdot\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]^{m}\right]} \\
\text { by Ind. } & {\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right]^{(m+1)} \quad \bmod \gamma_{n}(G) .}
\end{array}
$$

Lemma 2.8. Let G be a group and $\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right] \in \gamma_{n-1}(G)$. If

$$
\left[g_{2}, \ldots, g_{n}\right]^{m} \equiv 0 \quad \bmod \gamma_{n-1}(G)
$$

for some $m \in \mathbb{N}$, then

$$
\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right]^{m} \equiv 0 \quad \bmod \gamma_{n}(G) .
$$

Proof. By assumption, we have $\left[g_{2}, \ldots, g_{n}\right]^{m} \in \gamma_{n-1}(G)$. It follows that

$$
\left[g_{1},\left[g_{2}, \ldots, g_{n}\right]\right]^{m} \stackrel{\text { Lem. }}{\equiv}{ }^{2.7}[g_{1}, \underbrace{\left[g_{2}, \ldots, g_{n}\right]^{m}}_{\in \gamma_{n-1}(G)}] \equiv 0 \quad \bmod \gamma_{n}(G) .
$$

Lemma 2.9. Let G be a group and $g_{1}, g_{2} \in G$. Then we have

$$
\left[g_{1}^{-1}, g_{2}\right] \equiv\left[g_{2}, g_{1}\right] \quad \bmod \gamma_{2}(G) \quad \text { and } \quad\left[g_{1}, g_{2}^{-1}\right] \equiv\left[g_{2}, g_{1}\right] \quad \bmod \gamma_{2}(G)
$$

Proof. Consider following equation

$$
\begin{aligned}
1 & =\left[g_{1} g_{1}^{-1}, g_{2}\right] \stackrel{\mathrm{L.} .2 .2}{=}\left[g_{1},\left[g_{1}^{-1}, g_{2}\right]\right] \cdot\left[g_{1}^{-1}, g_{2}\right] \cdot\left[g_{1}, g_{2}\right] \\
& \equiv\left[g_{1}^{-1}, g_{2}\right] \cdot\left[g_{1}, g_{2}\right] \quad \bmod \gamma_{2}(G) .
\end{aligned}
$$

It follows that

$$
\left[g_{1}^{-1}, g_{2}\right] \equiv\left[g_{1}, g_{2}\right]^{-1} \stackrel{\mathrm{~L} \cdot 2.2}{=}\left[g_{2}, g_{1}\right] \quad \bmod \gamma_{2}(G) .
$$

The proof of the second congruence is analogue.
The next proposition and the corollaries will be very useful in Chapter 6 , where we study quotients of the lower central series of the generalized Torelli group K_{n}.

Proposition 2.10. Let G be a group. Then there are surjective homomorphisms

$$
\begin{aligned}
\varepsilon_{i}: G^{\mathrm{ab}} \otimes_{\mathbb{Z}}\left(\gamma_{i}(G) / \gamma_{i+1}(G)\right) & \rightarrow \gamma_{i+1}(G) / \gamma_{i+2}(G) \\
\left(g G^{\prime}\right) \otimes_{\mathbb{Z}}\left(a \gamma_{i+1}(G)\right) & \mapsto[g, a] \gamma_{i+2}(G) .
\end{aligned}
$$

Proof. For a proof see [15] Chapter 5.
Corollary 2.11. Let G be a group. If there is some $m \in \mathbb{N}$ such that $\gamma_{m}(G) / \gamma_{m+1}(G)=0$, then $\gamma_{k}(G) / \gamma_{k+1}(G)=0$ for all $k \geq m$.

Proof. We show that $\gamma_{m+1}(G) / \gamma_{m+2}(G)=0$. The corollary follows then by induction. Consider

$$
\varepsilon_{m}: G^{\mathrm{ab}} \otimes_{\mathbb{Z}}\left(\gamma_{m}(G) / \gamma_{m+1}(G)\right) \rightarrow \gamma_{m+1}(G) / \gamma_{m+2}(G)
$$

Since $\gamma_{m}(G) / \gamma_{m+1}(G)=0$, we obtain

$$
\varepsilon_{m}: G^{\mathrm{ab}} \otimes_{\mathbb{Z}} 0 \rightarrow \gamma_{m+1}(G) / \gamma_{m+2}(G)
$$

Hence $\gamma_{m+1}(G) / \gamma_{m+2}(G)=0$.

Corollary 2.12. Let G be a group with the property that $G^{\text {ab }}$ is finitely generated. If there is some $m \in \mathbb{N}$ such that $\gamma_{m}(G) / \gamma_{m+1}(G)$ is finite, then $\gamma_{k}(G) / \gamma_{k+1}(G)$ is finite for all $k \geq m$.

Proof. It suffices to show that $\gamma_{m+1}(G) / \gamma_{m+2}(G)$ is finite. For this consider

$$
\varepsilon_{m}: G^{\mathrm{ab}} \otimes_{\mathbb{Z}}\left(\gamma_{m}(G) / \gamma_{m+1}(G)\right) \rightarrow \gamma_{m+1}(G) / \gamma_{m+2}(G)
$$

By assumption, the group G^{ab} is a finitely generated abelian group, i.e. $G^{\mathrm{ab}} \cong \mathbb{Z}^{r} \oplus \operatorname{Tors}\left(G^{\mathrm{ab}}\right)$. Since $F:=\gamma_{m}(G) / \gamma_{m+1}(G)$ is finite, we get

$$
\begin{aligned}
& G^{\mathrm{ab}} \otimes_{\mathbb{Z}}\left(\gamma_{m}(G) / \gamma_{m+1}(G)\right) \cong\left(\mathbb{Z}^{r} \oplus \operatorname{Tors}\left(G^{\mathrm{ab}}\right)\right) \otimes_{\mathbb{Z}} F \\
\cong & \left(\mathbb{Z}^{r} \otimes_{\mathbb{Z}} F\right) \oplus\left(\operatorname{Tors}\left(G^{\mathrm{ab}}\right) \otimes F\right) \cong F^{r} \oplus\left(\operatorname{Tors}\left(G^{\mathrm{ab}}\right) \otimes F\right),
\end{aligned}
$$

which shows that $G^{\mathrm{ab}} \otimes_{\mathbb{Z}}\left(\gamma_{m}(G) / \gamma_{m+1}(G)\right)$ is also finite. Since ε_{m} is onto this implies that $\gamma_{m+1}(G) / \gamma_{m+2}(G)$ is finite.

Corollary 2.13. Let G be a group with the property that $G^{\text {ab }}$ is finitely generated with n generators. If there is some $m \in \mathbb{N}$ such that

$$
\begin{gathered}
\gamma_{m}(G) / \gamma_{m+1}(G) \cong(\mathbb{Z} / 2 \mathbb{Z})^{t} \\
\text { then } \gamma_{m+i}(G) / \gamma_{m+i+1}(G) \cong(\mathbb{Z} / 2 \mathbb{Z})^{b_{i}} \text { for all } i \geq 1 \text { and } \\
0 \leq b_{i} \leq t \cdot n^{k}
\end{gathered}
$$

Proof. By Proposition 2.10, there is a surjective homomorphism

$$
\varepsilon_{i}: G^{\mathrm{ab}} \otimes_{\mathbb{Z}}\left(\gamma_{i}(G) / \gamma_{i+1}(G)\right) \rightarrow \gamma_{i+1}(G) / \gamma_{i+2}(G)
$$

By assumption we have

$$
G^{\mathrm{ab}} \otimes_{\mathbb{Z}}\left(\gamma_{i}(G) / \gamma_{i+1}(G)\right) \cong G^{\mathrm{ab}} \otimes_{\mathbb{Z}}(\mathbb{Z} / 2 \mathbb{Z})^{t} \cong\left(G^{\mathrm{ab}} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}\right)^{t},
$$

which is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{b_{1}^{\prime}}$ with

$$
0 \leq b_{1}^{\prime} \leq n \cdot t .
$$

Since the kernel of ε_{i} is a subgroup of $(\mathbb{Z} / 2 \mathbb{Z})^{b_{1}^{\prime}}$, we obtain $\operatorname{ker}\left(\varepsilon_{i}\right) \cong$ $(\mathbb{Z} / 2 \mathbb{Z})^{\widetilde{b_{1}}}$ with $0 \leq \widetilde{b_{1}} \leq b_{1}^{\prime}$. Hence

$$
\gamma_{i+1}(G) / \gamma_{i+2}(G) \cong(\mathbb{Z} / 2 \mathbb{Z})^{b_{1}^{\prime}} /(\mathbb{Z} / 2 \mathbb{Z})^{\widetilde{b_{1}}} \cong(\mathbb{Z} / 2 \mathbb{Z})^{b_{1}}
$$

with

$$
0 \leq b_{1} \leq n \cdot t .
$$

The lemma follows then by induction.

Definition 2.14. Let G be a group.
a) G is called nilpotent, if $\gamma_{i_{0}}(G)=1$ for some i_{0}.
b) G is called residually nilpotent, if

$$
\bigcap_{i=0}^{\infty} \gamma_{i}(G)=1
$$

Remark 2.15. It follows that the residually nilpotent groups are exactly those groups G which satisfy the following condition:
For each $g \in G, g \neq 1$, there exists a normal subgroup N_{g} of G such that $g \notin N_{g}$ and G / N_{g} is nilpotent.

Proposition 2.16. Let G be a group with the following two properties:

1. $\gamma_{i}(G) / \gamma_{i+1}(G)$ is torsion-free for all $i \geq 0$,
2. G is residually nilpotent.

Then it follows that G is also torsion-free.
Proof. Assume that G is not torsion-free, i.e. there exists an element $g \in G \backslash\{1\}$ and $n \in \mathbb{N}, n \geq 2$, such that $g^{n}=1$. We show by induction on i that $g \in \gamma_{i}(G)$ for all $i \geq 0$.
The case $i=0$ is clear, since $G=\gamma_{0}(G)$. Now suppose that $g \in \gamma_{i}(G)$. We have to show that $g \in \gamma_{i+1}(G)$. By assumption, we have

$$
g^{n} \equiv 1 \quad \bmod \gamma_{i+1}(G)
$$

But $\gamma_{i}(G) / \gamma_{i+1}(G)$ is torsion-free. Hence

$$
g \equiv 1 \quad \bmod \gamma_{i+1}(G),
$$

i.e. $g \in \gamma_{i+1}(G)$.

Thus, we showed that $g \in \gamma_{i}(G)$ for all $i \geq 0$. So $g \in \bigcap_{i=0}^{\infty} \gamma_{i}(G)=$ $\{1\}$, contradiction.

For the rest of this chapter let G and H be groups and

$$
1 \longrightarrow K \longrightarrow G \xrightarrow{\varphi} H \longrightarrow 1
$$

an exact sequence. We want to define a group action of H on the abelian group $\gamma_{i}(K) / \gamma_{i+1}(K)$. To ease the notation, set $\gamma_{i}:=\gamma_{i}(K)$. Let $h \in H$ and $g \in G$ with $\varphi(g)=h$. Then we define $*: H \times \gamma_{i} / \gamma_{i+1} \rightarrow \gamma_{i} / \gamma_{i+1}$ by

$$
h *\left(k \cdot \gamma_{i+1}\right):=g k g^{-1} \cdot \gamma_{i+1} .
$$

Proposition 2.17. The map $*: H \times \gamma_{i} / \gamma_{i+1} \rightarrow \gamma_{i} / \gamma_{i+1}$ defined above gives us a well defined action of H on $\gamma_{i} / \gamma_{i+1}$, i.e. the abelian group $\gamma_{i} / \gamma_{i+1}$ becomes an H-module.

Proof. For the complete proof, let $k \in \gamma_{i}, h \in H$ and $g \in G$ with $\varphi(g)=h$. We divide the proof into two steps. In the first step we show that the map $*: H \times \gamma_{i} / \gamma_{i+1} \rightarrow \gamma_{i} / \gamma_{i+1}$ is well defined. In the second step we prove that the map $*: H \times \gamma_{i} / \gamma_{i+1} \rightarrow \gamma_{i} / \gamma_{i+1}$ gives us an action of H on $\gamma_{i} / \gamma_{i+1}$.
1.) The map $*: H \times \gamma_{i} / \gamma_{i+1} \rightarrow \gamma_{i} / \gamma_{i+1}$ is well defined:
a) $x k x^{-1} \in \gamma_{i}$ for all $x \in G$:

Let $i_{x}: G \rightarrow G$ be the inner automorphism, which sends g to $x g x^{-1}$ for all $g \in G$. Since K is a normal subgroup, the restriction $\left.i_{x}\right|_{K}: K \rightarrow G$ is an endomorphism of K. In fact $\left.i_{x}\right|_{K} \in \operatorname{Aut}(K)$. The inverse is given by $\left.i_{x^{-1}}\right|_{K}$. It follows that

$$
\left.i_{x}\right|_{K}\left(\gamma_{i}\right) \leq \gamma_{i}
$$

for all $i \in \mathbb{N}$, because γ_{i} is a fully invariant subgroup of K. Hence we proved that $x k x^{-1} \in \gamma_{i}$.
b) $h *\left(k_{1} \cdot \gamma_{i+1}\right)=h *\left(k_{2} \cdot \gamma_{i+1}\right)$ for $k_{1} \cdot \gamma_{i+1}=k_{2} \cdot \gamma_{i+1}$:

Let $k_{1}, k_{2} \in \gamma_{i}$ with $k_{1} \cdot \gamma_{i+1}=k_{2} \cdot \gamma_{i+1}$, i.e. $k_{2}^{-1} k_{1} \in \gamma_{i+1}$. By
a) we have $g k_{2}^{-1} k_{1} g^{-1} \in \gamma_{i+1}$. Hence

$$
\begin{aligned}
h *\left(k_{2} \cdot \gamma_{i+1}\right) & =g k_{2} g^{-1} \cdot \gamma_{i+1}=g k_{2} g^{-1} g k_{2}^{-1} k_{1} g \cdot \gamma_{i+1} \\
& =g k_{1} g^{-1} \cdot \gamma_{i+1}=h *\left(k_{1} \cdot \gamma_{i+1}\right) .
\end{aligned}
$$

c) $g_{1} k g_{1}^{-1} \cdot \gamma_{i+1}=g_{2} k g_{2}^{-1} \cdot \gamma_{i+1}$ for $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)$:

Let $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=\varphi\left(g_{2}\right)$. It follows that $\varphi\left(g_{2}^{-1} g_{1}\right)=$ 1, i.e. $g_{2}^{-1} g_{1} \in \operatorname{ker}(\varphi)=K$. The element $\left[g_{1}^{-1} g_{2}, k^{-1}\right]$ lies in γ_{i+1}. By a) we conclude that

$$
g_{2} k^{-1} g_{2}^{-1} g_{1} k g_{1}^{-1}=g_{1}\left[g_{1}^{-1} g_{2}, k^{-1}\right] g_{1}^{-1} \in \gamma_{i+1} .
$$

Thus

$$
\begin{aligned}
g_{2} k g_{2}^{-1} \cdot \gamma_{i+1} & =g_{2} k g_{2}^{-1} g_{2} k^{-1} g_{2}^{-1} g_{1} k g_{1}^{-1} \cdot \gamma_{i+1} \\
& =g_{1} k g_{1}^{-1} \cdot \gamma_{i+1}
\end{aligned}
$$

2.) The map *: $H \times \gamma_{i} / \gamma_{i+1} \rightarrow \gamma_{i} / \gamma_{i+1}$ gives us an action of H on $\gamma_{i} / \gamma_{i+1}$:
a) $1_{H} *\left(k \cdot \gamma_{i+1}\right)=k \cdot \gamma_{i+1}$:

Since $\varphi\left(1_{G}\right)=1_{H}$, we have

$$
1_{H} *\left(k \cdot \gamma_{i+1}\right)=1_{G} \cdot k \cdot 1_{G}^{-1} \cdot \gamma_{i+1}=k \cdot \gamma_{i+1} .
$$

b) $\left(h_{1} h_{2}\right) *\left(k \cdot \gamma_{i+1}\right)=\left(h_{1} *\left(h_{2} *\left(k \cdot \gamma_{i+1}\right)\right)\right.$ for $h_{1}, h_{2} \in H$:

Let $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=h_{1}$ and $\varphi\left(g_{2}\right)=h_{2}$. It follows that $\varphi\left(g_{1} g_{2}\right)=h_{1} h_{2}$. Hence

$$
\begin{aligned}
\left(h_{1} h_{2}\right) *\left(k \cdot \gamma_{i+1}\right) & =g_{1} g_{2} k g_{2}^{-1} g_{1}^{-1} \cdot \gamma_{i+1} \\
& =h_{1} *\left(g_{2} k g_{2}^{-1} \cdot \gamma_{i+1}\right) \\
& =\left(h_{1} *\left(h_{2} *\left(k \cdot \gamma_{i+1}\right)\right) .\right.
\end{aligned}
$$

c) $h *\left(k_{1} \cdot \gamma_{i+1}+k_{2} \cdot \gamma_{i+1}\right)=h *\left(k_{1} \cdot \gamma_{i+1}\right)+h *\left(k_{2} \cdot \gamma_{i+1}\right)$ for $k_{1}, k_{2} \in \gamma_{i}$:
Let $k_{1}, k_{2} \in \gamma_{i}$. Then we have

$$
\begin{aligned}
h *\left(k_{1} \cdot \gamma_{i+1}+k_{2} \cdot \gamma_{i+1}\right) & =h *\left(k_{1} k_{2} \cdot \gamma_{i+1}\right) \\
& =g k_{1} k_{2} g^{-1} \cdot \gamma_{i+1} \\
& =g k_{1} g^{-1} g k_{2} g^{-1} \cdot \gamma_{i+1} \\
& =g k_{1} g^{-1} \cdot \gamma_{i+1}+g k_{2} g^{-1} \cdot \gamma_{i+1} \\
& =h *\left(k_{1} \cdot \gamma_{i+1}\right)+h *\left(k_{2} \cdot \gamma_{i+1}\right) .
\end{aligned}
$$

Chapter 3

The classical Torelli Groups

Let F_{n} be the free group on n generators. A classical representation of $\operatorname{Aut}\left(F_{n}\right)$ is given by

$$
\rho_{1}: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n} / F_{n}^{\prime}\right) \cong \operatorname{GL}(n, \mathbb{Z})
$$

where F_{n}^{\prime} is the commutator subgroup of F_{n} and $\rho_{1}(\varphi)$ is the automorphism of the abelian group F_{n} / F_{n}^{\prime} induced by $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. In Section 3.1 we summarize well-known facts about the kernel of ρ_{1}, which is called the classical Torelli group IA $\left(F_{n}\right)$. In Section 3.2 we introduce more representations of $\operatorname{Aut}\left(F_{n}\right)$, which lead to generalized Torelli groups $\mathrm{IA}_{i}\left(F_{n}\right)$. Furthermore, we compare the series given by the $\mathrm{IA}_{i}\left(F_{n}\right)$ with the lower central series $\gamma_{i}\left(\operatorname{IA}\left(F_{n}\right)\right)$.

3.1 Fundamentals

Let F_{n} be the free group generated by $x_{1}, \ldots, x_{n}(n \geq 2)$ and $\operatorname{Aut}\left(F_{n}\right)$ its group of automorphisms. Let us introduce the following elements of $\operatorname{Aut}\left(F_{n}\right)$. Our convention here is that values not given are identical to the argument.

- $\lambda_{i j}:\left\{x_{i} \mapsto x_{j} x_{i}\right\}$ for $1 \leq i, j \leq n$ with $i \neq j$,
- $\nu_{i j}:\left\{x_{i} \mapsto x_{i} x_{j}\right\}$ for $1 \leq i, j \leq n$ with $i \neq j$,
- $\sigma_{i}:\left\{x_{i} \mapsto x_{i}^{-1}\right\}$ for $1 \leq i \leq n$,
- $\pi_{i j}:\left\{x_{i} \mapsto x_{j}, x_{j} \mapsto x_{i}\right\}$ for $1 \leq i, j \leq n$ with $i \neq j$,
- $\kappa_{i j k}:\left\{x_{i} \mapsto x_{i} x_{j} x_{k} x_{j}^{-1} x_{k}^{-1}\right\}$ for $1 \leq i, j, k \leq n$ with i, j, k pairwise distinct,
- $\operatorname{kon}_{i j}:\left\{x_{i} \mapsto x_{j} x_{i} x_{j}^{-1}\right\}$ for $1 \leq i, j \leq n$ with $i \neq j$.

A theorem of Nielsen (see [14]) says that $\operatorname{Aut}\left(F_{n}\right)$ is generated by the automorphisms $\lambda_{i j}, \nu_{i j}, \pi_{i j}$ for $1 \leq i, j \leq n$ with $i \neq j$ and σ_{i} for $1 \leq i \leq$ n. In [14] Nielsen did not only show that $\operatorname{Aut}\left(F_{n}\right)$ is finitely generated, he actually proved that $\operatorname{Aut}\left(F_{n}\right)$ is finitely presented by constructing a finite set of defining relations. The finite presentation of $\operatorname{Aut}\left(F_{2}\right)$ is given in the next proposition.

Proposition 3.1. The automorphism group $\operatorname{Aut}\left(F_{2}\right)$ has the following finite presentation

$$
\begin{aligned}
\operatorname{Aut}\left(F_{2}\right)=\left\langle\pi_{12}, \sigma_{1}, \nu_{12}\right| & \pi_{12}^{2}=1, \sigma_{1}^{2}=1,\left(\sigma_{1} \circ \pi_{12}\right)^{4}=1, \\
& \sigma_{1}^{-1} \circ \nu_{12}^{-1} \circ \sigma_{1}^{-1} \circ \nu_{12}^{-1} \circ \sigma_{1} \circ \nu_{12} \circ \sigma_{1} \circ \nu_{12}=1, \\
& \left(\nu_{12} \circ \pi_{12} \circ \sigma_{1} \circ \pi_{12}\right)^{2}=1, \\
& \left.\left(\sigma_{1} \circ \pi_{12} \circ \nu_{12}\right)^{3}=1\right\rangle .
\end{aligned}
$$

Proof. See [16] Chapter 3.5.
A classical representation of $\operatorname{Aut}\left(F_{n}\right)$ is given by

$$
\rho_{1}: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n} / F_{n}^{\prime}\right) \cong \operatorname{GL}(n, \mathbb{Z})
$$

where F_{n}^{\prime} is the commutator subgroup of F_{n} and $\rho_{1}(\varphi)$ is the automorphism of the abelian group F_{n} / F_{n}^{\prime} induced by $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. Let us consider the images of the generators of $\operatorname{Aut}\left(F_{n}\right)$ under ρ_{1} :

$$
\begin{array}{ll}
\rho_{1}\left(\lambda_{i j}\right)=E_{j i}, & \rho_{1}\left(\nu_{i j}\right)=E_{j i}, \\
\rho_{1}\left(\sigma_{i}\right)=O_{i}, & \rho_{1}\left(\pi_{i j}\right)=P_{i j} .
\end{array}
$$

For the definition of $E_{i j}, O_{i}$ and $P_{i j}$ see the Notation at the beginning. Because $E_{i j}$ and O_{i} generate $\operatorname{GL}(n, \mathbb{Z})$ by Proposition 1.5, we see that ρ_{1} is onto. The kernel of ρ_{1} is called the classical Torelli group and is denoted by $\operatorname{IA}\left(F_{n}\right)$. Thus we have an exact sequence

$$
\begin{equation*}
1 \rightarrow \operatorname{IA}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n}\right) \rightarrow \mathrm{GL}(n, \mathbb{Z}) \rightarrow 1 \tag{3.1}
\end{equation*}
$$

Since $\operatorname{Aut}\left(F_{n}\right)$ is finitely generated and $\operatorname{GL}(n, \mathbb{Z})$ is finitely presented, it is clear by Proposition 1.7 that $\operatorname{IA}\left(F_{n}\right)$ is finitely generated as a normal
subgroup of $\operatorname{Aut}\left(F_{n}\right)$. By (3.1) the group $\operatorname{IA}\left(F_{n}\right)$ has infinite index in $\operatorname{Aut}\left(F_{n}\right)$. Hence there is no reason why $\operatorname{IA}\left(F_{n}\right)$ should be finitely generated as a group. Indeed our intuition tells us that it should be infinitly generated. But in contrast a theorem of Nielsen and Magnus ([13],[11]) asserts the opposite, namely that the classical Torelli group $\operatorname{IA}\left(F_{n}\right)$ is a finitely generated group. Actually explicit generators are given:

Theorem 3.2 (Nielsen/Magnus).
(a) The group $\operatorname{IA}\left(F_{2}\right)$ is generated by the automorphisms

$$
\operatorname{kon}_{12}:\left\{x_{1} \mapsto x_{2} x_{1} x_{2}^{-1}\right\} \quad \text { and } \quad \operatorname{kon}_{21}:\left\{x_{2} \mapsto x_{1} x_{2} x_{1}^{-1}\right\}
$$

In particular $\mathrm{IA}\left(F_{2}\right)=\operatorname{Inn}\left(F_{2}\right)$.
(b) For $n \geq 3$ the group $\operatorname{IA}\left(F_{n}\right)$ is generated by the automorphisms

$$
\begin{gathered}
\operatorname{kon}_{i j}:\left\{x_{i} \mapsto x_{j} x_{i} x_{j}^{-1}\right\} \quad(i \neq j), \\
\kappa_{i j k}:\left\{x_{i} \mapsto x_{i} x_{j} x_{k} x_{j}^{-1} x_{k}^{-1}\right\} \quad(i, j, k \text { pairwise distinct }) .
\end{gathered}
$$

The idea of the proof is to apply Proposition 1.9 and Lemma 1.10 (see [13] and [11]).

Define now $\operatorname{Aut}^{+}\left(F_{n}\right)$ to be the subgroup of $\operatorname{Aut}\left(F_{n}\right)$ whose image under ρ_{1} lies in $\operatorname{SL}(n, \mathbb{Z})$, i.e.

$$
\operatorname{Aut}^{+}\left(F_{n}\right):=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid \operatorname{det}\left(\rho_{1}(\varphi)\right)=1\right\}=\operatorname{ker}\left(\operatorname{det} \circ \rho_{1}\right)
$$

The subgroup $\operatorname{Aut}^{+}\left(F_{n}\right)$ is a normal subgroup of index two in $\operatorname{Aut}\left(F_{n}\right)$. By Nielsen (see [16]) $\operatorname{Aut}^{+}\left(F_{n}\right)$ is generated by the automorphisms $\lambda_{i j}$ and $\nu_{i j}$ for $i=1, \ldots n$ with $i \neq j$. Hence $\rho_{1}: \operatorname{Aut}^{+}\left(F_{n}\right) \rightarrow \operatorname{SL}(n, \mathbb{Z})$ is onto and we obtain the exact sequence

$$
1 \rightarrow \operatorname{IA}\left(F_{n}\right) \rightarrow \operatorname{Aut}^{+}\left(F_{n}\right) \rightarrow \mathrm{SL}(n, \mathbb{Z}) \rightarrow 1
$$

3.2 SERIES of $\operatorname{IA}\left(F_{n}\right)$

Let us consider the lower central series of the group $\operatorname{IA}\left(F_{n}\right)$

$$
\begin{equation*}
\operatorname{IA}\left(F_{n}\right)=\gamma_{0}\left(\operatorname{IA}\left(F_{n}\right)\right) \geq \gamma_{1}\left(\operatorname{IA}\left(F_{n}\right)\right) \geq \gamma_{2}\left(\operatorname{IA}\left(F_{n}\right)\right) \geq \ldots \tag{3.2}
\end{equation*}
$$

There is another central series of $\operatorname{IA}\left(F_{n}\right)$, which is more studied than the lower central series (3.2). Let us now construct this series.
For this let

$$
F_{n}=\gamma_{0}\left(F_{n}\right) \geq \gamma_{1}\left(F_{n}\right) \geq \gamma_{2}\left(F_{n}\right) \geq \ldots
$$

be the lower central series of the free group F_{n}. Since the group $\gamma_{i}\left(F_{n}\right)$ is a characteristic subgroup of F_{n} we obtain homomorphisms

$$
\rho_{i}: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{Aut}\left(F_{n} / \gamma_{i}\left(F_{n}\right)\right),
$$

where $\rho_{i}(\varphi)$ is the automorphism of the abelian group $F_{n} / \gamma_{i}\left(F_{n}\right)$ induced by $\varphi \in \operatorname{Aut}\left(F_{n}\right)$. Notice that for $i=1$ this coincides with the classical representation ρ_{1}. Define

$$
\operatorname{IA}_{i}\left(F_{n}\right):=\operatorname{ker}\left(\rho_{i}\right) .
$$

The automorphisms in $\mathrm{IA}_{i}\left(F_{n}\right)$ are those, which induce the identity on $F_{n} / \gamma_{i}\left(F_{n}\right)$. The groups $\mathrm{IA}_{i}\left(F_{n}\right)$ are called generalized Torelli groups. In fact, we have $\mathrm{IA}_{1}\left(F_{n}\right)=\mathrm{IA}\left(F_{n}\right)$.

By this construction, we obtain the following central series (see [1])

$$
\begin{equation*}
\operatorname{IA}\left(F_{n}\right)=\operatorname{IA}_{1}\left(F_{n}\right) \geq \operatorname{IA}_{2}\left(F_{n}\right) \geq \operatorname{IA}_{3}\left(F_{n}\right) \geq \ldots \tag{3.3}
\end{equation*}
$$

The next proposition collects some results about this much investigated series.

Proposition 3.3.

a) $\mathrm{IA}_{i}\left(F_{n}\right) / \mathrm{IA}_{i+1}\left(F_{n}\right)$ is torsion-free abelian (see [1]).
b) $\operatorname{IA}_{2}\left(F_{n}\right)=\gamma_{1}\left(\mathrm{IA}_{1}\left(F_{n}\right)\right)($ see $[3])$.
c) $\bigcap_{i=0}^{\infty} \operatorname{IA}_{i}\left(F_{n}\right)=1($ see $[1])$.
d) $\operatorname{IA}_{i}\left(F_{n}\right) \cap \operatorname{Inn}\left(F_{n}\right)=\gamma_{i-1}\left(\operatorname{Inn}\left(F_{n}\right)\right) \cong \gamma_{i-1}\left(F_{n}\right)($ see $[6])$.
e) $\gamma_{i}\left(\operatorname{IA}\left(F_{n}\right)\right) \leq \mathrm{IA}_{i+1}\left(F_{n}\right)($ see $[1])$.

By this proposition, we see that the two central series (3.2) and (3.3) fit together in the following way

$$
\begin{aligned}
& \begin{array}{ccccc}
\mathrm{IA}_{1}\left(F_{n}\right) \\
\| & \geq \mathrm{IA}_{2}\left(F_{n}\right) & \geq \mathrm{IA}_{3}\left(F_{n}\right) & \geq \mathrm{IA}_{4}\left(F_{n}\right) & \geq \ldots \\
\mathrm{V} \mid & \mathrm{VI}
\end{array} \\
& \gamma_{0}\left(\operatorname{IA}\left(F_{n}\right)\right) \geq \gamma_{1}\left(\operatorname{IA}\left(F_{n}\right)\right) \geq \gamma_{2}\left(\operatorname{IA}\left(F_{n}\right)\right) \geq \gamma_{3}\left(\operatorname{IA}\left(F_{n}\right)\right) \geq \ldots
\end{aligned}
$$

In the case $n=2$ Andreadakis showed in [1] that these two series coincide, i.e. $\operatorname{IA}_{i}\left(F_{2}\right)=\gamma_{i-1}\left(\mathrm{IA}\left(F_{2}\right)\right)$ for all $i \in \mathbb{N}$. This leads to the following conjecture.

Conjecture 3.4. Let $n \geq 3$. Then we have

$$
\operatorname{IA}_{i}\left(F_{n}\right)=\gamma_{i-1}\left(\operatorname{IA}\left(F_{n}\right)\right)
$$

for all $i \in \mathbb{N}$.
From Proposition 3.3 we obtain the following corollary.
Corollary 3.5. Let $n \geq 2$. The classical Torelli group $\operatorname{IA}\left(F_{n}\right)$ is torsionfree and residually nilpotent.

Proof. By Proposition 3.3 part c) and e) we have $\bigcap_{i=0}^{\infty} \operatorname{IA}_{i}\left(F_{n}\right)=1$ and $\gamma_{i}\left(\operatorname{IA}\left(F_{n}\right)\right) \leq \operatorname{IA}_{i+1}\left(F_{n}\right)$. But then it follows that

$$
\bigcap_{i=0}^{\infty} \gamma_{i}\left(\operatorname{IA}\left(F_{n}\right)\right)=1,
$$

i.e. $\operatorname{IA}\left(F_{n}\right)$ is residually nilpotent. Now we apply Proposition 2.16 to see that $\operatorname{IA}\left(F_{n}\right)$ is torsion-free.

Formanek constructs in [6] the following $\operatorname{Aut}\left(F_{n}\right)$-equivarient homomorphisms

$$
\begin{aligned}
\varepsilon_{i}: \mathrm{IA}_{i}\left(F_{n}\right) / \mathrm{IA}_{i+1}\left(F_{n}\right) & \rightarrow \operatorname{Hom}_{\mathbb{Z}}\left(F_{n} /\left[F_{n}, F_{n}\right], \gamma_{i}\left(F_{n}\right) / \gamma_{i+1}\left(F_{n}\right)\right) \\
\Phi \cdot \mathrm{IA}_{i+1}\left(F_{n}\right) & \mapsto\left(x \cdot\left[F_{n}, F_{n}\right] \mapsto \Phi(x) x^{-1} \cdot \gamma_{i+1}\left(F_{n}\right)\right),
\end{aligned}
$$

where the action of $\operatorname{Aut}\left(F_{n}\right)$ on the groups $\mathrm{IA}_{i}\left(F_{n}\right) / \mathrm{IA}_{i+1}\left(F_{n}\right)$ and $\operatorname{Hom}_{\mathbb{Z}}\left(F_{n} /\left[F_{n}, F_{n}\right], \gamma_{i}\left(F_{n}\right) / \gamma_{i+1}\left(F_{n}\right)\right)$ is given by conjugation. The action is trivial when restricted to $\operatorname{IA}\left(F_{n}\right)$. Thus the ε_{i} are $\operatorname{Aut}\left(F_{n}\right) / \operatorname{IA}\left(F_{n}\right)-$ homomorphisms, i.e. $\mathrm{GL}(n, \mathbb{Z})$-homomorphisms. The construction of
these $\mathrm{GL}(n, \mathbb{Z})$-homomorphisms is similar to the construction of the socalled Johnson homomorphisms in the theory of mapping class groups (see [9]).

In the case $i=1$ the homomorphism ε_{1} is an ismorphism (see [3],[6]):

$$
\begin{aligned}
\operatorname{IA}_{1}\left(F_{n}\right) / \operatorname{IA}_{2}\left(F_{n}\right) & \cong \operatorname{Hom}_{\mathbb{Z}}\left(F_{n} /\left[F_{n}, F_{n}\right], \gamma_{1}\left(F_{n}\right) / \gamma_{2}\left(F_{n}\right)\right) \\
& \cong \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{n}, \Lambda_{2}\left(\mathbb{Z}^{n}\right)\right),
\end{aligned}
$$

where $\Lambda_{2}\left(\mathbb{Z}^{n}\right)$ is the second exterior power of \mathbb{Z}^{n}. Since we have $\operatorname{IA}_{2}\left(F_{n}\right)=$ $\gamma_{1}\left(\operatorname{IA}\left(F_{n}\right)\right)$ by Proposition 3.3, we obtain

$$
\operatorname{IA}\left(F_{n}\right)^{\mathrm{ab}} \cong \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}^{n}, \Lambda_{2}\left(\mathbb{Z}^{n}\right)\right)
$$

After tensoring with \mathbb{C}, we obtain

$$
\operatorname{IA}\left(F_{n}\right)^{\mathrm{ab}} \otimes_{\mathbb{Z}} \mathbb{C} \cong \mathbb{C}^{n} \oplus V_{n}
$$

as a $\operatorname{GL}(n, \mathbb{C})$-module, where V_{n} is a certain $\operatorname{GL}(n, \mathbb{C})$-module of dimension $\operatorname{dim}_{\mathbb{C}}\left(V_{n}\right)=n(n+1)(n-2) / 2$ which is irreducible even as $\operatorname{SL}(n, \mathbb{C})$ module (see [6]).

Chapter 4

Generalized Torelli Groups

This chapter is concerned with the main subject of the thesis. In Section 4.1 we describe the construction of the representations

$$
\rho_{G, \pi}: \Gamma(G, \pi) \rightarrow \mathcal{G}_{G, \pi}(\mathbb{Z})
$$

where $\Gamma(G, \pi)$ is a subgroup of $\operatorname{Aut}\left(F_{n}\right)$ with finite index. This construction is introduced by F. Grunewald und A. Lubotzky in [5]. Section 4.2 deals with the special case $G=C_{2}$. We introduce the representation

$$
\sigma_{-1}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \operatorname{GL}(n-1, \mathbb{Z}) .
$$

We show that the map σ_{-1} is surjective by analysing the images of the generators of $\Gamma^{+}\left(C_{2}, \pi\right)$. Hence the kernel K_{n} of σ_{-1} fits into the following exact sequence

$$
1 \rightarrow K_{n} \rightarrow \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z}) \rightarrow 1
$$

Our main theorem states that K_{n} is finitly generated as a group. Generators of K_{n} are given explicitly. This is done in Section 4.3. Note that our main theorem corresponds to the theorem of Nielsen and Magnus (see Theorem 3.2).

4.1 Construction of the representation $\rho_{G, \pi}$

The representations, which we describe here, are introduced by F. Grunewald und A. Lubotzky in [5].

Let G be a finite group and $\pi: F_{n} \rightarrow G$ a surjective homomorphism of the free group F_{n} onto G, i.e. π is a presentation of G. Moreover, let $R:=\operatorname{ker}(\pi)$ be the kernel of π. Then R is a finitely generated free group.

By the formula of Reidemeister and Schreier (see [16] Chapter 2.4) we obtain that R is free on

$$
|G| \cdot(n-1)+1
$$

generators. Now we define

$$
\Gamma(R):=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid \varphi(R)=R\right\} \leq \operatorname{Aut}\left(F_{n}\right)
$$

and

$$
\Gamma(G, \pi):=\left\{\varphi \in \Gamma(R) \mid \varphi \text { induces the identity on } F_{n} / R\right\} \leq \operatorname{Aut}\left(F_{n}\right)
$$

Both subgroups $\Gamma(R)$ and $\Gamma(G, \pi)$ have finite index in $\operatorname{Aut}\left(F_{n}\right)$ (see [2]). Define further

$$
\bar{R}:=R /[R, R]=R^{\mathrm{ab}} .
$$

The action of F_{n} on R by conjugation leads to an action of the group G on \bar{R}. The group \bar{R} is called the relation module. Every automorphism $\varphi \in \Gamma(R)$ induces a linear automorphism $\bar{\varphi} \in \operatorname{Aut}(\bar{R})$. By a result of Gaschütz (see [7]), we have

$$
\Gamma(G, \pi)=\{\varphi \in \Gamma(R) \mid \bar{\varphi}: \bar{R} \rightarrow \bar{R} \text { is } G \text {-equivariant }\} .
$$

The relation module \bar{R} is a finitely generated free abelian group. Let $t:=|G| \cdot(n-1)+1$ denote the \mathbb{Z}-rank of \bar{R}. We define

$$
\mathcal{G}_{G, \pi}:=\operatorname{Aut}_{G}\left(\mathbb{C} \otimes_{\mathbb{Z}} \bar{R}\right) \leq \mathrm{GL}(t, \mathbb{C}) .
$$

The group $\mathcal{G}_{G, \pi}$ is the centraliser of the group G acting on $\mathbb{C} \otimes_{\mathbb{Z}} \bar{R}$ through matrices with rational entries. We set

$$
\mathcal{G}_{G, \pi}(\mathbb{Z}):=\left\{\Phi \in \mathcal{G}_{G, \pi} \mid \Phi(\bar{R})=\bar{R}\right\}
$$

Choosing a \mathbb{Z}-basis of \bar{R} we obtain an integral linear representation

$$
\begin{aligned}
\rho_{G, \pi}: \Gamma(G, \pi) & \rightarrow \mathcal{G}_{G, \pi}(\mathbb{Z}) \\
\varphi & \mapsto \bar{\varphi} .
\end{aligned}
$$

4.2 The REPRESENTATION σ_{-1}

The next constructions are taken from [5] Section 6. Let $F_{n}(n \geq 2)$ be the free group generated by $x, y_{1}, \ldots, y_{n-1}$. Later we will see that the generator x will play a special role. That is the reason why we denote the generators this way. Let us introduce the following elements of $\operatorname{Aut}\left(F_{n}\right)$. Our convention is that values not given are identical to the argument.

- $\delta_{i}:\left\{x \mapsto y_{i} x\right\}$ and $\varepsilon_{i}:\left\{x \mapsto x y_{i}\right\}$ for $i=1, \ldots n-1$,
- $\varphi_{i}:\left\{y_{i} \mapsto x y_{i}\right\}$ and $\psi_{i}:\left\{y_{i} \mapsto y_{i} x\right\}$ for $i=1, \ldots n-1$,
- $\lambda_{i j}:\left\{y_{i} \mapsto y_{j} y_{i}\right\}$ and $\nu_{i j}:\left\{y_{i} \mapsto y_{i} y_{j}\right\}$ for $i=1, \ldots n-1$ with $i \neq j$.

A theorem of Nielsen (see Chapter 3) asserts that these elements generate Aut ${ }^{+}\left(F_{n}\right)$. Let us introduce further

- $\kappa_{j k}:\left\{x \mapsto x\left[y_{j}, y_{k}\right]\right\}, \kappa_{i j k}:\left\{y_{i} \mapsto y_{i}\left[y_{j}, y_{k}\right]\right\}$ for $1 \leq i, j, k \leq n-1$ with i, j, k pairwise distinct,
- $\tau_{i j}:\left\{y_{i} \mapsto y_{i}\left[x, y_{j}\right]\right\}$ for $1 \leq i, j \leq n-1$ with $i \neq j$,
- $\operatorname{kon}_{i x}:\left\{y_{i} \mapsto x y_{i} x^{-1}\right\}, \operatorname{kon}_{x i}:\left\{x \mapsto y_{i} x y_{i}^{-1}\right\}$ and $\operatorname{kon}_{i j}:\left\{y_{i} \mapsto\right.$ $\left.y_{j} y_{i} y_{j}^{-1}\right\}$ for $1 \leq i, j \leq n-1$ with $i \neq j$.

The set consisting of the $\kappa_{j k}, \kappa_{i j k}, \tau_{i j}, \operatorname{kon}_{i x}, \operatorname{kon}_{x i}$ and $\operatorname{kon}_{i j}$ generates the group IA $\left(F_{n}\right)$ by Theorem 3.2.

Now let $G:=C_{2}$ the cyclic group of order two generated by g and $\pi: F_{n} \rightarrow C_{2}$ be the following presentation

$$
\pi(x):=g, \pi\left(y_{1}\right)=1, \ldots, \pi\left(y_{n-1}\right)=1 .
$$

The kernel R of this presentation consists exactly of those elements of F_{n} with an even number of x 's. By the formula of Reidemeister and Schreier this is a free group of rank $2 n-1$. Free generators are given by

$$
x^{2}, y_{1}, \ldots, y_{n-1}, x y_{1} x^{-1}, \ldots, x y_{n-1} x^{-1} .
$$

The corresponding relation module \bar{R} has then the following \mathbb{Z}-basis

$$
\overline{x^{2}}, \overline{y_{1}}, \ldots, \overline{y_{n-1}}, \overline{x y_{1} x^{-1}}, \ldots, \overline{x y_{n-1} x^{-1}} .
$$

By the construction described in Section 4.1 we obtain the integral linear representation

$$
\rho_{C_{2}, \pi}: \Gamma\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(\bar{R}) \cong \mathrm{GL}(2 n-1, \mathbb{Z})
$$

Set now

$$
\Gamma^{+}\left(C_{2}, \pi\right):=\left\{\varphi \in \Gamma\left(C_{2}, \pi\right) \mid \operatorname{det}\left(\rho_{1}(\varphi)\right)=1\right\} .
$$

Lemma 4.1. The index of $\Gamma^{+}\left(C_{2}, \pi\right)$ in Aut $^{+}\left(F_{n}\right)$ is $2^{n}-1$.
Proof. See [5], [2].
The restriction of $\rho_{C_{2}, \pi}$ on $\Gamma^{+}\left(C_{2}, \pi\right)$ leads to the integral linear representation

$$
\rho_{C_{2}, \pi}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(\bar{R}) \cong \mathrm{GL}(2 n-1, \mathbb{Z})
$$

The \mathbb{Q}-vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \bar{R}$ decomposes as $\mathbb{Q} \otimes_{\mathbb{Z}} \bar{R}=V_{1} \oplus V_{-1}$, where V_{1}, V_{-1} are the ± 1 eigenspaces of g respectively. Set $\bar{R}_{1}:=\bar{R} \cap V_{1}$ and $\bar{R}_{-1}:=\bar{R} \cap V_{-1}$. Introduce

$$
v_{i}:=\overline{y_{i}}+\overline{x y_{i} x^{-1}}, w_{i}:=\overline{y_{i}}-\overline{x y_{i} x^{-1}}(i=1, \ldots, n-1) .
$$

Then $\overline{x^{2}}, v_{1}, \ldots, v_{n-1}$ is a \mathbb{Z}-basis of \bar{R}_{1} and w_{1}, \ldots, w_{n-1} is a \mathbb{Z}-basis of \bar{R}_{-1}. Since $\Gamma\left(C_{2}, \pi\right)$ leaves \bar{R}_{1} and \bar{R}_{-1} invariant, we obtain, with the above \mathbb{Z}-basis chosen, representations

$$
\sigma_{1}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n, \mathbb{Z}), \quad \sigma_{-1}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z})
$$

The representation σ_{1} is equivalent to ρ_{1} restricted to $\Gamma^{+}\left(C_{2}, \pi\right)$. A proof for the case $n=2$ is in [2], but the general case is analogous.

In contrast the map σ_{-1} somewhat less expected. The goal of this chapter is to understand the map σ_{-1}. We especially want to study the kernel of σ_{-1}, which we call a generalized Torelli group.

We adopt from [5] the following proposition, which presents us a set of generators for $\Gamma^{+}\left(C_{2}, \pi\right)$. To give the generators of $\Gamma^{+}\left(C_{2}, \pi\right)$ is an important feature, which is not possible for an arbitrary group G.

Proposition 4.2. Let $n \geq 2$ be a natural number. The group $\Gamma^{+}\left(C_{2}, \pi\right)$ is generated by the automorphisms

- $\delta_{i}, \varepsilon_{i}, \varphi_{i}^{2}, \psi_{i}^{2}, \operatorname{kon}_{i x}, \operatorname{kon}_{x i}(1 \leq i \leq n-1)$,
- $\lambda_{i j}, \nu_{i j}, \kappa_{i j}, \tau_{i j}, \operatorname{kon}_{i j}(1 \leq i, j \leq n-1, i \neq j)$,
- $\kappa_{i j k}(1 \leq i, j, k \leq n-1, i, j, k$ pairwise distinct $)$.

Lemma 4.3. Let $n \geq 2$. The group $\operatorname{IA}\left(F_{n}\right)$ is contained in $\Gamma^{+}\left(C_{2}, \pi\right)$.
Proof. This is clear by Theorem 3.2 and the generators of $\Gamma^{+}\left(C_{2}, \pi\right)$ given in Proposition 4.2.

If we take a close look on the set of generators for $\Gamma^{+}\left(C_{2}, \pi\right)$ given in Proposition 4.2, we see that there are some redundant generators, i.e. we can express some generators in terms of others, which yields the following set of generators.

Corollary 4.4. Generators for $\Gamma^{+}\left(C_{2}, \pi\right)$ are

- for $n=2$ the automorphisms $\varepsilon_{1}, \psi_{1}^{2}$ and $\operatorname{kon}_{1 x}$,
- for $n \geq 3$ the automorphisms $\varepsilon_{i}, \psi_{i}^{2}, \operatorname{kon}_{i x}(i=1, \ldots, n-1)$ and $\nu_{i j}(i, j=1, \ldots, n-1, i \neq j)$.

Proof. We are going to prove the following relations:
For $n \geq 2$ and $1 \leq i \leq n-1$:

$$
\begin{aligned}
\delta_{i} & =\operatorname{kon}_{i x}^{-1} \circ \varepsilon_{i} \circ \operatorname{kon}_{i x} \\
\operatorname{kon}_{x i} & =\delta_{i} \circ \varepsilon_{i}^{-1}, \\
\varphi_{i}^{2} & =\operatorname{kon}_{i x}^{2} \circ \psi_{i}^{2} .
\end{aligned}
$$

For $n \geq 3$ and $1 \leq i, j \leq 2, i \neq j$:

$$
\begin{aligned}
\operatorname{kon}_{i j} & =\left[\operatorname{kon}_{i x}^{-1}, \delta_{j}\right], \\
\lambda_{i j} & =\operatorname{kon}_{i j} \circ \nu_{i j}, \\
\tau_{i j} & =\operatorname{kon}_{i x}^{-1} \circ \nu_{i j} \circ \operatorname{kon}_{i x} \circ \nu_{i j}^{-1}, \\
\kappa_{i j} & =\varepsilon_{i} \circ \varepsilon_{j} \circ \varepsilon_{i}^{-1} \circ \varepsilon_{j}^{-1} .
\end{aligned}
$$

For $n \geq 4$ and $1 \leq i, j, k \leq n-1, i, j, k$ pairwise distinct:

$$
\kappa_{i j k}=\nu_{i j} \circ \nu_{i k} \circ \nu_{i j}^{-1} \circ \nu_{i k}^{-1} .
$$

Let us now prove these formulas in detail:

- $\delta_{i}=\operatorname{kon}_{i x}^{-1} \circ \varepsilon_{i} \circ \operatorname{kon}_{i x}$:

$$
\left\{\begin{array}{llllll}
x & \stackrel{\mathrm{kon}_{i x}}{\mapsto} & x & \stackrel{\varepsilon_{i}}{\mapsto} & x y_{i} & \substack{\operatorname{kon}_{i x}^{-1} \\
\mid} \\
y_{i} & \stackrel{\mathrm{kon}_{i x}}{\mapsto} & x y_{i} x^{-1} & \stackrel{\varepsilon_{i}}{\mapsto} & x y_{i} x^{-1} & \stackrel{\mathrm{kon}_{i x}^{-1}}{\mapsto}
\end{array} y_{i}\right\},
$$

- $\operatorname{kon}_{x i}=\delta_{i} \circ \varepsilon_{i}^{-1}$:

$$
\left\{x \mid \stackrel{\varepsilon_{i}^{-1}}{\mapsto} x y_{i}^{-1} \quad \stackrel{\delta_{i}}{\mapsto} y_{i} x y_{i}^{-1}\right\}
$$

- $\varphi_{i}^{2}=\operatorname{kon}_{i x}^{2} \circ \psi_{i}^{2}$:

$$
\left\{y_{i} \stackrel{\psi_{i}^{2}}{\mapsto} y_{i} x^{2} \stackrel{\mathrm{kon}_{i x}^{2}}{\mapsto} x^{2} y_{i}\right\}
$$

- $\operatorname{kon}_{i j}=\operatorname{kon}_{i x}^{-1} \circ \delta_{j} \circ \operatorname{kon}_{i x} \circ \delta_{j}^{-1}$:

$$
\begin{aligned}
& \left\{\begin{array}{lll}
x & \stackrel{\delta_{j}^{-1}}{\mapsto} y_{j}^{-1} x & \stackrel{\operatorname{kon}_{i x} x}{\mapsto} \\
y_{i} & y_{j}^{-1} x & \stackrel{\delta_{j}^{-1}}{\mapsto} y_{i} \\
\stackrel{\delta_{j}}{\mapsto} x \\
\mapsto & \operatorname{kon}_{i} x & x^{-1} \\
\stackrel{\delta_{j}}{\mapsto} & y_{j} x y_{i} x^{-1} y_{j}^{-1}
\end{array}\right.
\end{aligned}
$$

- $\lambda_{i j}=\operatorname{kon}_{i j} \circ \nu_{i j}$:

$$
\left\{y_{i} \stackrel{\nu_{i j}}{\mapsto} y_{i} y_{j} \stackrel{\mathrm{kon}_{i j}}{\mapsto} y_{j} y_{i}\right\},
$$

- $\tau_{i j}=\operatorname{kon}_{i x}^{-1} \circ \nu_{i j} \circ \operatorname{kon}_{i x} \circ \nu_{i j}^{-1}:$

$$
\begin{aligned}
\left\{y_{i}\right. & \stackrel{\nu_{i j}^{-1}}{\mapsto} y_{i} y_{j}^{-1} \\
& \left.\stackrel{\mathrm{kon}_{i x}}{\mapsto} x y_{i} x^{-1} y_{j}^{-1} \xrightarrow{\mathrm{kon}_{\rightarrow x}^{-1}}{ }_{\mapsto} y_{i} x y_{j} x^{-1} y_{j}^{-1}\right\},
\end{aligned}
$$

- $\kappa_{i j}=\varepsilon_{i} \circ \varepsilon_{j} \circ \varepsilon_{i}^{-1} \circ \varepsilon_{j}^{-1}$:

$$
\begin{aligned}
\{x & \stackrel{\varepsilon_{j}^{-1}}{\mapsto} x y_{j}^{-1} \stackrel{\varepsilon_{i}^{-1}}{\mapsto} x y_{i}^{-1} y_{j}^{-1} \stackrel{\varepsilon_{j}}{\mapsto} x y_{j} y_{i}^{-1} y_{j}^{-1} \\
& \left.\stackrel{\varepsilon_{i}}{\mapsto} x y_{i} y_{j} y_{i}^{-1} y_{j}^{-1}\right\},
\end{aligned}
$$

- $\kappa_{i j k}=\nu_{i j} \circ \nu_{i k} \circ \nu_{i j}^{-1} \circ \nu_{i k}^{-1}$:

$$
\begin{aligned}
\left\{y_{i}\right. & \stackrel{\nu_{i>}^{-1}}{\mapsto} y_{i} y_{k}^{-1} \xrightarrow{\nu_{i j}^{-1}} y_{i} y_{j}^{-1} y_{k}^{-1} \xrightarrow{\nu_{i k}} y_{i} y_{k} y_{j}^{-1} y_{k}^{-1} \\
& \left.\stackrel{\nu_{i j}}{\mapsto} y_{i} y_{j} y_{k} y_{j}^{-1} y_{k}^{-1}\right\} .
\end{aligned}
$$

Now that we have found this improved generator set of $\Gamma^{+}\left(C_{2}, \pi\right)$, let us consider the images of these generators under σ_{-1}.

Proposition 4.5. We have

$$
\begin{array}{ll}
\sigma_{-1}\left(\varepsilon_{i}\right)=I_{n-1}, & \sigma_{-1}\left(\nu_{i j}\right)=E_{j i}(i \neq j), \\
\sigma_{-1}\left(\psi_{i}^{2}\right)=I_{n-1}, & \sigma_{-1}\left(\operatorname{kon}_{i x}\right)=O_{i}
\end{array}
$$

for $1 \leq i, j \leq n-1$. In particular σ_{-1} is surjective onto $\mathrm{GL}(n-1, \mathbb{Z})$.
Proof. We consider the images of σ_{-1} with respect to the \mathbb{Z}-basis w_{1}, \ldots, w_{n-1} of R_{-1}. We have

- $\sigma_{-1}\left(\varepsilon_{i}\right)=I_{n-1}$:

$$
\begin{aligned}
\sigma_{-1}\left(\varepsilon_{i}\right)\left(w_{k}\right) & =\overline{\varepsilon_{i}\left(y_{k}\right)}-\overline{\varepsilon_{i}\left(x y_{k} x^{-1}\right)}=\overline{y_{k}}-\overline{x y_{i} y_{k} y_{i}^{-1} x^{-1}} \\
& =\overline{y_{k}}-\left(\overline{x y_{i} x^{-1}}+\overline{x y_{k} x^{-1}}-\overline{x y_{i} x^{-1}}\right) \\
& =\overline{y_{k}}-\overline{x y_{k} x^{-1}}=w_{k} \quad \text { for all } k .
\end{aligned}
$$

- $\sigma_{-1}\left(\nu_{i j}\right)=E_{j i}$:

$$
\begin{aligned}
\sigma_{-1}\left(\nu_{i j}\right)\left(w_{k}\right) & =\overline{\nu_{i j}\left(y_{k}\right)}-\overline{\nu_{i j}\left(x y_{k} x^{-1}\right)}=\overline{y_{k}}-\overline{x y_{k} x^{-1}} \\
& =w_{k} \quad \text { for all } k \neq i, \\
\sigma_{-1}\left(\nu_{i j}\right)\left(w_{i}\right) & =\overline{\nu_{i j}\left(y_{i}\right)}-\overline{\nu_{i j}\left(x y_{i} x^{-1}\right)}=\overline{y_{i} y_{j}}-\overline{x y_{i} y_{j} x^{-1}} \\
& =\overline{y_{i}}+\overline{y_{j}}-\left(\overline{x y_{i} x^{-1}}+\overline{x y_{j} x^{-1}}\right)=w_{i}+w_{j} .
\end{aligned}
$$

- $\sigma_{-1}\left(\psi_{i}^{2}\right)=I_{n-1}$:

$$
\begin{aligned}
\sigma_{-1}\left(\psi_{i}^{2}\right)\left(w_{k}\right) & =\overline{\psi_{i}^{2}\left(y_{k}\right)}-\overline{\psi_{i}^{2}\left(x y_{k} x^{-1}\right)}=\overline{y_{k}}-\overline{x y_{k} x^{-1}} \\
& =w_{k} \quad \text { for all } k \neq i, \\
\sigma_{-1}\left(\psi_{i}^{2}\right)\left(w_{i}\right) & =\overline{\psi_{i}^{2}\left(y_{i}\right)}-\overline{\psi_{i}^{2}\left(x y_{i} x^{-1}\right)}=\overline{y_{i} x^{2}}-\overline{x y_{i} x} \\
& =\overline{y_{i}}+\overline{x^{2}}-\left(\overline{x y_{i} x^{-1}}+\overline{x^{2}}\right)=w_{i} .
\end{aligned}
$$

- $\sigma_{-1}\left(\operatorname{kon}_{i x}\right)=O_{i}:$

$$
\begin{aligned}
\sigma_{-1}\left(\operatorname{kon}_{i x}\right)\left(w_{j}\right) & =\overline{\operatorname{kon}_{i x}\left(y_{k}\right)}-\overline{\operatorname{kon}_{i x}\left(x y_{k} x^{-1}\right)}=\overline{y_{k}}-\overline{x y_{k} x^{-1}} \\
& =w_{k} \quad \text { for all } k \neq i, \\
\sigma_{-1}\left(\operatorname{kon}_{i x}\right)\left(w_{i}\right) & =\overline{\operatorname{kon}_{i x}\left(y_{i}\right)}-\overline{\operatorname{kon}_{i x}\left(x y_{i} x^{-1}\right)}=\overline{x y_{i} x^{-1}}-\overline{x^{2} y_{i} x^{-2}} \\
& =\overline{x y_{i} x^{-1}}-\left(\overline{x^{2}}+\overline{y_{i}}-\overline{x^{2}}\right)=-w_{i} .
\end{aligned}
$$

The surjectivity of σ_{-1} follows directly from Proposition 1.5.

4.3 THE KERNEL OF σ_{-1}

The kernel of σ_{-1} can be considered as a generalization of $\operatorname{IA}\left(F_{n}\right)$. Hence we call $\operatorname{ker}\left(\sigma_{-1}\right)$ a generalized Torelli group. By Proposition 4.5 we obtain the following exact sequence

$$
1 \rightarrow \operatorname{ker}\left(\sigma_{-1}\right) \rightarrow \Gamma^{+}\left(C_{2}, \pi\right) \xrightarrow{\sigma_{-1}} \mathrm{GL}(n-1, \mathbb{Z}) \rightarrow 1
$$

By this sequence we see that the index of $\operatorname{ker}\left(\sigma_{-1}\right)$ in $\Gamma^{+}\left(C_{2}, \pi\right)$ is infinite for $n \geq 3$. For $n=2$, the index of $\operatorname{ker}\left(\sigma_{-1}\right)$ in $\Gamma^{+}\left(C_{2}, \pi\right)$ is two and
it follows by Proposition 1.6 that, in this case, $\operatorname{ker}\left(\sigma_{-1}\right)$ is a finitely generated group. But there is no obvious reason why $\operatorname{ker}\left(\sigma_{-1}\right)$ should be a finitely generated group for $n \geq 3$. However the result of Nielsen and Magnus, which says that $\operatorname{IA}\left(F_{n}\right)$ is finitely generated as a group (Theorem 3.2), makes the finite generation of $\operatorname{ker}\left(\sigma_{-1}\right)$ more likely. Indeed we are going to prove that $\operatorname{ker}\left(\sigma_{-1}\right)$ is finitely generated as a group for all $n \geq 2$ (see Theorem 4.14).

Definition 4.6. Let $n \geq 2$. Define $K_{n} \leq \Gamma^{+}\left(C_{2}, \pi\right)$ to be the subgroup generated by the following automorphisms

$$
\begin{align*}
& \varepsilon_{i}:\left\{x \mapsto x y_{i}\right\}, \delta_{i}:\left\{x \mapsto y_{i} x\right\}, \\
& \psi_{i}^{2}:\left\{y_{i} \mapsto y_{i} x^{2}\right\} . \\
& \text { for } i=1, \ldots, n-1 .
\end{align*}
$$

Notice that K_{n} is a finitely generated group by definition. The next goal will be to prove that the group K_{n} is the kernel of σ_{-1} for all $n \geq 2$. To prove this we will apply Proposition 1.9. We know by Corollary 4.4 the generators of $\Gamma^{+}\left(C_{2}, \pi\right)$ and by Proposition 4.5 the images of these generators under σ_{-1}, namely

$$
\begin{array}{ll}
\sigma_{-1}\left(\varepsilon_{i}\right)=I_{n-1}, & \sigma_{-1}\left(\nu_{i j}\right)=E_{j i}, \\
\sigma_{-1}\left(\psi_{i}^{2}\right)=I_{n-1}, & \sigma_{-1}\left(\operatorname{kon}_{i x}\right)=O_{i}
\end{array}
$$

A presentation of $\mathrm{GL}(n-1, \mathbb{Z})$ in terms of these generators is given in Proposition 1.5. So our strategy is the following:

- Show that the group K_{n} is a normal subgroup in $\Gamma^{+}\left(C_{2}, \pi\right)$ (see Lemma 4.12).
- Let $R\left(E_{i j}, O_{k}\right)$ be the set relations of $\operatorname{GL}(n-1, \mathbb{Z})$ as given in Proposition 1.5. Then show that $R\left(\nu_{j i}, \mathrm{kon}_{k x}\right) \in K_{n}$ (see Lemma 4.13).
- Show that $K_{n} \leq \operatorname{ker}\left(\sigma_{-1}\right)$ (see Lemma 4.7).

Then we can apply Proposition 1.9 and conclude that $K_{n}=\operatorname{ker}\left(\sigma_{-1}\right)$.

Lemma 4.7. We have

$$
K_{n} \leq \operatorname{ker}\left(\sigma_{-1}\right) .
$$

Proof. We have by Proposition 4.5

$$
\sigma_{-1}\left(\varepsilon_{i}\right)=I_{n-1} \quad \text { and } \quad \sigma_{-1}\left(\psi_{i}^{2}\right)=I_{n-1} .
$$

Hence it suffices to show that $\sigma_{-1}\left(\delta_{i}\right)=I_{n-1}$:

$$
\begin{aligned}
\sigma_{-1}\left(\delta_{i}\right) & \stackrel{\text { Cor. }}{=}{ }^{4.4} \sigma_{-1}\left(\operatorname{kon}_{i x}^{-1} \circ \varepsilon_{i} \circ \operatorname{kon}_{i x}\right) \\
& =\sigma_{-1}\left(\operatorname{kon}_{i x}\right)^{-1} \cdot \sigma_{-1}\left(\varepsilon_{i}\right) \cdot \sigma_{-1}\left(\operatorname{kon}_{i x}\right)=I_{n-1}
\end{aligned}
$$

The proofs of the Lemmas 4.12 and 4.13 become easier, if we introduce some more elements in K_{n}. This will be done in Definition 4.8 and Definition 4.10.

Definition 4.8. Let $n \geq 2$. Define α_{i} and β_{i} for $1 \leq i \leq n-1$ to be the following elements of $\operatorname{Aut}\left(F_{n}\right)$

$$
\alpha_{i}:\left\{\begin{array}{rll}
x & \mapsto & x^{-1} \\
y_{i} & \mapsto & x y_{i}^{-1} x^{-1}
\end{array}\right\}, \quad \beta_{i}:\left\{\begin{array}{rll}
x & \mapsto & x^{-1} \\
y_{i} & \mapsto & x^{-1} y_{i}^{-1} x
\end{array}\right\} .
$$

Proposition 4.9. Let $n \geq 2$. Then the automorphisms α_{i} and $\beta_{i}(i=$ $1, \ldots, n-1$) are in K_{n} and satisfy $\alpha_{i}^{2}=\mathrm{id}$ and $\beta_{i}^{2}=\mathrm{id}$. In particular, K_{n} is not torsion-free.

Proof. We have

$$
\begin{aligned}
\alpha_{i} & =\psi_{i}^{-2} \circ \varepsilon_{i} \circ \psi_{i}^{-2} \circ \delta_{i}, \\
\beta_{i} & =\psi_{i}^{2} \circ \delta_{i}^{-1} \circ \psi_{i}^{2} \circ \varepsilon_{i}^{-1} .
\end{aligned}
$$

We prove these formulas now in detail:

- $\alpha_{i}=\psi_{i}^{-2} \circ \varepsilon_{i} \circ \psi_{i}^{-2} \circ \delta_{i}$:
- $\beta_{i}=\psi_{i}^{2} \circ \delta_{i}^{-1} \circ \psi_{i}^{2} \circ \varepsilon_{i}^{-1}$:
$\left\{\begin{array}{lllllll}x & \stackrel{\varepsilon_{i}^{-1}}{\mapsto} & x y_{i}^{-1} & \stackrel{\psi_{i}^{2}}{\mapsto} x^{-1} y_{i}^{-1} & \stackrel{\delta_{i}^{-1}}{\mapsto} x^{-1} & \stackrel{\psi_{i}^{2}}{\mapsto} x^{-1} \\ y_{i} & \stackrel{\varepsilon_{i}^{-1}}{\mapsto} y_{i} & \stackrel{\psi_{i}^{2}}{\mapsto} y_{i} x^{2} & \stackrel{\delta_{i}^{-1}}{\mapsto} & x y_{i}^{-1} x & \stackrel{\psi_{i}^{2}}{\mapsto} & x^{-1} y_{i}^{-1} x\end{array}\right\}$.

Finally we show that $\alpha_{i}^{2}=\mathrm{id}$ and $\beta_{i}^{2}=\mathrm{id}$:

$$
\left.\begin{array}{l}
\left\{\begin{array}{llll}
x & \stackrel{\alpha_{i}}{\hookrightarrow} & x^{-1} & \stackrel{\alpha_{i}}{\hookrightarrow} \\
y_{i} & \stackrel{\alpha_{i}}{\mapsto} & x y_{i}^{-1} x^{-1} & \stackrel{\alpha_{i}}{\mapsto}
\end{array} x^{-1}\left(x y_{i}^{-1} x^{-1}\right)^{-1} x=y_{i}\right.
\end{array}\right\},
$$

Definition 4.10. Let us define some more elements in $\operatorname{Aut}\left(F_{n}\right)$ for $n \geq 3$.

$$
\begin{aligned}
& \zeta_{i j}^{a}:\left\{y_{i} \mapsto y_{i} y_{j} x y_{j} x^{-1}\right\}, \zeta_{i j}^{b}:\left\{y_{i} \mapsto x^{-1} y_{j} x y_{j} y_{i}\right\}, \\
& \zeta_{i j}^{c}:\left\{y_{i} \mapsto y_{i} y_{j} x^{-1} y_{j} x\right\}, \zeta_{i j}^{d}:\left\{y_{i} \mapsto x y_{j} x^{-1} y_{j} y_{i}\right\}, \\
& \operatorname{kon}_{i j x}^{-}:\left\{\begin{array}{rll}
y_{i} & \mapsto & x y_{i}^{-1} x^{-1} \\
y_{j} & \mapsto & x y_{j}^{-1} x^{-1}
\end{array}\right\} .
\end{aligned}
$$

Lemma 4.11. The following automorphisms are in K_{n}

- for $n \geq 2$ and $1 \leq i \leq n-1$:

$$
\begin{aligned}
& \operatorname{kon}_{x i}:\left\{x \mapsto y_{i} x y_{i}^{-1}\right\}, \\
& \operatorname{kon}_{i x}^{2}:\left\{y_{i} \mapsto x^{2} y_{i} x^{-2}\right\},
\end{aligned} \quad \varphi_{i}^{2}:\left\{y_{i} \mapsto x^{2} y_{i}\right\},
$$

- for $n \geq 3$ and $1 \leq i, j \leq n-1, i \neq j$:

$$
\begin{aligned}
\kappa_{j k}:\left\{x \mapsto x y_{j} y_{k} y_{j}^{-1} y_{k}^{-1}\right\}, & \operatorname{kon}_{i j}:\left\{y_{i} \mapsto y_{j} y_{i} y_{j}^{-1}\right\}, \\
\zeta_{i j}^{a}:\left\{y_{i} \mapsto y_{i} y_{j} x y_{j} x^{-1}\right\}, & \zeta_{i j}^{b}:\left\{y_{i} \mapsto x^{-1} y_{j} x y_{j} y_{i}\right\}, \\
\zeta_{i j}^{c}:\left\{y_{i} \mapsto y_{i} y_{j} x^{-1} y_{j} x\right\}, & \zeta_{i j}^{d}:\left\{y_{i} \mapsto x y_{j} x^{-1} y_{j} y_{i}\right\},
\end{aligned}, \begin{array}{lll}
\operatorname{kon}_{i j x}^{-}:\left\{\begin{array}{rrr}
y_{i} & \mapsto & x y_{i}^{-1} x^{-1} \\
y_{j} & \mapsto & x y_{j}^{-1} x^{-1}
\end{array}\right\},
\end{array}
$$

- for $n \geq 4$ and $1 \leq i, j, k \leq n-1, i, j, k$ pairwise distinct:

$$
\kappa_{i j k}:\left\{y_{i} \mapsto y_{i} y_{j} y_{k} y_{j}^{-1} y_{k}^{-1}\right\} .
$$

Proof. The following relations, which we are going to prove below, hold in K_{n}.
For $n \geq 2$ and $1 \leq i \leq n-1$:

$$
\begin{aligned}
\operatorname{kon}_{x i} & =\delta_{i} \circ \varepsilon_{i}^{-1}, \\
\operatorname{kon}_{i x}^{2} & =\alpha_{i} \circ \beta_{i}, \\
\varphi_{i}^{2} & =\operatorname{kon}_{i x}^{2} \circ \psi_{i}^{2} .
\end{aligned}
$$

For $n \geq 3$ and $1 \leq i, j \leq n-1, i \neq j$:

$$
\begin{aligned}
\operatorname{kon}_{i j x}^{-} & =\alpha_{i} \circ \beta_{j}, \\
\kappa_{i j} & =\varepsilon_{i} \circ \varepsilon_{j} \circ \varepsilon_{i}^{-1} \circ \varepsilon_{j}^{-1}, \\
\operatorname{kon}_{i j} & =\beta_{i} \circ \varepsilon_{j}^{-1} \circ \beta_{i} \circ \delta_{j}^{-1}, \\
\zeta_{i j}^{c} & =\varepsilon_{j}^{-1} \circ \psi_{i}^{-2} \circ \varepsilon_{j} \circ \psi_{i}^{2}, \\
\zeta_{i j}^{a} & =\operatorname{kon}_{i j}^{-1} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j} \circ \zeta_{i j}^{c} \circ \psi_{i}^{-2}, \\
\zeta_{i j}^{b} & =\alpha_{i} \circ\left(\zeta_{i j}^{c}\right)^{-1} \circ \alpha_{i}, \\
\zeta_{i j}^{d} & =\beta_{i} \circ\left(\zeta_{i j}^{a}\right)^{-1} \circ \beta_{i} .
\end{aligned}
$$

For $n \geq 4$ and $1 \leq i, j, k \leq n-1$ and i, j, k pairwise distinct:

$$
\begin{aligned}
\kappa_{i j k}= & \operatorname{kon}_{x j} \circ \varepsilon_{j} \circ\left(\operatorname{kon}_{i j x}^{-}\right)^{-1} \circ \varepsilon_{j} \circ \operatorname{kon}_{i j x}^{-} \circ \operatorname{kon}_{i k}^{-1} \circ \zeta_{i k}^{d} \circ\left(\operatorname{kon}_{i j x}^{-}\right)^{-1} \circ \\
& \varepsilon_{j}^{-1} \circ \operatorname{kon}_{i j x}^{-} \circ\left(\zeta_{i k}^{d}\right)^{-1} \circ \operatorname{kon}_{i k} \circ \varepsilon_{j}^{-1} \circ \operatorname{kon}_{x j}^{-1} .
\end{aligned}
$$

We prove now all these formulas in detail:

- $\operatorname{kon}_{x i}=\delta_{i} \circ \varepsilon_{i}^{-1}$:

See proof of Corollary 4.4,

- $\operatorname{kon}_{i x}^{2}=\alpha_{i} \circ \beta_{i}$:

$$
\left\{\begin{array}{llll}
x & \stackrel{\beta_{i}}{\rightrightarrows} & x^{-1} & \stackrel{\alpha_{i}}{\mapsto} x \\
y_{i} & \stackrel{\beta_{i}}{\mapsto} & x^{-1} y_{i}^{-1} x & \stackrel{\alpha_{i}}{\mapsto} x\left(x y_{i}^{-1} x^{-1}\right)^{-1} x^{-1}=x^{2} y_{i} x^{-2}
\end{array}\right\},
$$

- $\varphi_{i}^{2}=\operatorname{kon}_{i x}^{2} \circ \psi_{i}^{2}$:

See proof of Corollary 4.4,

- $\operatorname{kon}_{i j x}^{-}=\alpha_{i} \circ \beta_{j}$:
$\left\{\begin{array}{llll}x & \stackrel{\beta_{j}}{\mapsto} & x^{-1} & \stackrel{\alpha_{i}}{\mapsto} \\ y_{i} & \stackrel{\beta_{j}}{\mapsto} & y_{i} & \stackrel{\alpha_{i}}{\mapsto} \\ y_{j} & x_{i}^{-1} x^{-1} \\ \beta_{j} & x^{-1} y_{j}^{-1} x & \stackrel{\alpha_{i}}{\mapsto} & x y_{j}^{-1} x^{-1}\end{array}\right\}$,
- $\kappa_{i j}=\varepsilon_{i} \circ \varepsilon_{j} \circ \varepsilon_{i}^{-1} \circ \varepsilon_{j}^{-1}$:

See proof of Corollary 4.4,

- $\operatorname{kon}_{i j}=\beta_{i} \circ \varepsilon_{j}^{-1} \circ \beta_{i} \circ \delta_{j}^{-1}:$
$\left\{\begin{array}{llllll}x & \stackrel{\delta_{j}^{-1}}{\mapsto} y_{j}^{-1} x & \stackrel{\beta_{i}}{\mapsto} y_{j}^{-1} x^{-1} & \stackrel{\varepsilon_{j}^{-1}}{\mapsto} x^{-1} & \stackrel{\beta_{i}}{\mapsto} x \\ y_{i} & \stackrel{\delta_{j}^{-1}}{\mapsto} y_{i} & \stackrel{\beta_{i}}{\mapsto} & x^{-1} y_{i}^{-1} x & \stackrel{\varepsilon_{j}^{-1}}{\mapsto} y_{j} x^{-1} y_{i}^{-1} x y_{j}^{-1} & \stackrel{\beta_{i}}{\mapsto} y_{j} y_{i} y_{j}^{-1}\end{array}\right\}$,
- $\zeta_{i j}^{c}=\varepsilon_{j}^{-1} \circ \psi_{i}^{-2} \circ \varepsilon_{j} \circ \psi_{i}^{2}$:
$\left\{\begin{array}{lllll}x & \stackrel{\psi_{i}^{2}}{\mapsto} x & \stackrel{\varepsilon_{j}}{\mapsto} x y_{j} & \stackrel{\psi_{i}^{-2}}{\mapsto} x y_{j} & \stackrel{\varepsilon_{j}^{-1}}{\mapsto} x \\ y_{i} & \stackrel{\psi_{i}^{2}}{\mapsto} y_{i} x^{2} & \stackrel{\varepsilon_{j}}{\mapsto} y_{i} x y_{j} x y_{j} & \stackrel{\psi_{i}^{-2}}{\mapsto} y_{i} x^{-1} y_{j} x y_{j} & \stackrel{\varepsilon_{j}^{-1}}{\mapsto} y_{i} y_{j} x^{-1} y_{j} x\end{array}\right\}$,
- $\zeta_{i j}^{a}=\operatorname{kon}_{i j}^{-1} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j} \circ \zeta_{i j}^{c} \circ \psi_{i}^{-2}$:
$\left\{y_{i} \stackrel{\psi_{i}^{-2}}{\mapsto} y_{i} x^{-2} \stackrel{\zeta_{i j}^{c}}{\mapsto} y_{i} y_{j} x^{-1} y_{j} x^{-1} \stackrel{\mathrm{kon}_{i j}}{\mapsto} y_{j} y_{i} x^{-1} y_{j} x^{-1}\right.$

$$
\left.\stackrel{\psi_{i}^{2}}{\mapsto} y_{j} y_{i} x y_{j} x^{-1} \stackrel{\mathrm{kon}_{i j}^{-1}}{\longmapsto} y_{i} y_{j} x y_{j} x^{-1}\right\},
$$

- $\zeta_{i j}^{b}=\alpha_{i} \circ\left(\zeta_{i j}^{c}\right)^{-1} \circ \alpha_{i}$:

- $\zeta_{i j}^{d}=\beta_{i} \circ\left(\zeta_{i j}^{a}\right)^{-1} \circ \beta_{i}$:
- $\kappa_{i j k}=\operatorname{kon}_{i j}^{-1} \circ \operatorname{kon}_{i k}^{-1} \circ \zeta_{i k}^{d} \circ\left(\operatorname{kon}_{i j x}^{-}\right)^{-1} \circ \varepsilon_{j}^{-1} \circ \operatorname{kon}_{i j x}^{-} \circ\left(\zeta_{i k}^{d}\right)^{-1} \circ \mathrm{kon}_{i k} \circ \delta_{j}^{-1}$:

$$
\left\{\begin{array}{lllll}
x & \stackrel{\delta_{j}^{-1}}{\mapsto} y_{j}^{-1} x & \stackrel{\text { kon }_{i k}}{\mapsto} y_{j}^{-1} x & \stackrel{\left(\zeta_{i k}^{d}\right)^{-1}}{\longrightarrow} & y_{j}^{-1} x \\
y_{i} & \stackrel{\delta_{j}^{-1}}{\mapsto} y_{i} & \stackrel{\text { kon}_{i k}}{\mapsto} & y_{k} y_{i} y_{k}^{-1} & \stackrel{\left(\zeta_{i k}^{d}\right)^{-1}}{\longrightarrow} \\
y_{j} & \stackrel{\delta_{j}^{-1}}{\mapsto} y_{j} & \stackrel{\text { kon }_{i k}}{\mapsto} y_{j} & \stackrel{\left(\zeta_{i k}^{d}\right)^{-1}}{\mapsto} x^{-1} y_{i} y_{k}^{-1} & y_{j}
\end{array}\right.
$$

$$
\begin{aligned}
& \stackrel{\mathrm{kon}_{i j x}^{-}}{\mapsto} x y_{j} \\
& \stackrel{\mathrm{kon}_{i j x}^{-}}{\mapsto} x y_{k}^{-1} y_{i}^{-1} x^{-1} y_{k}^{-1} \\
& \stackrel{\stackrel{\varepsilon_{j}^{-1}}{\mapsto}}{\stackrel{\varepsilon_{j}^{-1}}{\mapsto}} x \\
& \stackrel{\operatorname{kon}_{i j x}^{-}}{\mapsto} x y_{j}^{-1} x^{-1} y_{k}^{-1} y_{i}^{-1} y_{j} x^{-1} y_{k}^{-1} \\
& \stackrel{\varepsilon_{j}^{-1}}{\mapsto} x y_{j}^{-1} x^{-1}
\end{aligned}
$$

$$
\stackrel{\left(\operatorname{kon}_{\imath \rightarrow j}^{-}\right)^{-1}}{)^{-1}} y_{j} x y_{k}^{-1} x^{-1} y_{i} y_{j}^{-1} y_{k}^{-1} \xrightarrow[\longrightarrow]{\stackrel{\zeta_{i j}^{d}}{\longrightarrow}} y_{j} y_{k} y_{i} y_{j}^{-1} y_{k}^{-1}
$$

$$
\stackrel{\left(\mathrm{kon}_{i j x}^{-}\right)^{-1}}{\mapsto} y_{j} \quad \stackrel{\zeta_{i k}^{d}}{\mapsto} y_{j}
$$

Lemma 4.12. The group K_{n} is a normal subgroup in $\Gamma^{+}\left(C_{2}, \pi\right)$.
Proof. By Lemma 1.10 it suffices to conjugate the generators of K_{n} with the generators of $\Gamma^{+}\left(C_{2}, \pi\right)$ and their inverses. The generators of K_{n} are by definition $\varepsilon_{i}, \delta_{i}$ and $\psi_{i}^{2}(1 \leq i \leq n-1)$ and the generators of $\Gamma^{+}\left(C_{2}, \pi\right)$ are, by Corollary 4.4, the automorphisms $\varepsilon_{i}, \psi_{i}^{2}, \operatorname{kon}_{i x}(1 \leq i \leq n-1)$ and $\nu_{i j}(1 \leq i, j \leq n-1, i \neq j)$. Since ε_{i} and ψ_{i}^{2} are automorphisms in
K_{n} as well as in $\Gamma^{+}\left(C_{2}, \pi\right)$, it suffices to conjugate with $\nu_{i j}, \nu_{i j}^{-1}, \operatorname{kon}_{i x}$ and $\mathrm{kon}_{i x}^{-1}$.

In order to reduce the formulas in the proof, let us note here:

- We do not need to conjugate with $\operatorname{kon}_{i x}^{-1}$. To see this, suppose that $\operatorname{kon}_{i x} \circ \alpha \circ \operatorname{kon}_{i x}^{-1} \in K_{n}$ for some $\alpha \in K_{n}$. Since $\operatorname{kon}_{i x}^{2} \in K_{n}$ for $n \geq 2$, by Lemma 4.11, it follows that

$$
\operatorname{kon}_{i x}^{-1} \circ \alpha \circ \operatorname{kon}_{i x}=\underbrace{\operatorname{kon}_{i x}^{-2}}_{\in K_{n}} \circ(\underbrace{\operatorname{kon}_{i x} \circ \alpha \circ \operatorname{kon}_{i x}^{-1}}_{\in K_{n}}) \circ \underbrace{\operatorname{kon}_{i x}^{2}}_{\in K_{n}}
$$

is also in K_{n}.

- Notice that the automorphisms $\varepsilon_{i}, \delta_{i}$ and ψ_{i}^{2} commute with $\nu_{j k}$ if $j \neq i$ and $k \neq i$. Hence we do not need to conjugate $\varepsilon_{i}, \delta_{i}$ and ψ_{i}^{2} with $\nu_{j k}$ if $j \neq i$ and $k \neq i$.

First we list the results and prove the formulas below.
1.) $\nu_{i j} \circ \varepsilon_{i} \circ \nu_{i j}^{-1}=\varepsilon_{i} \circ \varepsilon_{j} \in K_{n}$,

$$
\nu_{j i} \circ \varepsilon_{i} \circ \nu_{j i}^{-1}=\varepsilon_{i} \in K_{n},
$$

$$
\nu_{i j}^{-1} \circ \varepsilon_{i} \circ \nu_{i j}=\varepsilon_{i} \circ \varepsilon_{j}^{-1} \in K_{n},
$$

$$
\nu_{j i}^{-1} \circ \varepsilon_{i} \circ \nu_{j i}=\varepsilon_{i} \in K_{n},
$$

$$
\operatorname{kon}_{i x} \circ \varepsilon_{i} \circ \operatorname{kon}_{i x}^{-1}=\operatorname{kon}_{i x}^{2} \circ \delta_{i} \circ \operatorname{kon}_{i x}^{-2} \in K_{n},
$$

$$
\operatorname{kon}_{j x} \circ \varepsilon_{i} \circ \operatorname{kon}_{j x}^{-1}=\varepsilon_{i} \circ \operatorname{kon}_{j i}^{-1} \in K_{n},
$$

2.) $\nu_{i j} \circ \delta_{i} \circ \nu_{i j}^{-1}=\delta_{j} \circ \delta_{i} \in K_{n}$,

$$
\nu_{j i} \circ \delta_{i} \circ \nu_{j i}^{-1}=\delta_{i} \in K_{n}
$$

$$
\nu_{i j}^{-1} \circ \delta_{i} \circ \nu_{i j}=\delta_{j}^{-1} \circ \delta_{i} \in K_{n},
$$

$$
\nu_{j i}^{-1} \circ \delta_{i} \circ \nu_{j i}=\delta_{i} \in K_{n},
$$

$$
\operatorname{kon}_{i x} \circ \delta_{i} \circ \operatorname{kon}_{i x}^{-1}=\varepsilon_{i} \in K_{n},
$$

$$
\operatorname{kon}_{j x} \circ \delta_{i} \circ \operatorname{kon}_{j x}^{-1}=\delta_{i} \circ \alpha_{j} \circ \operatorname{kon}_{j i}^{-1} \circ \alpha_{j} \in K_{n},
$$

3.) $\quad \nu_{i j} \circ \psi_{i}^{2} \circ \nu_{i j}^{-1}=\operatorname{kon}_{i j}^{-1} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j} \in K_{n}$,
$\nu_{j i} \circ \psi_{i}^{2} \circ \nu_{j i}^{-1}=\psi_{i}^{2} \circ \operatorname{kon}_{j i}^{-1} \circ \psi_{j}^{-2} \circ \operatorname{kon}_{j i} \in K_{n}$,
$\nu_{i j}^{-1} \circ \psi_{i}^{2} \circ \nu_{i j}=\operatorname{kon}_{i j} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j}^{-1} \in K_{n}$,
$\nu_{j i}^{-1} \circ \psi_{i}^{2} \circ \nu_{j i}=\psi_{j}^{2} \circ \psi_{i}^{2} \in K_{n}$,
$\operatorname{kon}_{i x} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i x}^{-1}=\psi_{i}^{2} \in K_{n}$,
$\operatorname{kon}_{j x} \circ \psi_{i}^{2} \circ \operatorname{kon}_{j x}^{-1}=\psi_{i}^{2} \in K_{n}$.

We check these formulas now in detail:

- $\nu_{i j} \circ \varepsilon_{i} \circ \nu_{i j}^{-1}=\varepsilon_{i} \circ \varepsilon_{j}:$
$\left\{\begin{array}{llllll}x & \stackrel{\nu_{i j}^{-1}}{\mapsto} & x & \stackrel{\varepsilon_{i}}{\mapsto} & x y_{i} & \stackrel{\nu_{i j}}{\mapsto}\end{array} x_{i} y_{j}\right.$,
- $\nu_{j i} \circ \varepsilon_{i} \circ \nu_{j i}^{-1}=\varepsilon_{i}$:

$$
\left\{\begin{array}{llllll}
x & \stackrel{\nu_{j i}^{-1}}{\mapsto} & x & \stackrel{\varepsilon_{i}}{\mapsto} & x y_{i} & \stackrel{\nu_{j i}}{\longrightarrow}
\end{array} x_{i},\{,\right.
$$

- $\nu_{i j}^{-1} \circ \varepsilon_{i} \circ \nu_{i j}=\varepsilon_{i} \circ \varepsilon_{j}^{-1}$:

- $\nu_{j i}^{-1} \circ \varepsilon_{i} \circ \nu_{j i}=\varepsilon_{i}$:

$$
\left\{\begin{array}{llllll}
x & \stackrel{\nu_{j i}}{\rightarrow} x & \stackrel{\varepsilon_{i}}{\mapsto} & x y_{i} & \stackrel{\nu_{j i}^{-1}}{\mapsto} & x y_{i} \\
y_{j} & \stackrel{\nu_{j i}}{\mapsto} & y_{j} y_{i} & \stackrel{\varepsilon_{i}}{\mapsto} y_{j} y_{i} & \stackrel{\nu_{i i}^{-1}}{\mapsto} & y_{j}
\end{array}\right\},
$$

- $\operatorname{kon}_{i x} \circ \varepsilon_{i} \circ \operatorname{kon}_{i x}^{-1}=\operatorname{kon}_{i x}^{2} \circ \delta_{i} \circ \operatorname{kon}_{i x}^{-2}$:

$$
\begin{aligned}
& =\left\{\begin{array}{llll}
x & \stackrel{\substack{\mathrm{kon}_{-x}^{-2} \\
\mapsto}}{\substack{\mathrm{kon}_{i x}^{-2}}} & x & \stackrel{\delta_{i}}{\mapsto} \\
y_{i} x \\
y_{i} y_{i} x^{2} & \stackrel{\delta_{i}}{\mapsto} & x^{-1} y_{i}^{-1} x^{-1} y_{i} x y_{i} x
\end{array}\right. \\
& \left.\underset{\stackrel{\operatorname{kon}_{i x}^{2}}{\mapsto}}{\stackrel{\operatorname{kon}_{i x}^{2}}{\mapsto}} x^{2} y_{i} x^{-1}, y_{i}^{-1} x^{-1} y_{i} x y_{i} x^{-1}\right\},
\end{aligned}
$$

- $\operatorname{kon}_{j x} \circ \varepsilon_{i} \circ \operatorname{kon}_{j x}^{-1}=\varepsilon_{i} \circ \operatorname{kon}_{j i}^{-1}:$

$$
\begin{aligned}
& \left\{\begin{array}{llll}
x & \stackrel{\mathrm{kon}_{j x}^{-1}}{\mapsto} & x & \stackrel{\varepsilon_{i}}{\mapsto} \\
y_{j} & x y_{i} & \stackrel{\operatorname{kon}_{j x}}{\mapsto} & x y_{i} \\
y_{j x}^{-1} \\
\mathrm{k}^{-1} y_{j} x & & \stackrel{\varepsilon_{i}}{\mapsto} y_{i}^{-1} x^{-1} y_{j} x y_{i} & \stackrel{\operatorname{kon}_{j x}}{\mapsto} y_{i}^{-1} y_{j} y_{i}
\end{array}\right\} \\
& =\left\{\begin{array}{llll}
x & \stackrel{\substack{\mathrm{kon}_{j i}^{-1} \\
\mapsto}}{\stackrel{\mathrm{kon}_{j i}^{-1}}{\mapsto}} y_{i}^{-1} y_{j} y_{i} & \stackrel{\varepsilon_{i}}{\mapsto} & x y_{i} \\
y_{j} & y_{i}^{-1} y_{j} y_{i}
\end{array}\right\},
\end{aligned}
$$

- $\nu_{i j} \circ \delta_{i} \circ \nu_{i j}^{-1}=\delta_{j} \circ \delta_{i}$:

$$
\left\{\begin{array}{lllll}
x & \stackrel{\substack{\nu_{i j}^{-1}}}{\mapsto} & x & \stackrel{\delta_{i}}{\mapsto} & y_{i} x
\end{array} \stackrel{\stackrel{\nu_{i j}}{\mapsto}}{\mapsto} y_{i} y_{j} x\right\},
$$

- $\nu_{j i} \circ \delta_{i} \circ \nu_{j i}^{-1}=\delta_{i}$:

$$
\left\{\begin{array}{llllll}
x & \stackrel{\nu_{j i}^{-1}}{\mapsto \rightarrow} & x & \stackrel{\delta_{i}}{\mapsto} & y_{i} x & \stackrel{\nu_{j i}}{\mapsto}
\end{array} y_{i} x+,\right.
$$

- $\nu_{i j}^{-1} \circ \delta_{i} \circ \nu_{i j}=\delta_{j}^{-1} \circ \delta_{i}$:
$\left\{\begin{array}{llll}x & \stackrel{\nu_{i j}}{\mapsto} & x & \stackrel{\delta_{i}}{\mapsto} y_{i} x \\ y_{i} & \stackrel{\nu_{i j}}{\mapsto} y_{i} y_{j} & \stackrel{\delta_{i j}}{\mapsto} & y_{i} y_{j} \\ \stackrel{\nu_{i j}^{-1}}{\mapsto} & y_{i} y_{j}^{-1} x \\ \nu_{i j}^{-1} & y_{i}\end{array}\right\}$,
- $\nu_{j i}^{-1} \circ \delta_{i} \circ \nu_{j i}=\delta_{i}$:

$$
\left\{\begin{array}{llllll}
x & \stackrel{\nu_{j i}}{\mapsto} & x & \stackrel{\delta_{i}}{\mapsto} & y_{i} x & \stackrel{\nu_{j i}^{-1}}{\mapsto} y_{i} x \\
y_{j} & \stackrel{\nu_{j i}}{\mapsto} y_{j} y_{i} & \stackrel{\delta_{i}}{\mapsto} y_{j} y_{i} & \stackrel{\nu_{j i}^{-1}}{\mapsto} y_{j}
\end{array}\right\},
$$

- $\operatorname{kon}_{i x} \circ \delta_{i} \circ \operatorname{kon}_{i x}^{-1}=\varepsilon_{i}$:

$$
\left\{\begin{array}{llllll}
x & \stackrel{\text { kon}_{i x}^{-1}}{\mapsto} & x & \stackrel{\delta_{i}}{\mapsto} & y_{i} x & \stackrel{\text { kon }_{i x}}{\mapsto} \\
y_{i} & \text { kon }_{i x}^{-1} \\
\mapsto & x^{-1} y_{i} x & \stackrel{\delta_{i}}{\mapsto} & x^{-1} y_{i} x & \stackrel{\operatorname{kon}_{i x}}{\mapsto} & y_{i}
\end{array}\right\},
$$

- $\operatorname{kon}_{j x} \circ \delta_{i} \circ \operatorname{kon}_{j x}^{-1}=\delta_{i} \circ \alpha_{j} \circ \operatorname{kon}_{j i}^{-1} \circ \alpha_{j}$:

$$
\begin{aligned}
& \left\{\begin{array}{llll}
x & \stackrel{\text { kon }_{j x}^{-1}}{\mapsto} & x & \stackrel{\delta_{i}}{\mapsto} y_{i} x \\
y_{j} & \stackrel{\text { kon }_{j x}^{-1}}{\mapsto} & x^{-1} y_{j} x & \stackrel{\delta_{i}}{\mapsto} x^{-1} y_{i}^{-1} y_{j} y_{i} x \\
\stackrel{\operatorname{kon}_{j x}}{\mapsto} & y_{i} x \\
\mathrm{kon}_{j x} & x^{-1} y_{i}^{-1} x y_{j} x^{-1} y_{i} x
\end{array}\right\} \\
& =\left\{\begin{array}{lll}
x & \stackrel{\alpha_{j}}{\mapsto} & x^{-1} \\
y_{j} & \stackrel{\alpha_{j}}{\mapsto} x y_{j}^{-1} x^{-1} & \stackrel{\substack{\mathrm{kon}_{j i}^{-1} \\
\mapsto}}{\operatorname{kon}_{j_{i}}^{-1}} x^{-1} \\
y^{-1} & x y_{i}^{-1} y_{j}^{-1} y_{i} x^{-1}
\end{array}\right. \\
& \left.\begin{array}{ll}
\stackrel{\alpha_{j}}{\mapsto} & x \\
\stackrel{\alpha_{j}}{\mapsto} & x^{-1} y_{i}^{-1} x y_{j} x^{-1} y_{i} x
\end{array} \stackrel{\stackrel{\delta_{i}}{\mapsto}}{\stackrel{\delta_{i}}{\mapsto}} y_{i} x, x^{-1} y_{i}^{-1} x y_{j} x^{-1} y_{i} x\right\},
\end{aligned}
$$

- $\nu_{i j} \circ \psi_{i}^{2} \circ \nu_{i j}^{-1}=\operatorname{kon}_{i j}^{-1} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j}$:
$\left\{y_{i} \stackrel{\nu_{i j}^{-1}}{\mapsto} y_{i} y_{j}^{-1} \stackrel{\psi_{i}^{2}}{\mapsto} y_{i} x^{2} y_{j}^{-1} \xrightarrow{\nu} y_{i} y_{j} x^{2} y_{j}^{-1}\right\}=$ $\left\{y_{i} \stackrel{\operatorname{kon}_{i j}}{\mapsto} y_{j} y_{i} y_{j}^{-1} \stackrel{\psi_{i}^{2}}{\mapsto} y_{j} y_{i} x^{2} y_{j}^{-1} \stackrel{\mathrm{kon}_{i j}^{-1}}{\mapsto} y_{i} y_{j} x^{2} y_{j}^{-1}\right\}$,
- $\nu_{j i} \circ \psi_{i}^{2} \circ \nu_{j i}^{-1}=\psi_{i}^{2} \circ \operatorname{kon}_{j i}^{-1} \circ \psi_{j}^{-2} \circ \operatorname{kon}_{j i}$:
$\left\{\begin{array}{lllll}y_{i} & \stackrel{\nu_{j i}^{-1}}{\substack{i n}} y_{i} & \stackrel{\psi_{i}^{2}}{\rightarrow} y_{i} x^{2} & \stackrel{\nu_{j i}}{\mapsto} y_{i} x^{2} \\ y_{j} & \stackrel{\nu_{j i}^{-1}}{\rightarrow} y_{j} y_{i}^{-1} & \stackrel{\psi_{i}^{2}}{\mapsto} y_{j} x^{-2} y_{i}^{-1} & \stackrel{\nu_{j i 2}}{\mapsto} y_{j} y_{i} x^{-2} y_{i}^{-1}\end{array}\right\}=$
$\left\{\begin{array}{lll}y_{i} & \stackrel{\mathrm{kon}_{j i}}{\mapsto} y_{i} & \stackrel{\psi_{j}^{-2}}{\mapsto} y_{i} \\ y_{j} & \stackrel{\mathrm{kon}_{j i}}{\mapsto} y_{i} y_{j} y_{i}^{-1} & \stackrel{\psi_{j}^{-2}}{\mapsto} y_{i} y_{j} x^{-2} y_{i}^{-1} \\ \stackrel{\mathrm{kon}_{j i}^{-1}}{\mapsto} & y_{i} \\ \mathrm{kon}_{j i}^{-1} \\ \mapsto\end{array} y_{j} y_{i} x^{-2} y_{i}^{-1}\right.$

$$
\left.\begin{array}{ll}
\stackrel{\psi_{i}^{2}}{\stackrel{\psi_{i}^{2}}{*}} & y_{i} x^{2} \\
\stackrel{y}{\mapsto} & y_{j} y_{i} x^{-2} y_{i}^{-1}
\end{array}\right\},
$$

- $\nu_{i j}^{-1} \circ \psi_{i}^{2} \circ \nu_{i j}=\operatorname{kon}_{i j} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j}^{-1}$:
$\left\{y_{i} \stackrel{\nu_{i j}}{\mapsto} y_{i} y_{j} \stackrel{\psi_{i}^{2}}{\mapsto} y_{i} x^{2} y_{j} \stackrel{\nu_{i \rightarrow}^{-1}}{\mapsto} y_{i} y_{j}^{-1} x^{2} y_{j}\right\}=$
$\left\{y_{i} \stackrel{\operatorname{kon}_{i j}^{-1}}{\longmapsto} y_{j}^{-1} y_{i} y_{j} \stackrel{\psi_{i}^{2}}{\longmapsto} y_{j}^{-1} y_{i} x^{2} y_{j} \stackrel{\operatorname{kon}_{i j}}{\mapsto} y_{i} y_{j}^{-1} x^{2} y_{j}\right\}$,
- $\nu_{j i}^{-1} \circ \psi_{i}^{2} \circ \nu_{j i}=\psi_{j}^{2} \circ \psi_{i}^{2}$:

$$
\left\{\begin{array}{llllll}
y_{i} & \stackrel{\nu_{j i}}{\mapsto} & y_{i} & \stackrel{\psi_{i}^{2}}{\mapsto} & y_{i} x^{2} & \stackrel{\nu_{j i}^{-1}}{\mapsto} \\
y_{j} & \stackrel{\nu_{j i}}{\mapsto} & y_{i} x^{2} \\
y_{i} & \stackrel{\psi_{i}^{2}}{\mapsto} & y_{j} y_{i} x^{2} & \stackrel{\nu_{j i}^{-1}}{\mapsto} & y_{j} x^{2}
\end{array}\right\},
$$

- $\operatorname{kon}_{i x} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i x}^{-1}=\psi_{i}^{2}$:
$\left\{y_{i} \stackrel{\operatorname{kon}_{i x}^{-1}}{\longmapsto} x^{-1} y_{i} x \stackrel{\psi_{i}^{2}}{\longmapsto} x^{-1} y_{i} x^{3} \stackrel{\operatorname{kon}_{i x}}{\longmapsto} y_{i} x^{2}\right\}$,
- $\operatorname{kon}_{j x} \circ \psi_{i}^{2} \circ \operatorname{kon}_{j x}^{-1}=\psi_{i}^{2}$:

$$
\left\{\begin{array}{llllll}
y_{i} & \stackrel{\mathrm{kon}_{j x}^{-1}}{\mapsto} & y_{i} & \stackrel{\psi_{i}^{2}}{\mapsto} & y_{i} x^{2} & \stackrel{\operatorname{kon}_{j x}}{\mapsto} \\
y_{j} & y_{i} x^{2} \\
\operatorname{kon}_{j x}^{-1} \\
\mapsto & x^{-1} y_{j} x & \stackrel{\psi_{i}^{2}}{\mapsto} & x^{-1} y_{j} x & \stackrel{\operatorname{kon}_{j x}}{\mapsto} & y_{j}
\end{array}\right\} .
$$

Lemma 4.13. Let $n \geq 2$ and let $\mathrm{GL}(n-1, \mathbb{Z})$ be presented as in Proposition 1.5 and let $R\left(E_{i j}, O_{k}\right)$ be the corresponding set of relations. Then

$$
R\left(\nu_{j i}, \operatorname{kon}_{k x}\right) \in K_{n}
$$

Proof. Let us begin with the case $n=2$. But there is only one relation in the group $G L(1, \mathbb{Z})$, namely $O_{1}^{2}=1$. Thus we just have to show that $\operatorname{kon}_{1 x}^{2} \in K_{2}$. But this is clear by Lemma 4.11.

Let us now consider the case $n=3$. According to Proposition 1.5 the group $G L(2, \mathbb{Z})$ is generated by E_{12}, E_{21}, O_{1} and O_{2} subject to the following relations
1.) $E_{12} E_{21}^{-1} E_{12} E_{21} E_{12}^{-1} E_{21}=1$,
2.) $\left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1$,
3.) $\left(O_{1} E_{12}\right)^{2}=1$,
4.) $\left(O_{1} E_{21}\right)^{2}=1$,
5.) $O_{1}^{2}=1$,
6.) $E_{12}^{-1} E_{21}^{2} O_{1} E_{12} E_{21}^{-2} O_{2}^{-1}=1$.

Hence we have to show
1.) $\nu_{21} \circ \nu_{12}^{-1} \circ \nu_{21} \circ \nu_{12} \circ \nu_{21}^{-1} \circ \nu_{12} \in K_{3}$,
2.) $\left(\nu_{21} \circ \nu_{12}^{-1} \circ \nu_{21}\right)^{4} \in K_{3}$,
3.) $\left(\mathrm{kon}_{1 x} \circ \nu_{21}\right)^{2} \in K_{3}$,
4.) $\left(\operatorname{kon}_{1 x} \circ \nu_{12}\right)^{2} \in K_{3}$,
5.) $\operatorname{kon}_{1 x}^{2} \in K_{3}$,
6.) $\nu_{21}^{-1} \circ \nu_{12}^{2} \circ \mathrm{kon}_{1 x} \circ \nu_{21} \circ \nu_{12}^{-2} \circ \mathrm{kon}_{2 x}^{-1} \in K_{3}$.
1.) $\nu_{21} \circ \nu_{12}^{-1} \circ \nu_{21} \circ \nu_{12} \circ \nu_{21}^{-1} \circ \nu_{12}=$ id $\in K_{3}$:

$$
\begin{aligned}
& \left\{\begin{array}{llllllll}
y_{1} & \stackrel{\nu_{12}}{\longmapsto} & y_{1} y_{2} & \stackrel{\nu_{21}^{-1}}{\longmapsto} & y_{1} y_{2} y_{1}^{-1} & \xrightarrow{\nu_{12}} & y_{1} y_{2} y_{1}^{-1} & \stackrel{\nu_{21}}{\longmapsto} \\
y_{2} & \stackrel{\nu_{12}}{\longmapsto} y_{1} y_{2} \\
y_{2} & \stackrel{\nu_{21}^{-1}}{\longmapsto} & y_{2} y_{1}^{-1} & \stackrel{\nu_{12}}{\longmapsto} & y_{1}^{-1} & \stackrel{\nu_{21}}{\longmapsto} & y_{1}^{-1}
\end{array}\right. \\
& \left.\xrightarrow[{\xrightarrow{\nu_{12}^{-1}}}]{\stackrel{\nu_{12}^{-1}}{\longmapsto}} y_{1} \quad y_{2} y_{1}^{-1} \xrightarrow{\stackrel{\nu_{21}}{\longmapsto}} \stackrel{y_{1}}{\longmapsto} y_{2}\right\} \text {. }
\end{aligned}
$$

2.) $\left(\nu_{21} \circ \nu_{12}^{-1} \circ \nu_{21}\right)^{4}=\operatorname{kon}_{12} \circ \operatorname{kon}_{21} \circ \mathrm{kon}_{12}^{-1} \circ \mathrm{kon}_{21}^{-1} \in K_{3}$:

In order to compute $\left(\nu_{21} \circ \nu_{12}^{-1} \circ \nu_{21}\right)^{4}$ first we define $\chi:=\nu_{21} \circ \nu_{12}^{-1} \circ \nu_{21}$. Then we have:

$$
\begin{aligned}
& \chi=\left\{\begin{array}{llllll}
y_{1} & \stackrel{\nu_{21}}{\longmapsto} & y_{1} & \stackrel{\nu_{12}^{-1}}{\longmapsto} & y_{1} y_{2}^{-1} & \stackrel{\nu_{21}}{\longmapsto} \\
y_{2} & \stackrel{\nu_{21}}{\longmapsto} & y_{2} y_{1} & \stackrel{\nu_{12}^{-1}}{\longmapsto} & y_{2} y_{1} y_{2}^{-1} & \stackrel{\nu_{21}}{\longmapsto}
\end{array} y_{2} y_{1} y_{2}^{-1}\right\}, \\
& \chi^{2}=\left\{\begin{array}{lllll}
y_{1} & \stackrel{\chi}{\longmapsto} & y_{2}^{-1} & \stackrel{\chi}{\longmapsto} & y_{2} y_{1}^{-1} y_{2}^{-1} \\
y_{2} & \stackrel{\chi}{\mapsto} & y_{2} y_{1} y_{2}^{-1} & \stackrel{\chi}{\longmapsto} & y_{2} y_{1} y_{2}^{-1} y_{1}^{-1} y_{2}^{-1}
\end{array}\right\}, \\
& \chi^{4}=\left\{\begin{array}{lllll}
y_{1} & \stackrel{\chi^{2}}{\longmapsto} & y_{2} y_{1}^{-1} y_{2}^{-1} & \stackrel{\chi^{2}}{\longrightarrow} & y_{2} y_{1} y_{2}^{-1} y_{1} y_{2} y_{1}^{-1} y_{2}^{-1} \\
y_{2} & \stackrel{\chi^{2}}{\mapsto} & y_{2} y_{1} y_{2}^{-1} y_{1}^{-1} y_{2}^{-1} & \stackrel{\chi^{2}}{\longmapsto} & y_{2} y_{1} y_{2}^{-1} y_{1}^{-1} y_{2} y_{1} y_{2} y_{1}^{-1} y_{2}^{-1}
\end{array}\right\} .
\end{aligned}
$$

In the last step we show that $\chi^{4}=\operatorname{kon}_{12} \circ \operatorname{kon}_{21} \circ \operatorname{kon}_{12}^{-1} \circ \operatorname{kon}_{21}^{-1}$:

$$
\left.\begin{array}{lll}
y_{1} y_{2}^{-1} y_{1} y_{2} y_{1}^{-1} & \stackrel{\text { kon }_{12}}{\longmapsto} & y_{2} y_{1} y_{2}^{-1} y_{1} y_{2} y_{1}^{-1} y_{2}^{-1} \\
y_{1} y_{2}^{-1} y_{1}^{-1} y_{2} y_{1} y_{2} y_{1}^{-1} & \stackrel{\text { kon }_{12}}{\mapsto} & y_{2} y_{1} y_{2}^{-1} y_{1}^{-1} y_{2} y_{1} y_{2} y_{1}^{-1} y_{2}^{-1}
\end{array}\right\}
$$

3.) $\mathrm{kon}_{1 x} \circ \nu_{21} \circ \mathrm{kon}_{1 x} \circ \nu_{21} \in K_{3}$:

In order to show this let us be a little bit more general. For this let $n \geq 3$. We are going to show now

$$
\operatorname{kon}_{1 x} \circ \nu_{j 1} \circ \operatorname{kon}_{1 x} \circ \nu_{j 1}=\operatorname{kon}_{1 x}^{2} \circ \operatorname{kon}_{j 1} \circ \zeta_{j 1}^{c} \circ \operatorname{kon}_{j 1}^{-1} \in K_{n}
$$

for $2 \leq j \leq n-1$:

$$
\stackrel{\stackrel{\mathrm{kon}_{1}^{2}}{\mapsto}}{\mapsto} x^{2} y_{1} x^{-2},
$$

4.) $\mathrm{kon}_{1 x} \circ \nu_{12} \circ \mathrm{kon}_{1 x} \circ \nu_{12} \in K_{3}$:

Let us be more general again. We show for $n \geq 3$ that

$$
\operatorname{kon}_{1 x} \circ \nu_{1 i} \circ \operatorname{kon}_{1 x} \circ \nu_{1 i}=\operatorname{kon}_{1 x}^{2} \circ \operatorname{kon}_{1 i} \circ \zeta_{1 i}^{a} \circ \operatorname{kon}_{1 i}^{-1} \in K_{n}
$$

for $2 \leq i \leq n-1$:

$$
\begin{aligned}
\left\{y_{1}\right. & \stackrel{\nu_{1 i}}{\longmapsto} y_{1} y_{i} \stackrel{\mathrm{kon}_{1 x}}{\mapsto} x y_{1} x^{-1} y_{i} \stackrel{\nu_{1 i}}{\longmapsto} x y_{1} y_{i} x^{-1} y_{i} \\
& \left.\stackrel{\operatorname{kon}_{1 x}}{\mapsto} x^{2} y_{1} x^{-1} y_{i} x^{-1} y_{i}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{llllll}
y_{1} & \stackrel{\nu_{j 1}}{\mapsto} y_{1} & \stackrel{\mathrm{kon}_{1 x}}{\longmapsto} & x y_{1} x^{-1} & \stackrel{\nu_{j 1}}{\mapsto} x y_{1} x^{-1} \\
y_{j} & \stackrel{\nu_{j 1}}{\longmapsto} & y_{j} y_{1} & \stackrel{\text { kon }_{1 x}}{\longmapsto} & y_{j} x y_{1} x^{-1} & \stackrel{\nu_{j 1}}{\mapsto}
\end{array} y_{j} y_{1} x y_{1} x^{-1}\right. \\
& \left.\underset{\stackrel{\operatorname{kon}_{1 x}}{\longmapsto}}{\stackrel{\operatorname{kon}_{1 x} x}{\longmapsto}} \boldsymbol{x}^{2} y_{1} x^{-2}, y_{j} x y_{1} x y_{1} x^{-2}\right\}\{
\end{aligned}
$$

$$
\begin{aligned}
=\left\{y_{1}\right. & \stackrel{\operatorname{kon}_{1 i}^{-1}}{\longmapsto} y_{i}^{-1} y_{1} y_{i} \stackrel{\zeta_{1 i}^{a}}{\mapsto} y_{i}^{-1} y_{1} y_{i} x y_{i} x^{-1} y_{i} \stackrel{\operatorname{kon}_{1 i}}{\longmapsto} y_{1} x y_{i} x^{-1} y_{i} \\
& \left.\stackrel{\operatorname{kon}_{1 x}^{2}}{\longmapsto} x^{2} y_{1} x^{-1} y_{i} x^{-1} y_{i}\right\} .
\end{aligned}
$$

5.) $\operatorname{kon}_{1 x}^{2} \in K_{3}$: This is clear by the case $n=2$.
6.) $\nu_{21}^{-1} \circ \nu_{12}^{2} \circ \mathrm{kon}_{1 x} \circ \nu_{21} \circ \nu_{12}^{-2} \circ \mathrm{kon}_{2 x}^{-1} \in K_{3}$:

Let us here be more general again. We want to show that

$$
\nu_{j 1}^{-1} \circ \nu_{1 j}^{2} \circ \operatorname{kon}_{1 x} \circ \nu_{j 1} \circ \nu_{1 j}^{-2} \circ \operatorname{kon}_{j x}^{-1} \in K_{n}
$$

for $n \geq 3$ and $2 \leq j \leq n-1$. Checking this formula is the most complicated part of the complete proof. For this we mention first that the following equation holds

$$
\begin{aligned}
& \mathrm{kon}_{1 x}^{-1} \circ \nu_{1 j}^{-2} \circ \nu_{j 1} \circ \mathrm{kon}_{j x} \circ \nu_{1 j}^{2} \circ \nu_{j 1}^{-1} \\
= & \beta_{1} \circ \mathrm{kon}_{1 j}^{2} \circ \beta_{1} \circ \operatorname{kon}_{1 x}^{-2} \circ \varepsilon_{1} \circ \psi_{1}^{-2} \circ \delta_{j}^{-1} \circ \varphi_{1}^{2} \circ \operatorname{kon}_{1 j}^{-1} \circ \delta_{1} \circ \operatorname{kon}_{j 1} \circ \\
& \varphi_{j}^{-2} \circ \operatorname{kon}_{j 1}^{-1} \circ \zeta_{j 1}^{b} \circ \psi_{j}^{2} \circ \operatorname{kon}_{1 j x}^{-} \circ\left(\zeta_{1 j}^{a}\right)^{-1} \circ \delta_{j} \in K_{n}
\end{aligned}
$$

for $2 \leq j \leq n-1$. For the proof see the next two pages:

$$
x^{-1} y_{j}^{-1} y_{1}^{-1}
$$

$$
\begin{aligned}
& \frac{\delta_{j}^{-1}}{\stackrel{ }{\mapsto}} \\
& \stackrel{\delta_{j}^{-1}}{\mapsto} \\
& \stackrel{\delta_{j}^{-1}}{\mapsto}
\end{aligned}
$$

$$
x^{-1} y_{1}^{-1}
$$

So we proved that

$$
\begin{equation*}
\operatorname{kon}_{1 x}^{-1} \circ \nu_{1 j}^{-2} \circ \nu_{j 1} \circ \operatorname{kon}_{j x} \circ \nu_{1 j}^{2} \circ \nu_{j 1}^{-1} \in K_{n} . \tag{4.1}
\end{equation*}
$$

But we have to show that

$$
\nu_{j 1}^{-1} \circ \nu_{1 j}^{2} \circ \operatorname{kon}_{1 x} \circ \nu_{j 1} \circ \nu_{1 j}^{-2} \circ \operatorname{kon}_{j x}^{-1} \in K_{n} .
$$

The inverse of (4.1)

$$
Y:=\nu_{j 1} \circ \nu_{1 j}^{-2} \circ \operatorname{kon}_{j x}^{-1} \circ \nu_{j 1}^{-1} \circ \nu_{1 j}^{2} \circ \operatorname{kon}_{1 x}
$$

is also in K_{n}. Since K_{n} is a normal subgroup in $\Gamma^{+}\left(C_{2}, \pi\right)$ we have

$$
X:=\operatorname{kon}_{j x} \circ\left(\nu_{1 j}^{2} \circ\left(\nu_{j 1}^{-1} \circ Y \circ \nu_{j 1}\right) \circ \nu_{1 j}^{-2}\right) \circ \operatorname{kon}_{j x}^{-1} \in K_{n} .
$$

But now we see that $X=\nu_{j 1}^{-1} \circ \nu_{1 j}^{2} \circ \operatorname{kon}_{1 x} \circ \nu_{j 1} \circ \nu_{1 j}^{-2} \circ \operatorname{kon}_{j x}^{-1} \in K_{n}$. This is what we wanted to show.

Finally we consider the case $n \geq 4$. According to Proposition 1.5 the $\operatorname{group} \mathrm{GL}(n-1, \mathbb{Z})$ is generated by $E_{i j}$ and $O_{i}(1 \leq i, j \leq n-1, i \neq j)$ subject to the following relations
1.) $\left[E_{i j}, E_{k l}\right]=1$ if $j \neq k, i \neq l$,
2.) $\left[E_{i j}, E_{j k}\right] E_{i k}^{-1}=1$ if $i \neq j \neq k \neq i$,
3.) $\left(E_{12} E_{21}^{-1} E_{12}\right)^{4}=1$,
4.) $\left(O_{1} E_{1 j}\right)^{2}=1$ if $j \neq 1$,
5.) $\left(O_{1} E_{i 1}\right)^{2}=1$ if $i \neq 1$,
6.) $O_{1} E_{i j} O_{1} E_{i j}^{-1}=1$ if $i, j \neq 1$,
7.) $O_{1}^{2}=1$,
8.) $E_{1 j}^{-1} E_{j 1}^{2} O_{1} E_{1 j} E_{j 1}^{-2} O_{j}^{-1}=1$ if $j \neq 1$.

This means we have to show
1.) $\left[\nu_{j i}, \nu_{l k}\right] \in K_{n}$ if $j \neq k, i \neq l$,
2.) $\left[\nu_{j i}, \nu_{k j}\right] \circ \nu_{k i}^{-1} \in K_{n}$ if $i \neq j \neq k \neq i$,
3.) $\left(\nu_{21} \circ \nu_{12}^{-1} \circ \nu_{21}\right)^{4} \in K_{n}$,
4.) $\left(\operatorname{kon}_{1 x} \circ \nu_{j 1}\right)^{2} \in K_{n}$ if $j \neq 1$,
5.) $\left(\operatorname{kon}_{1 x} \circ \nu_{1 i}\right)^{2} \in K_{n}$ if $i \neq 1$,
6.) $\operatorname{kon}_{1 x} \circ \nu_{j i} \circ \operatorname{kon}_{1 x} \circ \nu_{j i}^{-1} \in K_{n}$ if $i, j \neq 1$,
7.) $\operatorname{kon}_{1 x}^{2} \in K_{n}$,
8.) $\nu_{j 1}^{-1} \circ \nu_{1 j}^{2} \circ \operatorname{kon}_{1 x} \circ \nu_{j 1} \circ \nu_{1 j}^{-2} \circ \operatorname{kon}_{j x}^{-1} \in K_{n}$ if $j \neq 1$.

In the case $n=3$ we have proved already 3.), 4.), 5.), 7.) and 8.). So there are only 1.), 2.) and 6.) left to show:
1.) $\nu_{j i} \circ \nu_{l k} \circ \nu_{j i}^{-1} \circ \nu_{l k}^{-1}$ for $j \neq k, i \neq l$:

- $\nu_{j i} \circ \nu_{l k} \circ \nu_{j i}^{-1} \circ \nu_{l k}^{-1}=\mathrm{id} \in K_{n}$ for $j \neq l, i \neq k$:
- $\nu_{j i} \circ \nu_{l i} \circ \nu_{j i}^{-1} \circ \nu_{l i}^{-1}=\mathrm{id} \in K_{n}$ for $j \neq l, i=k$:
- $\nu_{j i} \circ \nu_{j k} \circ \nu_{j i}^{-1} \circ \nu_{j k}^{-1}=\kappa_{j i k} \in K_{n}$ for $j=l, i \neq k$:

$$
\begin{aligned}
\left\{y_{j}\right. & \stackrel{\nu_{j k}^{-1}}{\mapsto} y_{j} y_{k}^{-1} \stackrel{\nu_{j i}^{-1}}{\mapsto} y_{j} y_{i}^{-1} y_{k}^{-1} \xrightarrow{\nu_{j k}} y_{j} y_{k} y_{i}^{-1} y_{k}^{-1} \\
& \left.\stackrel{\nu_{j i}}{\mapsto} y_{j} y_{i} y_{k} y_{i}^{-1} y_{k}^{-1}\right\},
\end{aligned}
$$

- $\nu_{j i} \circ \nu_{j i} \circ \nu_{j i}^{-1} \circ \nu_{j i}^{-1}=\mathrm{id} \in K_{n}$ for $j=l, i=k$:

This is clear!
2.) $\nu_{j i} \circ \nu_{k j} \circ \nu_{j i}^{-1} \circ \nu_{k j}^{-1} \circ \nu_{k i}^{-1}=\kappa_{k j i} \in K_{n}$:

$$
\begin{aligned}
& \left.\xrightarrow[\stackrel{\nu_{k j}}{\mapsto}]{\stackrel{\nu_{k j}}{\nu_{k}} y_{j} y_{i} y_{j} y_{i} y_{j}^{-1} y_{i}^{-1} \xrightarrow{\stackrel{\nu_{j i}}{\mapsto}} y_{k} y_{j} y_{i} y_{j}^{-1} y_{i}^{-1}}\right\} \text {, }
\end{aligned}
$$

6.) $\operatorname{kon}_{1 x} \circ \nu_{j i} \circ \operatorname{kon}_{1 x} \circ \nu_{j i}^{-1}=\operatorname{kon}_{1 x}^{2} \in K_{n}$:

Theorem 4.14. Let $n \geq 2$ and let $\sigma_{-1}: \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z})$ be the map defined above and let $K_{n} \leq \Gamma^{+}\left(C_{2}, \pi\right)$ be the subgroup generated by the following automorphisms:

$$
\begin{array}{ll}
\varepsilon_{i}:\left\{x \mapsto x y_{i}\right\}, & \delta_{i}:\left\{x \mapsto y_{i} x\right\}, \\
\psi_{i}^{2}:\left\{y_{i} \mapsto y_{i} x^{2}\right\}
\end{array}
$$

for $1 \leq i \leq n-1$. Then $\operatorname{ker}\left(\sigma_{-1}\right)=K_{n}$. In particular the generalized Torelli group $\operatorname{ker}\left(\sigma_{-1}\right)$ is finitely generated as a group.

Proof. Apply Proposition 1.9 together with Lemma 4.12, Lemma 4.13 and Lemma 4.7.

From now on we will write always K_{n} for the kernel of σ_{-1}. In the next corollary we give another set of generators for K_{n}, which is only a little bit different from that given in Theorem 4.14.

Corollary 4.15. Let $n \geq 2$. The group K_{n} is generated by the following automorphisms:

$$
\begin{aligned}
& \varepsilon_{i}:\left\{x \mapsto x y_{i}\right\}, \\
& \psi_{i}^{2}:\left\{y_{i} \mapsto y_{i} x^{2}\right\}, \\
& \alpha_{i}:\left\{\begin{array}{rll}
x & \mapsto & x^{-1} \\
y_{i} & \mapsto & x y_{i}^{-1} x^{-1}
\end{array}\right\}
\end{aligned}
$$

for $1 \leq i \leq n-1$.
Proof. By Proposition 4.9 it is clear that $\alpha_{i} \in K_{n}$. Furthermore we have

$$
\delta_{i}=\psi_{i}^{2} \circ \varepsilon_{i}^{-1} \circ \psi_{i}^{2} \circ \alpha_{i},
$$

which shows, together with Theorem 4.14, that K_{n} is generated by ε_{i}, ψ_{i}^{2} and α_{i} for $1 \leq i \leq n-1$.

Chapter 5

Some matrix groups

In this chapter we study some matrix groups, which will occur in Chapter 6 and Chapter 7. For this purpose, let $n \geq 2$ and define

$$
\begin{aligned}
& \Gamma_{n}(2):=\left\{M \in \operatorname{GL}(n, \mathbb{Z}) \mid M \equiv I_{n} \bmod 2\right\} \\
& \Gamma_{n}^{1}(2):=\left\{M \in \mathrm{SL}(n, \mathbb{Z}) \left\lvert\, M \equiv\left(\begin{array}{c|ccc}
1 & 0 & \ldots & 0 \\
\hline * & *
\end{array}\right) \bmod 2\right.\right\} \\
& \widetilde{\Gamma_{n}^{1}}(2)
\end{aligned}:=\left\{M \in \mathrm{SL}(n, \mathbb{Z}) \left\lvert\, M \equiv\left(\begin{array}{l|lll}
1 & 0 & \ldots & 0 \\
\hline * & I_{n-1}
\end{array}\right) \bmod 2\right.\right\} . .
$$

In this chapter we determine generators for these groups. The idea of the proof is to use the Euclidean algorithm in \mathbb{Z}.

5.1 A modified Euclidean algorithm

Recall the classical division algorithm, that is, for $a, b \in \mathbb{Z}$ there are $q, r \in \mathbb{Z}$ with

$$
a=q b+r \quad \text { and } \quad|r|<|b| .
$$

The next lemma will modify this algorithm a little bit. Actually it says that q can be chosen in $2 \mathbb{Z}$.

Lemma 5.1 (Modified divsion algorithm). Let $a, b \in \mathbb{Z} \backslash\{0\}$ with $a \notin b \mathbb{Z}$. Then we can find $q, r \in \mathbb{Z}$ with the following properties:

1. $a=q b+r$,
2. $q \in 2 \mathbb{Z}$,
3. $|r|<|b|$.

Proof. Let $a, b \in \mathbb{Z} \backslash\{0\}$. By the classical division algorithm there are $q^{\prime}, r^{\prime} \in \mathbb{Z}$ with

$$
a=q^{\prime} b+r^{\prime} \quad \text { and } \quad\left|r^{\prime}\right|<|b| .
$$

The case $r^{\prime}=0$ is impossible since $a \notin b \mathbb{Z}$. Hence $r^{\prime} \neq 0$ and we have $0<\left|r^{\prime}\right|<|b|$. If q^{\prime} is even we stop here and set $r:=r^{\prime}$ and $q:=q^{\prime}$.

If q^{\prime} is odd we consider the four cases:
If r^{\prime} and b are both positive, we have $0<r^{\prime}<b$. Subtraction of b yields $-b<r^{\prime}-b<0$. Set now $r:=r^{\prime}-b$ and $q=q^{\prime}+1$. Then we have $|r|<|b|, q$ is even and

$$
q b+r=\left(q^{\prime}+1\right) b+r^{\prime}-b=q^{\prime} b+r^{\prime}=a .
$$

The other three cases are similar.
We can now imitate the Euclidean algorithm with our modified division algorithm. For this let $r_{0}, r_{1} \in \mathbb{Z} \backslash\{0\}$. If $r_{0} \notin r_{1} \mathbb{Z}$ there are by Lemma 5.1 $a_{0} \in 2 \mathbb{Z}$ and $r_{2} \in \mathbb{Z}$ with

$$
r_{0}=a_{0} r_{1}+r_{2} \quad \text { and } \quad\left|r_{2}\right|<\left|r_{1}\right| .
$$

If $r_{1} \in r_{2} \mathbb{Z}$ we stop the process. Otherwise there are $a_{1} \in 2 \mathbb{Z}$ and $r_{3} \in \mathbb{Z}$ with

$$
r_{1}=a_{1} r_{2}+r_{3} \quad \text { and } \quad\left|r_{3}\right|<\left|r_{2}\right| .
$$

We iterate this process. The sequence $\left|r_{1}\right|>\left|r_{2}\right|>\left|r_{3}\right|>\ldots>0$ must stop after a finite number of steps, say after j iterations:

$$
\begin{align*}
& r_{0}=a_{0} r_{1}+r_{2} \\
& r_{1}=a_{1} r_{2}+r_{3} \tag{5.1}\\
& \vdots \\
& r_{j-1}=a_{j-1} r_{j}+r_{j+1}
\end{align*}
$$

with $r_{i} \in \mathbb{Z}, a_{i} \in 2 \mathbb{Z}$ and

$$
\left|r_{1}\right|>\left|r_{2}\right|>\left|r_{3}\right|>\ldots>\left|r_{j+1}\right|>0
$$

Since the algorithm stops after j steps, we have

$$
r_{j} \in r_{j+1} \mathbb{Z}
$$

We call this algorithm the modified Euclidean algorithm.

Lemma 5.2. Let $r_{0}, r_{1} \in \mathbb{Z} \backslash\{0\}$. If we apply the modified Euclidean algorithm to r_{0} and r_{1} and the algorithm stops after j steps then

$$
r_{j+1}= \pm \operatorname{gcd}\left(r_{0}, r_{1}\right)
$$

Proof. The proof is analogous to the proof of the same result with the normal Euclidean algorithm (see for example [4]).

Together with (5.1) we can calculate $\operatorname{gcd}\left(r_{0}, r_{1}\right)$ in the following way:

$$
\begin{gather*}
r_{2}=r_{0}-a_{0} r_{1} \\
r_{3}=r_{1}-a_{1} r_{2} \\
\vdots \tag{5.2}\\
\pm \operatorname{gcd}\left(r_{0}, r_{1}\right)=r_{j+1}=r_{j-1}-a_{j-1} r_{j},
\end{gather*}
$$

with $a_{i} \in 2 \mathbb{Z}$. We remark that if we iterate this and use the fact that $\operatorname{gcd}\left(n_{1}, \ldots, n_{k-1}, n_{k}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(n_{1}, \ldots, n_{k-1}\right), n_{k}\right)$, we can use the modified Euclidean algorithm to compute the greatest common divisor of more than two integers.

5.2 Generators for the matrix groups

We apply now the modified Euclidean algorithm to find generators for the matrix groups mentioned above.

We start with the group

$$
\Gamma_{n}(2):=\left\{M \in \mathrm{GL}(n, \mathbb{Z}) \mid M \equiv I_{n} \quad \bmod 2\right\} .
$$

This group is called the principal congruence subgroup of level two. Note that the following sequence is exact

$$
1 \rightarrow \Gamma_{n}(2) \rightarrow \mathrm{GL}(n, \mathbb{Z}) \rightarrow \mathrm{GL}(n, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow 1
$$

For any $a \in \mathbb{Z}$ let $E_{i j}(a)$ be the identity matrix with an additional entry a in the (i, j)-th position, $i \neq j$. For $E_{i j}(1)$ we just write $E_{i j}$. Moreover let $O_{i}:=\operatorname{diag}(1, \ldots, 1,-1,1, \ldots, 1)$ the matrix with a -1 at the (i, i)-th position (see Notation).

Proposition 5.3. Let $n \geq 2$. Then the group $\Gamma_{n}(2)$ is generated by the matrices $E_{i j}(2)$ for $1 \leq i, j \leq n$ with $i \neq j$ and O_{i} for $1 \leq i \leq n$.

Proof. Define

$$
G:=\left\langle E_{i j}(2)(i, j=1, \ldots, n ; i \neq j), O_{i}(i=1, \ldots, n)\right\rangle
$$

to be the group generated by the matrices $E_{i j}(2)$ and O_{i}. We have to show that G equals $\Gamma_{n}(2)=\{M \in \operatorname{GL}(n, \mathbb{Z}) \mid M \equiv 1 \bmod 2\}$. It is clear that G is a subgroup of $\Gamma_{n}(2)$. So we only have to show that every element in $\Gamma_{n}(2)$ can be written as a product of matrices in G, i.e. $G=\Gamma_{n}(2)$. Note that

$$
E_{i j}(2 a)=\left(E_{i j}(2)\right)^{a}
$$

for all $a \in \mathbb{Z}$. This means that all elementary matrices with an even entry in the (i, j)-th position are in G.
Now let $M=\left(a_{i j}\right) \in \Gamma_{n}(2)$. Since $\operatorname{det}(M)= \pm 1$ we have

$$
\operatorname{gcd}\left(a_{11}, \ldots, a_{n 1}\right)=1
$$

We want now to compute $\operatorname{gcd}\left(a_{11}, \ldots, a_{n 1}\right)$ via the modified euclidean algorithm (see (5.2) and the remark) in the first column of M. For this notice that if we multiply the matrices $E_{1 i}(2 a)$ (resp. $E_{i 1}(2 a)$) with $i=2, \ldots, n$ from the left to M, we add the $2 a$-fold of the i-th row to the first row of M (resp. add the $2 a$-fold of the first row to the i-th row of M). In this way we can transfer the modified Euclidean algorithm to M to compute $\pm \operatorname{gcd}\left(a_{11}, \ldots, a_{n 1}\right)$ (a good reference is [2]). Since $\operatorname{gcd}\left(a_{11}, \ldots, a_{n 1}\right)= \pm 1$, we finally find $g_{1} \in G$ (the product of all $E_{1 i}(2 a)$ and $E_{i 1}(2 a)$ needed for the modified Euclidean algorithm) with

$$
g_{1} \cdot M=\left(\begin{array}{cccc}
\pm 1 & a_{12}^{\prime} & \ldots & a_{1 n}^{\prime} \\
a_{21}^{\prime} & * & \ldots & * \\
\vdots & \vdots & & \vdots \\
a_{n 1}^{\prime} & * & \ldots & *
\end{array}\right)
$$

with suitable $a_{i 1}^{\prime}, a_{1 i}^{\prime} \in 2 \mathbb{Z}$. The ± 1 must occur in the upper left corner, since otherwise the matrix $g_{1} \cdot M$ would not be in $\Gamma_{n}(2)$. In fact, we can assume that there is a +1 , since otherwise we can just multiply with O_{1}. We now use the +1 to eliminate the $a_{i 1}^{\prime}$'s and $a_{1 i}^{\prime}$'s. In order to do this set

$$
f_{1}:=E_{21}\left(-a_{21}^{\prime}\right) \cdot \ldots \cdot E_{n 1}\left(-a_{n 1}^{\prime}\right) \in G
$$

$$
h_{1}:=E_{12}\left(-a_{12}^{\prime}\right) \cdot \ldots \cdot E_{1 n}\left(-a_{1 n}^{\prime}\right) \in G
$$

With these matrices we have

$$
f_{1} \cdot\left(g_{1} \cdot M\right) \cdot h_{1}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & * & \ldots & * \\
\vdots & \vdots & & \vdots \\
0 & * & \ldots & *
\end{array}\right)
$$

We repeat this argument with the second row and column using the matrices $E_{2 i}(2 a), E_{i 2}(2 a)$ and O_{2} and so on. Finally we have f_{i}, g_{i} and $h_{i} \in G(i=1, \ldots, n)$ with

$$
\prod_{i=0}^{n-1}\left(f_{n-i} \cdot g_{n-i}\right) \cdot M \cdot \prod_{j=1}^{n} h_{j}=I_{n}
$$

which is equivalent to

$$
M=\left(\prod_{i=0}^{n-1}\left(f_{n-i} \cdot g_{n-i}\right)\right)^{-1} \cdot\left(\prod_{j=1}^{n} h_{j}\right)^{-1} \in G
$$

This shows that every element in $\Gamma_{n}(2)$ can be written as a product of matrices in G, which completes the proof.

Define now

$$
\Gamma_{n}^{+}(2):=\{M \in \mathrm{SL}(n, \mathbb{Z}) \mid M \equiv 1 \quad \bmod 2\}
$$

Further let $O_{1 i}=\operatorname{diag}(-1,1, \ldots, 1,-1,1, \ldots, 1)$ be the diagonal matrix with entry -1 in the $(1,1)$ - and (i, i)-place for $i=2, \ldots, n$ (see Notation). With the same argument as above we get the following corollary.

Corollary 5.4. The group $\Gamma_{n}^{+}(2)$ is generated by the matrices $E_{i j}(2)$ for $i, j=1, \ldots, n$ with $i \neq j$ and $O_{1 i}$ for $i=2, \ldots, n$.

We are now going to give generators for the following two subgroups of $\Gamma_{n}^{+}(2)$:

$$
\begin{aligned}
\Gamma_{n}^{1}(2) & :=\left\{A \in \mathrm{SL}(n, \mathbb{Z}) \left\lvert\, A \equiv\left(\begin{array}{c|ccc}
1 & 0 & \ldots & 0 \\
\hline * & *
\end{array}\right) \bmod 2\right.\right\} \\
\widetilde{\Gamma_{n}^{1}}(2) & :=\left\{A \in \mathrm{SL}(n, \mathbb{Z}) \left\lvert\, A \equiv\left(\begin{array}{c|ccc}
1 & 0 & \ldots & 0 \\
\hline * & I_{n-1}
\end{array}\right) \quad \bmod 2\right.\right\}
\end{aligned}
$$

Proposition 5.5.

a) The group $\Gamma_{n}^{1}(2)$ is generated by the $(n-1)^{2}$ matrices

$$
E_{1 j}(2)(2 \leq j \leq n) \quad \text { and } \quad E_{i j}(2 \leq i \leq n, 1 \leq j \leq n, i \neq j)
$$

b) The group $\widetilde{\Gamma_{n}^{1}}(2)$ is generated by the $2(n-1)$ matrices

$$
E_{1 j}(2)(2 \leq j \leq n) \quad \text { and } \quad E_{i 1}(2 \leq i \leq n) .
$$

Proof. For a proof of part a) with $n \geq 3$ see [2]. The case $n=2$ is included in part b) since we have

$$
\Gamma_{2}^{1}(2)=\widetilde{\Gamma_{2}^{1}}(2)
$$

We are now going to prove part b). First note that the matrices

$$
\begin{equation*}
E_{1 j}(2)(2 \leq j \leq n) \quad \text { and } \quad E_{i 1}(2 \leq i \leq n) \tag{5.3}
\end{equation*}
$$

are in $\widetilde{\Gamma_{n}^{1}}(2)$ by definition. For the moment, we define G to be the subgroup of $\widetilde{\Gamma_{n}^{1}}(2)$ which is generated by the matrices given in (5.3). Our aim is to show that $\widetilde{\Gamma_{n}^{1}}(2)=G$.

Before doing this we list some other matrices which are in G :

- $E_{i j}(2) \in G$ for all $1 \leq i, j, \leq n(i \neq j)$:

The matrices $E_{1 j}(2)(2 \leq j \leq n)$ are by definition in G and the matrices $E_{i 1}(2)=E_{i 1}^{2}$ are also in G. Hence we have to show that $E_{i j}(2) \in G$ for $2 \leq i, j, \leq n(i \neq j)$ and $n \geq 3$.

$$
\begin{array}{ccl}
E_{i j}(2) & = & E_{i j}^{2} \\
& \stackrel{\text { Prop. } 1.2 \text { (c) }}{=} & E_{i j} E_{1 j} E_{i j} E_{1 j}^{-1} \\
& = & E_{i j} E_{1 j} E_{i j} E_{1 j} E_{1 j}^{-1} E_{1 j}^{-1} \\
& \stackrel{\text { Prop. }}{ }=2 \text { (c) } & E_{i j} E_{1 j} E_{i 1} E_{1 j} E_{i 1}^{-1} E_{1 j}^{-2} \\
& \stackrel{\text { Prop. } 1.2 \text { (c) }}{=} & E_{i 1} E_{1 j}^{2} E_{i 1}^{-1} E_{1 j}^{-2} \in G .
\end{array}
$$

- $O_{1 i} \in G$ for all $2 \leq i \leq n$:

We have

$$
O_{1 i}=\left(E_{i 1}^{-1} \cdot E_{1 i}(2)\right)^{2} \in G
$$

We will prove this just for $n=2$ and $i=2$. The other cases are analogue.

$$
\begin{aligned}
\left(E_{i 1}^{-1} \cdot E_{1 i}(2)\right)^{2} & =\left(\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\right)^{2} \\
& =\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)^{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

Let $M=\left(a_{i j}\right) \in \widetilde{\Gamma_{n}^{1}}(2)$. Since $\operatorname{det}(M)=1$, we have

$$
\operatorname{gcd}\left(a_{11}, \ldots, a_{1 n}\right)=1
$$

For each $a \in \mathbb{Z}$ the matrices $E_{1 i}(2 a)=\left(E_{1 i}(2)\right)^{a}$ and $E_{i 1}(2 a)=E_{i 1}^{2 a}$ $(2 \leq i \leq n)$ are in G. If we multiply the matrices $E_{1 i}(2 a)$ (resp. $\left.E_{i 1}(2 a)\right)$ from the right to M, we add the $2 a$-fold of the first column to the i-th column of M (resp. add the $2 a$-fold of the i-th column to the first column of M). In this way we can transfer the modified Euclidean algorithm to the first row of M in order to compute $\pm \operatorname{gcd}\left(a_{11}, \ldots, a_{1 n}\right)$. Since $\operatorname{gcd}\left(a_{11}, \ldots, a_{1 n}\right)=1$ we finally find $g \in G$ (the product of all $E_{1 i}(2 a)$ and $E_{i 1}(2 a)$ needed for the modified Euclidean algorithm) with

$$
M \cdot g=\left(\begin{array}{cccc}
\pm 1 & a_{12}^{\prime} & \ldots & a_{1 n}^{\prime} \\
a_{21}^{\prime} & * & \ldots & * \\
\vdots & \vdots & & \vdots \\
a_{n 1}^{\prime} & * & \ldots & *
\end{array}\right)
$$

with suitable $a_{i 1}^{\prime} \in \mathbb{Z}$ and $a_{1 i}^{\prime} \in 2 \mathbb{Z}$. The ± 1 must occur in the upper left corner, since otherwise the matrix $g_{1} \cdot M$ would not be in $\widetilde{\Gamma_{n}^{1}}(2)$. We can assume that there is a +1 , since otherwise we can just multiply with $O_{1,2}$.
We use now the +1 to eliminate the $a_{i 1}^{\prime}$'s and $a_{1 i}^{\prime}$'s. In order to do this set

$$
\begin{aligned}
& f:=E_{21}\left(-a_{21}^{\prime}\right) \cdot \ldots \cdot E_{n 1}\left(-a_{n 1}^{\prime}\right) \in G, \\
& h:=E_{12}\left(-a_{12}^{\prime}\right) \cdot \ldots \cdot E_{1 n}\left(-a_{1 n}^{\prime}\right) \in G .
\end{aligned}
$$

With these matrices we have

$$
f \cdot(M \cdot g) \cdot h=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & * & \ldots & * \\
\vdots & \vdots & & \vdots \\
0 & * & \ldots & *
\end{array}\right)=: A
$$

By Corollary 5.4 and its proof, the matrix A is a product of the matrices $E_{i j}(2)$ with $2 \leq i, j, \leq n(i \neq j)$ and $O_{1 i}$ with $2 \leq i \leq n$. Hence $A \in G$ by the above remark.

It follows that

$$
M=f^{-1} \cdot A \cdot h^{-1} \cdot g^{-1} \in G
$$

This shows that every element M in $\widetilde{\Gamma_{n}^{1}}(2)$ can be written as a product of matrices in G, which completes the proof.

Chapter 6

LOWER CENTRAL SERIES QUOTIENTS OF K_{n}

Let K_{n} be the kernel of σ_{-1} (see Chapter 4) and

$$
K_{n}=\gamma_{0}\left(K_{n}\right) \geq \gamma_{1}\left(K_{n}\right) \geq \gamma_{2}\left(K_{n}\right) \geq \ldots
$$

be the corresponding lower central series. In this chapter we study the quotients $\gamma_{i}\left(K_{n}\right) / \gamma_{i+1}\left(K_{n}\right)$ for $i \geq 0$. By Chapter 2 these are modules over $\operatorname{GL}(n-1, \mathbb{Z})$. In Section 6.1 we supply some facts about modules over $\operatorname{SL}(n, \mathbb{Z})$ and $\operatorname{GL}(n, \mathbb{Z})$. Section 6.2 is concerned with $K_{n}^{\text {ab }}=\gamma_{0}\left(K_{n}\right) / \gamma_{1}\left(K_{n}\right)$. For $n \geq 3$ we construct an epimorphism

$$
\Phi_{n}: V_{n-1} \oplus M_{n-1} \rightarrow K_{n}^{\mathrm{ab}}
$$

where $V_{n-1} \oplus M_{n-1}$ is a certain $\operatorname{GL}(n-1, \mathbb{Z})$-module with underlying abelian group $\left(\mathbb{Z}^{n-1} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{n-1}\right) \oplus(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$. The precise structure of $V_{n-1} \oplus M_{n-1}$ is described in Chapter 6.1. The special case $n=2$ is discussed in Section 6.3. In this case it is possible to give a finite presentation of K_{2} and identify the isomorphism type of $K_{2}^{\text {ab }}$. The last Section 6.4 is about the quotients $\gamma_{i}\left(K_{n}\right) / \gamma_{i+1}\left(K_{n}\right)$ for $i \geq 1$. Our second main theorem states the surprising fact that these quotients are finite groups of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{n, i}}$ with

$$
0 \leq b_{n, i} \leq(3 n-3)^{i-1} \cdot\left(3 n^{2}-7 n+4\right)
$$

(see Theorem 6.25).

6.1 Modules over $\operatorname{SL}(n, \mathbb{Z})$ AND $\operatorname{GL}(n, \mathbb{Z})$

Let $M=\mathbb{Z}^{n}$ be the $\operatorname{SL}(n, \mathbb{Z})$-module with the action given by matrix multiplication. To be more precise let $e_{1}, \ldots e_{n}$ denote the standard basis
of M. Then the $\operatorname{SL}(n, \mathbb{Z})$-action is given by

$$
\begin{aligned}
E_{j i} \cdot e_{i} & =e_{i}+e_{j}, \\
E_{j k} \cdot e_{i} & =e_{i} \quad \text { for } k \neq i, \\
E_{j i}^{-1} \cdot e_{i} & =e_{i}-e_{j} \\
E_{j k}^{-1} \cdot e_{i} & =e_{i} \quad \text { for } k \neq i .
\end{aligned}
$$

We call this action on M the standard $\mathrm{SL}(n, \mathbb{Z})$-action.
Proposition 6.1. Let $M=\mathbb{Z}^{n}$ be the $\mathrm{SL}(n, \mathbb{Z})$-module with the standard action and let $S \leq M$ be a submodule of M with $S \neq 0$. Then the index of S in M is finite.

Proof. Let $e_{1}, \ldots e_{n}$ be the standard basis of M and let $v \in S$ with $v \neq 0$. Then there are $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ with

$$
v=\sum_{i=1}^{n} a_{i} e_{i} \quad\left(a_{j} \neq 0 \text { for some } j\right) .
$$

For $1 \leq k \leq n, k \neq j$, consider now

$$
\begin{aligned}
\left(E_{k j} \cdot v\right)-v & =\left(\sum_{i=1}^{n} a_{i}\left(E_{k j} \cdot e_{i}\right)\right)-v \\
& =\left(\sum_{i=1}^{n} a_{i} e_{i}\right)+a_{j} e_{k}-v=a_{j} e_{k}
\end{aligned}
$$

Thus $a_{j} e_{k} \in S$ for $1 \leq k \leq n, k \neq j$. Since

$$
\begin{aligned}
\left(E_{j 1} \cdot a_{j} e_{1}\right)-a_{j} e_{1} & =a_{j}\left(E_{j 1} \cdot e_{1}\right)-a_{j} e_{1} \\
& =a_{j}\left(e_{1}+e_{j}\right)-a_{j} e_{1}=a_{j} e_{j}
\end{aligned}
$$

we see that $a_{j} e_{k} \in S$ for all $1 \leq k \leq n$. Hence the index of S in M is at $\operatorname{most}\left(a_{j}\right)^{n}<\infty$.

Let now $M=(\mathbb{Z} / 2 \mathbb{Z})^{n}$ be the $\mathrm{GL}(n, \mathbb{Z})$-module with the action given by matrix multiplication. If e_{1}, \ldots, e_{n} denote the standard generators of
M, this means

$$
\begin{aligned}
E_{j i} \cdot e_{i} & =e_{i}+e_{j}, \\
E_{j k} \cdot e_{i} & =e_{i} \quad \text { for } k \neq i, \\
E_{j i}^{-1} \cdot e_{i} & =e_{i}-e_{j}=e_{i}+e_{j}, \\
E_{j k}^{-1} \cdot e_{i} & =e_{i} \quad \text { for } k \neq i, \\
O_{i} \cdot e_{i} & =-e_{i}=e_{i} \\
O_{j} \cdot e_{i} & =e_{j} \quad \text { for } j \neq i
\end{aligned}
$$

We call this action on M the standard $\mathrm{GL}(n, \mathbb{Z})$-action.
Furthermore, we consider the $\operatorname{GL}(n, \mathbb{Z})$-action on M given by

$$
A \cdot x:=\left(A^{-1}\right)^{t} x
$$

for $x \in M$ and $A \in \mathrm{GL}(n, \mathbb{Z})$. We call this action on M the dual standard $\mathrm{GL}(n, \mathbb{Z})$-action. In terms of the generators $e_{1}, \ldots e_{n}$ the dual standard $\mathrm{GL}(n, \mathbb{Z})$-action is given by

$$
\begin{aligned}
E_{i j} \cdot e_{i} & =\left(E_{i j}^{-1}\right)^{t} \cdot e_{i}=E_{j i}^{-1}=e_{i}-e_{j}=e_{i}+e_{j}, \\
E_{k j} \cdot e_{i} & =\left(E_{k j}^{-1}\right)^{t} \cdot e_{i}=E_{j k}^{-1}=e_{i} \quad \text { for } k \neq i, \\
E_{i j}^{-1} \cdot e_{i} & =\left(E_{i j}\right)^{t} \cdot e_{i}=E_{j i}=e_{i}+e_{j}, \\
E_{k j}^{-1} \cdot e_{i} & =\left(E_{k j}\right)^{t} \cdot e_{i}=E_{j k}=e_{i} \quad \text { for } k \neq i, \\
O_{i} \cdot e_{i} & =\left(O_{i}^{-1}\right)^{t} \cdot e_{i}=O_{i} \cdot e_{i}=e_{i}, \\
O_{j} \cdot e_{i} & =\left(O_{j}^{-1}\right)^{t} \cdot e_{i}=O_{j} \cdot e_{i}=e_{j} \quad \text { for } j \neq i .
\end{aligned}
$$

Proposition 6.2. Let $M=(\mathbb{Z} / 2 \mathbb{Z})^{n}$ be the $\mathrm{GL}(n, \mathbb{Z})$-module with the standard action. Then M is also a $\mathrm{GL}(n, \mathbb{Z} / 2 \mathbb{Z})$-module with the action induced by standard $\mathrm{GL}(n, \mathbb{Z})$ - action. The same holds for the dual standard action.

Proof. Let e_{1}, \ldots, e_{n} denote the standard generators of M. By the exactness of the sequence

$$
1 \rightarrow \Gamma_{n}(2) \rightarrow \mathrm{GL}(n, \mathbb{Z}) \rightarrow \mathrm{GL}(n, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow 1
$$

it suffices to show that $\Gamma_{n}(2)$ acts trivial on M. By Proposition 5.3

$$
\Gamma_{n}(2)=\left\langle E_{i j}(2)(1 \leq i, j \leq n, i \neq j), O_{i}(1 \leq i \leq n)\right\rangle .
$$

Hence it suffices to show, that $E_{i j}(2)$ and O_{i} act trivial on the generators:

$$
\begin{aligned}
E_{j i}(2) \cdot e_{i} & =E_{j i}^{2} \cdot e_{i}=E_{j i} \cdot\left(e_{i}+e_{j}\right)=e_{i}+2 e_{j}=e_{i}, \\
E_{j k}(2) \cdot e_{i} & =E_{j k}^{2} \cdot e_{i}=e_{i} \text { for } k \neq i, \\
O_{j} \cdot e_{i} & =e_{i} \text { for all } j .
\end{aligned}
$$

The proof with the dual standard action is analogous.
Proposition 6.3. Let $M=(\mathbb{Z} / 2 \mathbb{Z})^{n}$ be the $\mathrm{GL}(n, \mathbb{Z})$-module with the standard action. Then M is irreducible as a $\mathrm{GL}(n, \mathbb{Z})$-module. Actually M is irreducible as a $\mathrm{SL}(n, \mathbb{Z})$-module. The same holds for M together with the dual standard action.

Proof. Let e_{1}, \ldots, e_{n} denote the standard generators of M. The action of the elementary matrices $E_{i j}$ on e_{1}, \ldots, e_{n} is then given by

$$
\begin{aligned}
E_{j i} \cdot e_{i} & =e_{i}+e_{j} \\
E_{j k} \cdot e_{i} & =e_{i} \quad \text { for } k \neq i .
\end{aligned}
$$

Assume now there is a submodule $S \leq M$ with $S \neq 0$. We have to show that $S=M$. Since $S \neq 0$, there exists an element $v \in S, v \neq 0$, say

$$
v=\sum_{i=1}^{n} a_{i} e_{i}
$$

with $a_{i} \in\{0,1\}$ and $a_{j}=1$ for some j. We have

$$
\left(E_{k j} \cdot v\right)-v=\left(\sum_{i=1}^{n} a_{i}\left(E_{k j} \cdot e_{i}\right)\right)-v=\left(\sum_{i=1}^{n} a_{i} e_{i}\right)+e_{k}-v=e_{k} \in S
$$

for all $k \neq j$. But then

$$
\left(E_{j 1} \cdot e_{1}\right)-e_{1}=\left(e_{1}+e_{j}\right)-e_{1}=e_{j} \in S .
$$

Hence $S=M$.
The proof for M together with the dual standard action is analogous.

Finally, we will define another $\operatorname{GL}(n, \mathbb{Z})$-module, which will arise in the next section. We are going to specify the action of $\mathrm{GL}(n, \mathbb{Z})$ on this
new module in terms of generators and then extend it linearly. Before doing this let us take a look at the general situation:

Let G be finitely presented group and A be a finitely generated abelian group, say

$$
\begin{aligned}
& G=\left\langle g_{1}, \ldots, g_{n}\right. \mid \\
&\left.R_{1}, \ldots, R_{m}\right\rangle \\
& A=\left\langle e_{1}, \ldots, e_{s}, d_{1}, \ldots, d_{t}, \quad\right| {\left[e_{i}, e_{j}\right]=0,\left[e_{i}, d_{j}\right]=0,\left[d_{i}, d_{j}\right]=0, } \\
&\left.a_{1} \cdot d_{1}=0, \ldots, a_{t} \cdot d_{t}=0\right\rangle
\end{aligned}
$$

with $a_{1}, \ldots, a_{t} \in \mathbb{N} \backslash\{1\}$. The e_{i} are then the free generators of A and the d_{i} are the torsion generators. In order to define an action of G on A we proceed in the following way:
First we define the action in terms of the generators

$$
\begin{gathered}
g_{i} \cdot e_{j}:=v_{i j} \in A, \quad g_{i}^{-1} \cdot e_{j}:=\widetilde{v_{i j}} \in A \\
g_{i} \cdot d_{j}:=w_{i j} \in A, \quad g_{i}^{-1} \cdot d_{j}:=\widetilde{w_{i j}} \in A .
\end{gathered}
$$

Of course there are restrictions for this definitions (see below). Then we extend the action linearly, i.e. for $x=\sum_{k=1}^{s} b_{k} e_{k}+\sum_{j=1}^{t} c_{j} d_{j}\left(b_{k}, c_{j} \in \mathbb{Z}\right)$ we define

$$
g_{i}^{\varepsilon} \cdot x:=\sum_{k=1}^{s} b_{k}\left(g_{i}^{\varepsilon} \cdot e_{k}\right)+\sum_{j=1}^{t} c_{j}\left(g_{i}^{\varepsilon} \cdot d_{j}\right) \quad(\varepsilon \in\{-1,1\})
$$

and for $g=g_{i_{1}}^{\varepsilon_{1}} \ldots g_{i_{k}}^{\varepsilon_{k}}\left(\varepsilon_{j} \in\{-1,1\}\right)$

$$
g \cdot x:=g_{i_{1}}^{\varepsilon_{1}} \cdot\left(\cdots\left(g_{i_{k}}^{e_{k}} \cdot x\right) \ldots\right) .
$$

Note that these definitions lead to a well defined action of G on A if and only if the following relations are satisfied
a) $g_{i} \cdot\left(g_{i}^{-1} \cdot e_{j}\right)=e_{j}, \quad g_{i}^{-1} \cdot\left(g_{i} \cdot e_{j}\right)=e_{j}$ and $g_{i} \cdot\left(g_{i}^{-1} \cdot d_{j}\right)=d_{j}, \quad g_{i}^{-1} \cdot\left(g_{i} \cdot d_{j}\right)=d_{j}$,
b) $a_{j} \cdot\left(g_{i}^{\varepsilon} \cdot d_{j}\right)=0$ for all $1 \leq j \leq t \quad(\varepsilon \in\{-1,1\})$,
c) $R_{i} \cdot e_{j}=e_{j}$ and $R_{i} \cdot d_{j}=d_{j}$ for $1 \leq i \leq m$.

Remark 6.4. Let $x=\sum_{k=1}^{s} b_{k} e_{k}+\sum_{j=1}^{t} c_{j} d_{j}$ with $b_{k}, c_{j} \in \mathbb{Z}$. By the above construction we have

$$
g \cdot x=\sum_{k=1}^{s} b_{k}\left(g \cdot e_{k}\right)+\sum_{j=1}^{t} c_{j}\left(g \cdot d_{j}\right)
$$

for all $g \in G$.
We are now going to apply this method to define another GL(n, \mathbb{Z})module V_{n}. The module V_{n} will play an important role in the next section.

Lemma 6.5. Let $V_{n}:=\mathbb{Z}^{n} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{n}$ as an abelian group with standard generators e_{1}, \ldots, e_{n} and d_{1}, \ldots, d_{n}. If we define on the generators

$$
\begin{array}{ll}
E_{j i} \cdot e_{i}=e_{i}+e_{j}, & E_{j i}^{-1} \cdot e_{i}=e_{i}-e_{j}, \\
E_{j k} \cdot e_{i}=e_{i} \quad(k \neq i), & E_{j k}^{-1} \cdot e_{i}=e_{i} \quad(k \neq \\
O_{1} \cdot e_{1}=d_{1}-e_{1}, & \\
O_{1} \cdot e_{i}=e_{i}+d_{i} \quad(i \neq 1), & \\
E_{j i} \cdot d_{i}=d_{i}+d_{j}, & E_{j i}^{-1} \cdot d_{i}=d_{i}+d_{j}, \\
E_{j k} \cdot d_{i}=d_{i} \quad(k \neq i), & E_{j k}^{-1} \cdot d_{i}=d_{i} \quad(k \neq \\
O_{1} \cdot d_{i}=d_{i} \quad \text { for all } i &
\end{array}
$$

we obtain a $\mathrm{GL}(n, \mathbb{Z})$-action on V_{n}.
Proof. We have to show that these definition extends to an action, i.e. we have to check the points a) - c) (see above).

First note, that by the above formulas the action defined on the generators d_{1}, \ldots, d_{n} of the group $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ coincides with the standard $\mathrm{GL}(n, \mathbb{Z})$-action. Hence it is clear that the points a) - c) hold for d_{1}, \ldots, d_{n}.

Furthermore note that the $\operatorname{SL}(n, \mathbb{Z})$-action defined on the generators e_{1}, \ldots, e_{n} of \mathbb{Z}^{n} coincides with the standard $\operatorname{SL}(n, \mathbb{Z})$-action. Hence we just have to look on relations containing the generator O_{1} :
a) It suffices to show that $O_{1} O_{1} \cdot e_{i}=e_{i}$ for all i :

We have

- for $i \neq 1$

$$
O_{1} O_{1} \cdot e_{i}=O_{1} \cdot\left(e_{i}+d_{i}\right)=e_{i}+2 d_{i}=e_{i}
$$

- for $i=1$

$$
O_{1} O_{1} \cdot e_{1}=O_{1} \cdot\left(d_{1}-e_{1}\right)=d_{1}-d_{1}+e_{1}=e_{1} .
$$

b) Here is nothing to show.
c) It suffices to show that $R \cdot e_{i}=e_{i}$, where R is one of the following relators
1.) $O_{1} E_{i j} O_{1} E_{i j}^{-1}$ if $i, j \neq 1$,
2.) $\left(O_{1} E_{1 j}\right)^{2}$ if $j \neq 1$,
3.) $\left(O_{1} E_{j 1}\right)^{2}$ if $j \neq 1$,
4.) O_{1}^{2}.
1.) We show that $O_{1} E_{i j} O_{1} E_{i j}^{-1} \cdot e_{k}=e_{k}$ if $i, j \neq 1$, for all k :

- for $k \neq 1, j$

$$
O_{1} E_{i j} O_{1} E_{i j}^{-1} \cdot e_{k}=O_{1} E_{i j} \cdot\left(e_{k}+d_{k}\right)=e_{k}+2 d_{k}=e_{k}
$$

- for $k=1$

$$
O_{1} E_{i j} O_{1} E_{i j}^{-1} \cdot e_{1}=O_{1} E_{i j} \cdot\left(d_{1}-e_{1}\right)=d_{1}-d_{1}+e_{1}=e_{1},
$$

- for $k=j$

$$
\begin{aligned}
O_{1} E_{i j} O_{1} E_{i j}^{-1} \cdot e_{j} & =O_{1} E_{i j} O_{1} \cdot\left(e_{j}-e_{i}\right) \\
& =O_{1} E_{i j} \cdot\left(e_{j}+d_{j}-e_{i}+d_{i}\right) \\
& =O_{1} \cdot\left(e_{j}+e_{i}+d_{j}+d_{i}-e_{i}+d_{i}\right) \\
& =O_{1} \cdot\left(e_{j}+d_{j}\right)=e_{j}+2 d_{j}=e_{j} .
\end{aligned}
$$

2.) We show that $\left(O_{1} E_{1 j}\right)^{2} \cdot e_{i}=e_{i}$ for all $i(j \neq 1)$:

We have

- for $i \neq 1, j$

$$
\left(O_{1} E_{1 j}\right)^{2} \cdot e_{i}=O_{1} E_{1 j} \cdot\left(e_{i}+d_{i}\right)=e_{i}+2 d_{i}=e_{i}
$$

- for $i=j$

$$
\begin{aligned}
\left(O_{1} E_{1 j}\right)^{2} \cdot e_{j} & =O_{1} E_{1 j} O_{1} \cdot\left(e_{j}+e_{1}\right) \\
& =O_{1} E_{1 j} \cdot\left(e_{j}+d_{j}-e_{1}+d_{1}\right) \\
& ==O_{1}\left(e_{j}+e_{1}+d_{j}+d_{1}-e_{1}+d_{1}\right) \\
& =O_{1} \cdot\left(e_{j}+d_{j}\right)=e_{j}+2 d_{j}=e_{j},
\end{aligned}
$$

- for $i=1$

$$
\left(O_{1} E_{1 j}\right)^{2} \cdot e_{1}=O_{1} E_{1 j} \cdot\left(d_{1}-e_{1}\right)=d_{1}-d_{1}+e_{1}=e_{1} .
$$

3.) We show that $\left(O_{1} E_{j 1}\right)^{2} \cdot e_{i}=e_{i}$ for all $i(j \neq 1)$:

We have

- for $i \neq 1$

$$
\left(O_{1} E_{j 1}\right)^{2} \cdot e_{i}=O_{1} E_{j 1} \cdot\left(e_{i}+d_{i}\right)=e_{i}+2 d_{i}=e_{i}
$$

- for $i=1$

$$
\begin{aligned}
\left(O_{1} E_{j 1}\right)^{2} \cdot e_{1} & =O_{1} E_{j 1} O_{1} \cdot\left(e_{1}+e_{j}\right) \\
& =O_{1} E_{j 1} \cdot\left(d_{1}-e_{1}+e_{j}+d_{j}\right) \\
& =O_{1} \cdot\left(d_{1}+d_{j}-e_{1}-e_{j}+e_{j}+d_{j}\right) \\
& =O_{1} \cdot\left(d_{1}-e_{1}\right) \\
& =d_{1}-d_{1}+e_{1}=e_{1}
\end{aligned}
$$

Lemma 6.6. Let V_{n} be the $\operatorname{GL}(n, \mathbb{Z})$-module defined above. Then we have for all i

$$
\begin{aligned}
O_{i} \cdot e_{i} & =d_{i}-e_{i} \\
O_{j} \cdot e_{i} & =e_{i}+d_{i} \quad(i \neq j) \\
O_{j} \cdot d_{i} & =d_{i}
\end{aligned}
$$

Proof. Notice that

$$
O_{i}=E_{1 i}^{-1} E_{i 1}^{2} O_{1} E_{1 i} E_{i 1}^{-2}
$$

by Proposition 1.5. Hence we obtain

- for $j \neq 1, i$

$$
E_{1 i}^{-1} E_{i 1}^{2} O_{1} E_{1 i} E_{i 1}^{-2} \cdot e_{j}=E_{1 i}^{-1} E_{i 1}^{2} \cdot\left(e_{j}+d_{j}\right)=e_{j}+d_{j}
$$

- for $j=1$

$$
\begin{aligned}
& E_{1 i}^{-1} E_{i 1}^{2} O_{1} E_{1 i} E_{i 1}^{-2} \cdot e_{1}=E_{1 i}^{-1} E_{i 1}^{2} O_{1} E_{1 i} \cdot\left(e_{1}-2 e_{i}\right) \\
= & E_{1 i}^{-1} E_{i 1}^{2} O_{1} \cdot\left(-e_{1}-2 e_{i}\right)=E_{1 i}^{-1} E_{i 1}^{2} \cdot\left(e_{1}-d_{1}-2 e_{i}\right) \\
= & E_{1 i}^{-1} \cdot\left(e_{1}-d_{1}\right)=e_{1}-d_{1},
\end{aligned}
$$

- for $j=i$

$$
\begin{aligned}
& E_{1 i}^{-1} E_{i 1}^{2} O_{1} E_{1 i} E_{i 1}^{-2} \cdot e_{i}=E_{1 i}^{-1} E_{i 1}^{2} O_{1} \cdot\left(e_{i}+e_{1}\right) \\
= & E_{1 i}^{-1} E_{i 1}^{2} \cdot\left(e_{i}+d_{i}+d_{1}-e_{1}\right)=E_{1 i}^{-1} \cdot\left(d_{i}+d_{1}-e_{1}-e_{i}\right) \\
= & d_{i}-e_{i} .
\end{aligned}
$$

6.2 The ABELIANIZED GROUP K_{n}^{ab}

By Chapter 4 the following sequence is exact

$$
\begin{equation*}
1 \rightarrow K_{n} \rightarrow \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(n-1, \mathbb{Z}) \rightarrow 1 \tag{6.1}
\end{equation*}
$$

Define $K_{n}^{\mathrm{ab}}:=K_{n} /\left[K_{n}, K_{n}\right]$, where $\left[K_{n}, K_{n}\right]$ is the commutator subgroup of K_{n}. By Theorem $4.14 K_{n}^{\text {ab }}$ is a finitely generated abelian group. Furthermore K_{n}^{ab} is a $\mathrm{GL}(n-1, \mathbb{Z})$-module by Proposition 2.17 . To be more precise let $A \in \operatorname{GL}(n-1, \mathbb{Z})$ and $a \in \Gamma^{+}\left(C_{2}, \pi\right)$ with $\sigma_{-1}(a)=A$. Then the action of A on an element $[k] \in K_{n}^{\mathrm{ab}}$ is given by

$$
A \cdot[k]:=\left[a \circ k \circ a^{-1}\right] .
$$

We are now interested in the structure of the $\mathrm{GL}(n-1, \mathbb{Z})$-module K_{n}^{ab}.

Lemma 6.7. In $K_{n} \leq \Gamma^{+}\left(C_{2}, \pi\right)$ the following relations hold for $n \geq 3$ and $1 \leq i, j \leq n-1$ with $i \neq j$:

$$
\left(\psi_{i}^{2}\right)^{2}=\left(\zeta_{i j}^{a}\right)^{-1} \circ \psi_{j}^{2} \circ \zeta_{i j}^{c} \circ \psi_{j}^{-2}
$$

Proof. $\left(\psi_{i}^{2}\right)^{2}=\left(\zeta_{i j}^{a}\right)^{-1} \circ \psi_{j}^{2} \circ \zeta_{i j}^{c} \circ \psi_{j}^{-2}:$
$\left\{\begin{array}{llllll}y_{i} & \stackrel{\psi_{j}^{-2}}{\mapsto} y_{i} & \stackrel{\zeta_{i j}^{c}}{\mapsto} y_{i} y_{j} x^{-1} y_{j} x & \stackrel{\psi_{j}^{2}}{\mapsto} y_{i} y_{j} x y_{j} x^{3} & \stackrel{\left(\zeta_{i j}^{a}\right)^{-1}}{\mapsto} & y_{i} x^{4} \\ y_{j} & \stackrel{\psi_{j}^{-2}}{\mapsto} y_{j} x^{-2} & \stackrel{\zeta_{i j}^{c}}{\mapsto} y_{j} x^{-2} & \stackrel{\psi_{j}^{2}}{\mapsto} y_{j} & \stackrel{\left(\zeta_{i j}^{a}\right)^{-1}}{\mapsto} & y_{j}\end{array}\right\}$.
So the resulting automorphism is $\left(\psi_{i}^{2}\right)^{2}$.
Lemma 6.8. In K_{n}^{ab} the following relations hold
(a) for $n \geq 2$:

$$
\begin{array}{ll}
{\left[\operatorname{kon}_{x i}\right]=\left[\delta_{i}\right]-\left[\varepsilon_{i}\right],} & {\left[\mathrm{kon}_{i x}^{2}\right]=0} \\
{\left[\varphi_{i}^{2}\right]=\left[\psi_{i}^{2}\right],} & {\left[\alpha_{i}\right]=\left[\varepsilon_{i}\right]+\left[\delta_{i}\right]-2\left[\psi_{i}^{2}\right]} \\
2\left[\alpha_{i}\right]=0, & {\left[\alpha_{i}\right]=-\left[\beta_{i}\right]}
\end{array}
$$

(b) for $n \geq 3$:

$$
\begin{array}{ll}
2\left[\psi_{i}^{2}\right]=0, & {\left[\alpha_{i}\right]=\left[\varepsilon_{i}\right]+\left[\delta_{i}\right],} \\
{\left[\kappa_{j k}\right]=0,} & {\left[\operatorname{kon}_{i j x}^{-}\right]=\left[\alpha_{i}\right]+\left[\alpha_{j}\right],} \\
{\left[\zeta_{i j}^{a}\right]=\left[\zeta_{i j}^{b}\right]=\left[\zeta_{i j}^{c}\right]=\left[\zeta_{i j}^{d}\right]=0,} & {\left[\operatorname{kon}_{i j}\right]=\left[\alpha_{j}\right] .}
\end{array}
$$

(c) for $n \geq 4$:

$$
\left[\kappa_{i j k}\right]=0 .
$$

Proof. (a) Let $n \geq 2$. With the help of formulas in the proof of Proposition 4.9 and Lemma 4.11 we can conclude that

$$
\begin{aligned}
& {\left[\operatorname{kon}_{x i}\right]=\left[\delta_{i} \circ \varepsilon_{i}^{-1}\right]=\left[\delta_{i}\right]-\left[\varepsilon_{i}\right]} \\
& {\left[\alpha_{i}\right]=\left[\psi_{i}^{-2} \circ \varepsilon_{i} \circ \psi_{i}^{-2} \circ \delta_{i}\right]=\left[\varepsilon_{i}\right]+\left[\delta_{i}\right]-2\left[\psi_{i}^{2}\right]} \\
& {\left[\beta_{i}\right]=\left[\psi_{i}^{2} \circ \delta_{i}^{-1} \circ \psi_{i}^{2} \circ \varepsilon_{i}^{-1}\right]=-\left[\varepsilon_{i}\right]-\left[\delta_{i}\right]+2\left[\psi_{i}^{2}\right]} \\
& {\left[\operatorname{kon}_{i x}^{2}\right]=\left[\alpha_{i} \circ \beta_{i}\right]=\left[\varepsilon_{i}\right]+\left[\delta_{i}\right]-2\left[\psi_{i}^{2}\right]-\left[\varepsilon_{i}\right]-\left[\delta_{i}\right]+2\left[\psi_{i}^{2}\right]=0,} \\
& {\left[\varphi_{i}^{2}\right]=\left[\operatorname{kon}_{i x}^{2} \circ \psi_{i}^{2}\right]=\left[\operatorname{kon}_{i x}^{2}\right]+\left[\psi_{i}^{2}\right]=\left[\psi_{i}^{2}\right]}
\end{aligned}
$$

Since $\alpha_{i}^{2}=$ id by Proposition 4.9, we have

$$
0=\left[\alpha_{i}^{2}\right]=2\left[\alpha_{i}\right] .
$$

(b) Now let $n \geq 3$. Again we use the formulas in the proof of Lemma 4.11:

$$
\begin{aligned}
& {\left[\zeta_{i j}^{c}\right]=\left[\varepsilon_{j}^{-1} \circ \psi_{i}^{-2} \circ \varepsilon_{j} \circ \psi_{i}^{2}\right]=0,} \\
& {\left[\zeta_{i j}^{a}\right]=\left[\operatorname{kon}_{i j}^{-1} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j} \circ \zeta_{i j}^{c} \circ \psi_{i}^{-2}\right]=\left[\zeta_{i j}^{c}\right]=0,} \\
& {\left[\zeta_{i j}^{b}\right]=\left[\alpha_{i} \circ\left(\zeta_{i j}^{c}\right)^{-1} \circ \alpha_{i}\right]=2\left[\alpha_{i}\right]-\left[\zeta_{i j}^{c}\right]=0,} \\
& {\left[\zeta_{i j}^{d}\right]=\left[\beta_{i} \circ\left(\zeta_{i j}^{a}\right)^{-1} \circ \beta_{i}\right]=2\left[\beta_{i}\right]-\left[\zeta_{i j}^{a}\right]=0 .}
\end{aligned}
$$

Now Lemma 6.7 yields

$$
2\left[\psi_{i}^{2}\right]=\left[\left(\psi_{i}^{2}\right)^{2}\right]=\left[\left(\zeta_{i j}^{a}\right)^{-1} \circ \psi_{j}^{2} \circ \zeta_{i j}^{c} \circ \psi_{j}^{-2}\right]=0 .
$$

And hence we get together with part (a)

$$
\begin{equation*}
\left[\alpha_{i}\right]=\left[\varepsilon_{i}\right]+\left[\delta_{i}\right]-2\left[\psi_{i}^{2}\right]=\left[\varepsilon_{i}\right]+\left[\delta_{i}\right] . \tag{6.2}
\end{equation*}
$$

Further

$$
\begin{aligned}
& {\left[\mathrm{kon}_{i j x}^{-}\right]=\left[\alpha_{i} \circ \beta_{j}\right]=\left[\alpha_{i}\right]+\left[\beta_{j}\right] \stackrel{(\mathrm{a})}{=}\left[\alpha_{i}\right]-\left[\alpha_{j}\right]=\left[\alpha_{i}\right]+\left[\alpha_{j}\right],} \\
& {\left[\kappa_{j k}\right]=\left[\varepsilon_{j} \circ \varepsilon_{k} \circ \varepsilon_{j}^{-1} \circ \varepsilon_{k}^{-1}\right]=0,} \\
& {\left[\mathrm{kon}_{i j}\right]=\left[\beta_{i} \circ \varepsilon_{j}^{-1} \circ \beta_{i} \circ \delta_{j}^{-1}\right]=-\left[\varepsilon_{j}\right]-\left[\delta_{j}\right] \stackrel{(6.2)}{=}-\left[\alpha_{j}\right]=\left[\alpha_{j}\right] .}
\end{aligned}
$$

(c) Finally let $n \geq 4$. We have to show that $\left[\kappa_{i j k}\right]=0$:

$$
\begin{aligned}
& {\left[\kappa_{i j k}\right]=\left[\operatorname{kon}_{x j} \circ \varepsilon_{j} \circ\left(\operatorname{kon}_{i j x}^{-}\right)^{-1} \circ \varepsilon_{j} \circ \operatorname{kon}_{i j x}^{-} \circ \operatorname{kon}_{i k}^{-1} \circ \zeta_{i k}^{d} \circ\left(\operatorname{kon}_{i j x}^{-}\right)^{-1} \circ\right.} \\
& \left.\varepsilon_{j}^{-1} \circ \operatorname{kon}_{i j x}^{-} \circ\left(\zeta_{i k}^{d}\right)^{-1} \circ \operatorname{kon}_{i k} \circ \varepsilon_{j}^{-1} \circ \operatorname{kon}_{x j}^{-1}\right]=0 .
\end{aligned}
$$

By Corollary 4.15, the group K_{n} is generated by $\varepsilon_{i}, \alpha_{i}$ and ψ_{i}^{2} for $i=1, \ldots, n-1$. This leads us to the following generator set of K_{n}^{ab}.

Proposition 6.9. Let $n \geq 2$. Then the group K_{n}^{ab} is generated by $\left[\varepsilon_{i}\right]$, $\left[\alpha_{i}\right]$ and $\left[\psi_{i}^{2}\right]$ for $i=1, \ldots, n-1$.

- For $n \geq 2$ the order of $\left[\alpha_{i}\right]$ is either one or two.
- For $n \geq 3$ the order $\left[\psi_{i}^{2}\right]$ is either one or two.

Proof. Corollary 4.15 and Lemma 6.8.
In Section 6.3 we will give a finite presentation of the group K_{2} and continue the discussion about $K_{2}^{\text {ab }}$ there. In particular we will identify the isomorphism type of $K_{2}^{\text {ab }}$. For the rest of this section assume $n \geq 3$. We describe the GL($n-1, \mathbb{Z}$)-action on $K_{n}^{\text {ab }}$ with the help of Lemma 6.8 and the formulas in the proof of Lemma 4.12 (in the cases, which are not listed, the action is trivial):

- The action of $\mathrm{GL}(n-1, \mathbb{Z})$ on the $\left[\varepsilon_{i}\right]$'s:

$$
\begin{aligned}
E_{i j} \cdot\left[\varepsilon_{i}\right] & =\left[\nu_{j i} \circ \varepsilon_{i} \circ \nu_{j i}^{-1}\right]=\left[\varepsilon_{i}\right] \\
E_{j i} \cdot\left[\varepsilon_{i}\right] & =\left[\nu_{i j} \circ \varepsilon_{i} \circ \nu_{i j}^{-1}\right]=\left[\varepsilon_{i}\right]+\left[\varepsilon_{j}\right] \\
E_{i j}^{-1} \cdot\left[\varepsilon_{i}\right] & =\left[\nu_{j i}^{-1} \circ \varepsilon_{i} \circ \nu_{j i}\right]=\left[\varepsilon_{i}\right] \\
E_{j i}^{-1} \cdot\left[\varepsilon_{i}\right] & =\left[\nu_{i j}^{-1} \circ \varepsilon_{i} \circ \nu_{i j}\right]=\left[\varepsilon_{i} \circ \varepsilon_{j}^{-1}\right]=\left[\varepsilon_{i}\right]-\left[\varepsilon_{j}\right] \\
O_{i} \cdot\left[\varepsilon_{i}\right] & =\left[\operatorname{kon}_{i x} \circ \varepsilon_{i} \circ \mathrm{kon}_{i x}^{-1}\right]=\left[\operatorname{kon}_{i x}^{2} \circ \delta_{i} \circ \operatorname{kon}_{i x}^{-2}\right]=\left[\delta_{i}\right] \\
& =\left[\alpha_{i}\right]-\left[\varepsilon_{i}\right] \\
O_{j} \cdot\left[\varepsilon_{i}\right] & =\left[\operatorname{kon}_{j x} \circ \varepsilon_{i} \circ \operatorname{kon}_{j x}^{-1}\right]=\left[\varepsilon_{i} \circ \mathrm{kon}_{j i}^{-1}\right]=2\left[\varepsilon_{i}\right]+\left[\delta_{i}\right] \\
& =-\left[\delta_{i}\right]=\left[\varepsilon_{i}\right]-\left[\alpha_{i}\right]
\end{aligned}
$$

- The action of $\mathrm{GL}(n-1, \mathbb{Z})$ on the $\left[\delta_{i}\right]$'s:

$$
\begin{aligned}
E_{i j} \cdot\left[\delta_{i}\right] & =\left[\nu_{j i} \circ \delta_{i} \circ \nu_{j i}^{-1}\right]=\left[\delta_{i}\right] \\
E_{j i} \cdot\left[\delta_{i}\right] & =\left[\nu_{i j} \circ \delta_{i} \circ \nu_{i j}^{-1}\right]=\left[\delta_{i}\right]+\left[\delta_{j}\right] \\
E_{i j}^{-1} \cdot\left[\delta_{i}\right] & =\left[\nu_{j i}^{-1} \circ \delta_{i} \circ \nu_{j i}\right]=\left[\delta_{i}\right] \\
E_{j i}^{-1} \cdot\left[\delta_{i}\right] & =\left[\nu_{i j}^{-1} \circ \delta_{i} \circ \nu_{i j}\right]=\left[\delta_{j}^{-1} \circ \delta_{i}\right]=\left[\delta_{i}\right]-\left[\delta_{j}\right] \\
O_{i} \cdot\left[\delta_{i}\right] & =\left[\operatorname{kon}_{i x} \circ \delta_{i} \circ \operatorname{kon}_{i x}^{-1}\right]=\left[\varepsilon_{i}\right] \\
O_{j} \cdot\left[\delta_{i}\right] & =\left[\operatorname{kon}_{j x} \circ \delta_{i} \circ \operatorname{kon}_{j x}^{-1}\right]=\left[\delta_{i} \circ \alpha_{j} \circ \operatorname{kon}_{j i}^{-1} \circ \alpha_{j}\right] \\
& =2\left[\delta_{i}\right]+\left[\varepsilon_{i}\right]=-\left[\varepsilon_{i}\right]
\end{aligned}
$$

- The action of GL $(n-1, \mathbb{Z})$ on the $\left[\alpha_{i}\right]^{\prime} \mathrm{s}\left(\left[\alpha_{i}\right]=\left[\varepsilon_{i}\right]+\left[\delta_{i}\right]\right)$:

$$
\begin{aligned}
E_{i j} \cdot\left[\alpha_{i}\right] & =\left[\varepsilon_{i}\right]+\left[\delta_{i}\right]=\left[\alpha_{i}\right] \\
E_{j i} \cdot\left[\alpha_{i}\right] & =\left[\varepsilon_{i}\right]+\left[\varepsilon_{j}\right]+\left[\delta_{i}\right]+\left[\delta_{j}\right]=\left[\alpha_{i}\right]+\left[\alpha_{j}\right] \\
E_{i j}^{-1} \cdot\left[\alpha_{i}\right] & =\left[\varepsilon_{i}\right]+\left[\delta_{i}\right]=\left[\alpha_{i}\right] \\
E_{j i}^{-1} \cdot\left[\alpha_{i}\right] & =\left[\varepsilon_{i}\right]-\left[\varepsilon_{j}\right]+\left[\delta_{i}\right]-\left[\delta_{j}\right]=\left[\alpha_{i}\right]-\left[\alpha_{j}\right] \\
O_{i} \cdot\left[\alpha_{i}\right] & =\left[\delta_{i}\right]+\left[\varepsilon_{i}\right]=\left[\alpha_{i}\right] \\
O_{j} \cdot\left[\alpha_{i}\right] & =-\left[\delta_{i}\right]-\left[\varepsilon_{i}\right]=-\left[\alpha_{i}\right]=\left[\alpha_{i}\right]
\end{aligned}
$$

- The action of $\mathrm{GL}(n-1, \mathbb{Z})$ on the $\left[\psi_{i}^{2}\right]$'s:

$$
\begin{aligned}
E_{i j} \cdot\left[\psi_{i}^{2}\right] & =\left[\nu_{j i} \circ \psi_{i}^{2} \circ \nu_{j i}^{-1}\right]=\left[\psi_{i}^{2} \circ \operatorname{kon}_{j i}^{-1} \circ \psi_{j}^{-2} \circ \operatorname{kon}_{j i}\right] \\
& =\left[\psi_{i}^{2}\right]+\left[\psi_{j}^{2}\right] \\
E_{j i} \cdot\left[\psi_{i}^{2}\right] & =\left[\nu_{i j} \circ \psi_{i}^{2} \circ \nu_{i j}^{-1}\right]=\left[\operatorname{kon}_{i j}^{-1} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i j}\right]=\left[\psi_{i}^{2}\right] \\
E_{i j}^{-1} \cdot\left[\psi_{i}^{2}\right] & =\left[\nu_{j i}^{-1} \circ \psi_{i}^{2} \circ \nu_{j i}\right]=\left[\psi_{i}^{2}\right]+\left[\psi_{j}^{2}\right] \\
E_{j i}^{-1} \cdot\left[\psi_{i}^{2}\right] & =\left[\nu_{i j}^{-1} \circ \psi_{i}^{2} \circ \nu_{i j}\right]=\left[\psi_{i}^{2}\right] \\
O_{i} \cdot\left[\psi_{i}^{2}\right] & =\left[\operatorname{kon}_{i x} \circ \psi_{i}^{2} \circ \operatorname{kon}_{i x}^{-1}\right]=\left[\psi_{i}^{2}\right] .
\end{aligned}
$$

Proposition 6.10. Let $n \geq 3$. Further let

$$
V_{n-1}=\mathbb{Z}^{n-1} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{n-1}
$$

be the $\mathrm{GL}(n-1, \mathbb{Z})$-module defined in Lemma 6.5 and

$$
M_{n-1}=(\mathbb{Z} / 2 \mathbb{Z})^{n-1}
$$

be the $\mathrm{GL}(n-1, \mathbb{Z})$-module with the dual standard action. Then there are surjective $\mathrm{GL}(n-1, \mathbb{Z})$-equivariant homomorphisms

$$
\Phi_{n}: V_{n-1} \oplus M_{n-1} \rightarrow K_{n}^{\mathrm{ab}}
$$

for all $n \geq 3$.
Proof. Let e_{1}, \ldots, e_{n-1} and d_{1}, \ldots, d_{n-1} denote the standard generators of V_{n-1} and f_{1}, \ldots, f_{n-1} the standard generators of M_{n-1}. Define Φ_{n} : $V_{n} \oplus M \rightarrow K_{n}^{\mathrm{ab}}$ by

$$
\begin{aligned}
e_{i} & \mapsto\left[\varepsilon_{i}\right], \\
d_{i} & \mapsto\left[\alpha_{i}\right], \\
f_{i} & \mapsto\left[\psi_{i}^{2}\right]
\end{aligned}
$$

for $i=1, \ldots, n-1$. By the above formulas it is clear that Φ_{n} is a $\operatorname{GL}(n-1, \mathbb{Z})$-homomorphism. Since $\left[\varepsilon_{i}\right],\left[\alpha_{i}\right]$ and $\left[\psi_{i}^{2}\right]$ generate $K_{n}^{a b}$ by Proposition 6.9, the map Φ_{n} is surjective.

Definition 6.11. Define

$$
\mathcal{A}_{n}:=\left\langle\alpha_{1}, \ldots, \alpha_{n-1}\right\rangle
$$

to be the subgroup of K_{n}^{ab} generated by the α_{i},

$$
\mathcal{P}_{n}:=\left\langle\psi_{1}^{2}, \ldots, \psi_{n-1}^{2}\right\rangle
$$

to be the subgroup of $K_{n}^{\text {ab }}$ generated by the ψ_{i}^{2} and

$$
\mathcal{E}_{n}:=\left\langle\varepsilon_{1}, \ldots, \varepsilon_{n-1}\right\rangle
$$

to be the subgroup of $K_{n}^{\text {ab }}$ generated by the ε_{i}.
Remark 6.12. Actually, we see by the above formulas that, \mathcal{A}_{n} and \mathcal{P}_{n} are $\mathrm{GL}(n-1, \mathbb{Z})$-submodules of $K_{n}^{\text {ab }}$. The subgroup \mathcal{E}_{n} is only a $\mathrm{SL}(n-1, \mathbb{Z})$-submodule of K_{n}^{ab}.

Proposition 6.13. Let $n \geq 3$. Further let $M=(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$. Then we have

- The submodule $\mathcal{A}_{n} \leq K_{n}^{\mathrm{ab}}$ is either isomorphic to M with the standard action or to 0 .
- The submodule $\mathcal{P}_{n} \leq K_{n}^{\mathrm{ab}}$ is either isomorphic to M with the dual standard action or to 0 .

Proof. Let $M=(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$ be the $\mathrm{GL}(n-1, \mathbb{Z})$-module with the standard action and let e_{1}, \ldots, e_{n-1} denote the standard generators of M. Define

$$
f_{n}: M \rightarrow \mathcal{A}_{n}
$$

to be the homomorphism, which sends e_{i} to $\left[\alpha_{i}\right]$. By the above formulas it is clear, that f_{n} is $\operatorname{GL}(n-1, \mathbb{Z})$ equivariant. Hence $\operatorname{ker}\left(f_{n}\right)$ is a submodule of M. Since M is irreducible as $\operatorname{GL}(n-1, \mathbb{Z})$-modules by Proposition 6.3, we obtain

$$
\operatorname{ker}\left(f_{n}\right)=0 \text { or } \operatorname{ker}\left(f_{n}\right)=M .
$$

So f_{n} is an isomorphism or f_{n} is the zero-map.
The proof for P_{n} is analogous.

Proposition 6.14. Let $n \geq 3$. Further let $M=\mathbb{Z}^{n-1}$ together with the standard $\mathrm{SL}(n-1, \mathbb{Z})$-action. The subgroup \mathcal{E}_{n} of K_{n}^{ab} is as a $\mathrm{SL}(n-1, \mathbb{Z})$ submodule either isomorphic to M or to some finite $\operatorname{SL}(n-1, \mathbb{Z})$-module.

Proof. Let e_{1}, \ldots, e_{n-1} denote the standard basis of M. Define

$$
f_{n}: M \rightarrow \mathcal{E}_{n}
$$

to be the homomorphism, which sends e_{i} to $\left[\varepsilon_{i}\right]$. By the above formulas f_{n} is a $\operatorname{SL}(n-1, \mathbb{Z})$-homomorphism. Hence $\operatorname{ker}\left(f_{n}\right)$ is a submodule of M. By Proposition 6.1 we have either

$$
\operatorname{ker}\left(f_{n}\right)=0 \quad \text { or } \quad \operatorname{ker}\left(f_{n}\right) \text { has finite index in } M .
$$

In the case $\operatorname{ker}\left(f_{n}\right)=0$, the homomorphism f_{n} is an isomorphism and \mathcal{E}_{n} is isomorphic to M as $\operatorname{SL}(n-1, \mathbb{Z})$-module. In the case $\operatorname{ker}\left(f_{n}\right)$ has finite index in M, we obtain

$$
\mathcal{E}_{n} \cong M / \operatorname{ker}\left(f_{n}\right),
$$

which is a finite $\mathrm{SL}(n-1, \mathbb{Z})$-module.
The results of Propsition 6.13 and Proposition 6.14 are all we know about the structure of K_{n} for $n \geq 3$. But our conjecture is that

- the submodule $\mathcal{A}_{n} \leq K_{n}^{\mathrm{ab}}$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$ with the standard $\operatorname{GL}(n-1, \mathbb{Z})$-action,
- the submodule $\mathcal{P}_{n} \leq K_{n}^{\text {ab }}$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$ with the dual standard $\mathrm{GL}(n-1, \mathbb{Z})$-action,
- the $\operatorname{SL}(n-1, \mathbb{Z})$-submodule \mathcal{E}_{n} of $K_{n}^{\text {ab }}$ is isomorphic to \mathbb{Z}^{n-1} with the standard $\operatorname{SL}(n-1, \mathbb{Z})$-action.

Moreover we conjecture the following.
Conjecture 6.15. Let $n \geq 3$. The $\mathrm{GL}(n-1, \mathbb{Z})$-homomorphism

$$
\Phi_{n}: V_{n-1} \oplus M_{n-1} \rightarrow K_{n}^{\mathrm{ab}}
$$

is an isomorphism for each n.

6.3 The special case $n=2$

In the case $n=2$ we get by Theorem 4.14 an exact sequence

$$
1 \rightarrow K_{2} \rightarrow \Gamma^{+}\left(C_{2}, \pi\right) \rightarrow \mathrm{GL}(1, \mathbb{Z}) \rightarrow 1
$$

Thus we see that the index of K_{2} in $\Gamma^{+}\left(C_{2}, \pi\right)$ is two. Since by Lemma 4.1 the index of $\Gamma^{+}\left(C_{2}, \pi\right)$ in $\operatorname{Aut}\left(F_{2}\right)$ is six, we conclude that the index of K_{2} in $\operatorname{Aut}\left(F_{2}\right)$ is twelve.

By Proposition 3.1, we know the following finite presentation of $\operatorname{Aut}\left(F_{2}\right)$.

$$
\begin{aligned}
\operatorname{Aut}\left(F_{2}\right)=\left\langle\pi_{12}, \sigma_{1}, \nu_{12}\right| & \pi_{12}^{2}=1, \sigma_{1}^{2}=1,\left(\sigma_{1} \circ \pi_{12}\right)^{4}=1, \\
& \sigma_{1}^{-1} \circ \nu_{12}^{-1} \circ \sigma_{1}^{-1} \circ \nu_{12}^{-1} \circ \sigma_{1} \circ \nu_{12} \circ \sigma_{1} \circ \nu_{12}=1, \\
& \left.\left(\nu_{12} \circ \pi_{12} \circ \sigma_{1} \circ \pi_{12}\right)^{2}=1,\left(\sigma_{1} \circ \pi_{12} \circ \nu_{12}\right)^{3}=1\right\rangle .
\end{aligned}
$$

By applying the Reidemeister rewriting process (see for example [16] Chapter 2.3) we can calculate a finite presentation of K_{2}. We used the computer algebra system Magma to do this. For the program, see the Appendix in Chapter 8. Here is the result.

Proposition 6.16. The group K_{2} has the following finite presentation

$$
\begin{aligned}
K_{2}=\left\langle\varepsilon_{1}, \alpha_{1}, \psi_{1}^{2}\right| & \alpha_{1}^{2}=1,\left[\alpha_{1}, \varepsilon_{1}\right]=1 \\
& {\left.\left[\alpha_{1}, \psi_{1}^{2}\right] \circ\left[\alpha_{1}, \psi_{1}^{-2}\right]=1,\left[\varepsilon_{1}^{-1}, \psi_{1}^{2}\right] \circ\left[\varepsilon_{1}, \psi_{1}^{-2}\right]=1\right\rangle . }
\end{aligned}
$$

Starting from this presentation we can compute the isomorphism type of the abelianized group K_{2}^{ab}.
Corollary 6.17. The abelianized group $K_{2}^{\text {ab }}$ has the following finite presentation

$$
\begin{aligned}
K_{2}^{\mathrm{ab}}=\left\langle\varepsilon_{1}, \alpha_{1}, \psi_{1}^{2} \quad\right| & \alpha_{1}^{2}=1,\left[\alpha_{1}, \varepsilon_{1}\right]=1, \\
& {\left.\left[\alpha_{1}, \psi_{1}^{2}\right]=1,\left[\varepsilon_{1}, \psi_{1}^{2}\right]=1\right\rangle . }
\end{aligned}
$$

In particular, we have

$$
K_{2}^{\mathrm{ab}} \cong \mathbb{Z}^{2} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

The $\mathrm{GL}(1, \mathbb{Z})$-action is given by

$$
\begin{aligned}
O_{1} \cdot\left[\varepsilon_{1}\right] & =\left[\alpha_{1}\right]+2\left[\psi_{1}^{2}\right]-\left[\varepsilon_{1}\right], \\
O_{1} \cdot\left[\alpha_{1}\right] & =\left[\alpha_{1}\right], \\
O_{1} \cdot\left[\psi_{1}^{2}\right] & =\left[\psi_{1}^{2}\right] .
\end{aligned}
$$

By Proposition 2.6, the abelian group $\gamma_{1}\left(K_{2}\right) / \gamma_{2}\left(K_{2}\right)$ is generated by

$$
\left[\varepsilon_{1}, \alpha_{1}\right] \cdot \gamma_{2}\left(K_{2}\right), \quad\left[\varepsilon_{1}, \psi_{1}^{2}\right] \cdot \gamma_{2}\left(K_{2}\right), \quad\left[\alpha_{1}, \psi_{1}^{2}\right] \cdot \gamma_{2}\left(K_{2}\right)
$$

But $\left[\varepsilon_{1}, \alpha_{1}\right]=\left[\alpha_{1}, \varepsilon_{1}\right]^{-1}=1$ by Proposition 6.16 and so the group $\gamma_{1}\left(K_{2}\right) / \gamma_{2}\left(K_{2}\right)$ is generated by $\left[\varepsilon_{1}, \psi_{1}^{2}\right] \cdot \gamma_{2}\left(K_{2}\right)$ and $\left[\alpha_{1}, \psi_{1}^{2}\right] \cdot \gamma_{2}\left(K_{2}\right)$.

Lemma 6.18. The simple commutators $\left[\varepsilon_{1}, \psi_{1}^{2}\right]$ and $\left[\alpha_{1}, \psi_{1}^{2}\right]$ have order one or two modulo $\gamma_{2}\left(K_{2}\right)$.

Proof. We know from Proposition 6.16 that $\left[\varepsilon_{1}^{-1}, \psi_{1}^{2}\right] \circ\left[\varepsilon_{1}, \psi_{1}^{-2}\right]=1$. It follows by Lemma 2.9 that

$$
1=\left[\varepsilon_{1}^{-1}, \psi_{1}^{2}\right] \circ\left[\varepsilon_{1}, \psi_{1}^{-2}\right] \equiv\left[\psi_{1}^{2}, \varepsilon_{1}\right] \circ\left[\psi_{1}^{2}, \varepsilon_{1}\right] \quad \bmod \gamma_{2}\left(K_{2}\right)
$$

A short calculation with Magma (see Appendix) shows that the order of $\left[\varepsilon_{1}, \psi_{1}^{2}\right]$ and $\left[\alpha_{1}, \psi_{1}^{2}\right]$ is two modulo $\gamma_{2}\left(K_{2}\right)$. In fact we obtain the following proposition.

Proposition 6.19. The group $\gamma_{1}\left(K_{2}\right) / \gamma_{2}\left(K_{2}\right)$ is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. In particular the order of $\gamma_{1}\left(K_{2}\right) / \gamma_{2}\left(K_{2}\right)$ is finite.

If we apply now Corollary 2.13, we see that all quotients $\gamma_{i}\left(K_{2}\right) / \gamma_{i+1}\left(K_{2}\right)$ are of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{2, i}}$ for $i \geq 1$. Moreover we obtain the following proposition.

Proposition 6.20. Let $i \geq 1$. Then the group $\gamma_{i}\left(K_{2}\right) / \gamma_{i+1}\left(K_{2}\right)$ is a finite abelian group of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{2, i}}$ with

$$
0 \leq b_{2, i} \leq 3^{i-1} \cdot 2
$$

Proof. Apply Corollary 2.13 together with Proposition 6.17 and Proposition 6.19.

We computed the numbers $b_{2, i}$ for $i=1, \ldots, 9$ with the help of Magma (see Apendix). Here is the result.

$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$	$b_{2,6}$	$b_{2,7}$	$b_{2,8}$	$b_{2,9}$	\ldots
2	4	6	10	14	22	32	48	70	

Remark 6.21. After computing one value of the $b_{2, i}$'s, say $b_{2, i_{0}}$, we can improve the estimation of the $b_{2, i}$'s $\left(i \geq i_{0}\right)$ by Corollary 2.13. This is illustrated in the following table.

$b_{2,1}$	$b_{2,2}$	$b_{2,3}$	$b_{2,4}$	$b_{2,5}$	$b_{2,6}$	$b_{2,7}$	$b_{2,8}$	$b_{2,9}$	\ldots
2	≤ 6	≤ 18	≤ 54	≤ 162	≤ 486	≤ 1458	≤ 4374	≤ 13122	
2	4	≤ 12	≤ 36	≤ 108	≤ 324	≤ 972	≤ 2916	≤ 8748	
2	4	6	≤ 18	≤ 54	≤ 162	≤ 486	≤ 1458	≤ 4374	
2	4	6	10	≤ 30	≤ 90	≤ 270	≤ 810	≤ 2430	
2	4	6	10	14	≤ 42	≤ 126	≤ 378	≤ 1134	
2	4	6	10	14	22	≤ 66	≤ 198	≤ 594	
2	4	6	10	14	22	32	≤ 96	≤ 288	
2	4	6	10	14	22	32	48	≤ 144	
2	4	6	10	14	22	32	48	70	

Finally, we give a conjecture about the numbers $b_{2, i}$, which is based on an observation about the known values of $b_{2,1}-b_{2,9}$.

Conjecture 6.22. The number $b_{2, i}$ is given by the following formula

$$
b_{2, i}= \begin{cases}b_{2, i-1}+b_{2, i-3} & \text { for } i \text { odd } \\ b_{2, i-1}+b_{2, i-3}+2 & \text { for } i \text { even. }\end{cases}
$$

6.4 Higher quotients of the lower central SERIES

In this section we consider quotients of the lower central series of K_{n} for $n \geq 3$. We use the notation $\gamma_{i}^{n}:=\gamma_{i}\left(K_{n}\right)$. Our second main theorem states the surprising fact that the the quotients $\gamma_{i}^{n} / \gamma_{i+1}^{n}(i \geq 1)$ are finite abelian groups of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{n, i}}$ with

$$
0 \leq b_{n, i} \leq(3 n-3)^{i-1} \cdot\left(3 n^{2}-7 n+4\right)
$$

By Corollay 4.15 we know that K_{n} is generated by $\varepsilon_{i}, \alpha_{i}$ and ψ_{i}^{2} for $i=1, \ldots, n-1$. Hence by Proposition 2.6 the abelian group $\gamma_{1}^{n} / \gamma_{2}^{n}$ is generated by the following elements

$$
\begin{array}{ll}
{\left[\varepsilon_{i}, \varepsilon_{j}\right] \cdot \gamma_{2}^{n}(i<j),} & {\left[\varepsilon_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n},} \\
{\left[\varepsilon_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n},} & {\left[\alpha_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n}(i<j),} \\
{\left[\alpha_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n},} & {\left[\psi_{i}^{2}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}(i<j) .}
\end{array}
$$

Since $\left[\psi_{i}^{2}\right]$ and $\left[\alpha_{i}\right]$ have order one or two in $K_{n}^{\text {ab }}$ (by Proposition 4.9 and Lemma 6.8), the elements $\left[\varepsilon_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n},\left[\varepsilon_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n},\left[\alpha_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n},\left[\alpha_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}$, [$\left.\psi_{i}^{2}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}$ have all finite order in $\gamma_{1}^{n} / \gamma_{2}^{n}$ by Lemma 2.8. In fact they have order one or two.

Lemma 6.23. Let $n \geq 2$. Then the following relations hold in K_{n} for $1 \leq i, j \leq n-1$:
a) $\left[\varepsilon_{i}, \delta_{j}\right]=1,\left[\varepsilon_{i}, \alpha_{i}\right]=1$ and $\left[\psi_{i}^{2}, \psi_{j}^{2}\right]=1$,
b) $\left[\alpha_{i}, \psi_{i}^{2}\right]=\operatorname{kon}_{i x}^{2}$ and $\left[\alpha_{i}, \psi_{j}^{2}\right]=\psi_{j}^{-4}(i \neq j)$,
c) $\left[\alpha_{i}, \alpha_{j}\right]=\operatorname{kon}_{i x}^{2} \circ \operatorname{kon}_{j x}^{-2}(i \neq j)$.

Proof. a) $\left[\varepsilon_{i}, \delta_{j}\right]=1$:

$$
\begin{aligned}
& \left\{\begin{array}{ll}
x & \stackrel{\delta_{j}^{-1}}{\longmapsto} y_{j}^{-1} x \\
\stackrel{\varepsilon_{i}^{-1}}{\longmapsto} & y_{j}^{-1} x y_{i}^{-1}
\end{array} \stackrel{\delta_{j}}{\longmapsto} x y_{j}^{-1} \quad \stackrel{\varepsilon_{i}}{\longmapsto} x\right\}, \\
& {\left[\varepsilon_{i}, \alpha_{i}\right]=1:} \\
& \left\{\begin{array}{llllllll}
x & \stackrel{\alpha_{i}}{\mapsto} & x^{-1} & \stackrel{\varepsilon_{i}^{-1}}{\mapsto} & y_{i} x^{-1} & \stackrel{\alpha_{i}}{\mapsto} & x y_{i}^{-1} & \stackrel{\varepsilon_{i}}{\mapsto} \\
y_{i} & \stackrel{\alpha_{i}}{\mapsto} & x y_{i}^{-1} x^{-1} & \stackrel{\varepsilon_{i}^{-1}}{\mapsto} & x y_{i}^{-1} x^{-1} & \stackrel{\alpha_{i}}{\mapsto} & y_{i} & \stackrel{\varepsilon_{i}}{\mapsto}
\end{array} y_{i}\right\}, \\
& {\left[\psi_{i}^{2}, \psi_{j}^{2}\right]=1:} \\
& \left\{\begin{array}{lllllll}
y_{i} & \stackrel{\psi_{j}^{-2}}{\mapsto} & y_{i} & \stackrel{\psi_{i}^{-2}}{\mapsto} & y_{i} x^{-2} & \stackrel{\psi_{j}^{2}}{\mapsto} & y_{i} x^{-2} \\
y_{j} & \stackrel{\psi_{j}^{-2}}{\mapsto} & y_{j} x^{-2} & \stackrel{\psi_{i}^{-2}}{\mapsto} & y_{j} x^{-2} & \stackrel{\psi_{j}^{2}}{\mapsto} & y_{j} \\
\stackrel{\psi_{i}^{2}}{\mapsto} & y_{j}
\end{array}\right\},
\end{aligned}
$$

b) $\left[\alpha_{i}, \psi_{i}^{2}\right]=\operatorname{kon}_{i x}^{2}$:

$$
\left\{\begin{array}{llllllll}
x & \stackrel{\psi_{i}^{-2}}{\mapsto} x & \stackrel{\alpha_{i}}{\mapsto} & x^{-1} & \stackrel{\psi_{i}^{2}}{\mapsto} & x^{-1} & \stackrel{\alpha_{i}}{\mapsto} & x \\
y_{i} & \stackrel{\psi_{i}^{-2}}{\mapsto} & y_{i} x^{-2} & \stackrel{\alpha_{i}}{\mapsto} & x y_{i}^{-1} x & \stackrel{\psi_{i}^{2}}{\mapsto} & x^{-1} y_{i}^{-1} x & \stackrel{\alpha_{i}}{\mapsto}
\end{array} x^{2} y_{i} x^{-2}\right\},
$$

$$
\begin{aligned}
& {\left[\alpha_{i}, \psi_{j}^{2}\right]=\psi_{j}^{-4}:} \\
& \left\{\begin{array}{ccccccc}
\psi_{j}^{-2} \\
x & \stackrel{\alpha_{i}}{\longmapsto} x & x^{-1} & \stackrel{\psi_{j}^{2}}{\longmapsto} x^{-1} & \stackrel{\alpha_{i}}{\longmapsto} & x \\
y_{i} & \stackrel{\psi_{j}^{-2}}{\longmapsto} & y_{i} & \stackrel{\alpha_{i}}{\longmapsto} & x y_{i}^{-1} x^{-1} & \stackrel{\psi_{j}^{2}}{\longmapsto} & x y_{i}^{-1} x^{-1} \\
& \stackrel{\alpha_{i}}{\longmapsto} & y_{i} \\
y_{j} & \stackrel{\psi_{j}^{-2}}{\longmapsto} & y_{j} x^{-2} & \stackrel{\alpha_{i}}{\longmapsto} & y_{j} x^{2} & \psi_{j}^{2} & y_{j} x^{4} \\
\longmapsto & \alpha_{i} & y_{j} x^{-4}
\end{array}\right\}
\end{aligned}
$$

c) $\left[\alpha_{i}, \alpha_{j}\right]=\operatorname{kon}_{i x}^{2} \circ \operatorname{kon}_{j x}^{-2}$:

$$
\left\{\begin{array}{lllllllll}
x & \stackrel{\alpha_{j}}{\longmapsto} & x^{-1} & \stackrel{\alpha_{i}}{\longmapsto} & x & \stackrel{\alpha_{j}}{\longmapsto} & x^{-1} & \stackrel{\alpha_{i}}{\longmapsto} & x \\
y_{i} & \stackrel{\alpha_{j}}{\longmapsto} & y_{i} & \stackrel{\alpha_{i}}{\longmapsto} & x y_{i}^{-1} x^{-1} & \stackrel{\alpha_{j}}{\longmapsto} & x^{-1} y_{i}^{-1} x & \stackrel{\alpha_{i}}{\longmapsto} & x^{2} y_{i} x^{-2} \\
y_{j} & \stackrel{\alpha_{j}}{\longmapsto} & x y_{j}^{-1} x^{-1} & \stackrel{\alpha_{i}}{\longmapsto} & x^{-1} y_{j}^{-1} x & \stackrel{\alpha_{j}}{\longmapsto} & x^{2} y_{j} x^{-2} & \stackrel{\alpha_{i}}{\longmapsto} & x^{-2} y_{j} x^{2}
\end{array}\right\}
$$

Proposition 6.24. For $n \geq 3$ the group $\gamma_{1}^{n} / \gamma_{2}^{n}$ is generated by

$$
\begin{aligned}
& {\left[\varepsilon_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n}(i \neq j), \quad\left[\varepsilon_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n},} \\
& {\left[\alpha_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}}
\end{aligned}
$$

where each of these generators has order one or two. In particular $\gamma_{1}^{n} / \gamma_{2}^{n}$ is a finite abelian group of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{n, 2}}$ with

$$
0 \leq b_{n, 2} \leq 3 n^{2}-7 n+4
$$

Proof. By the above remark we know that the abelian group $\gamma_{1}^{n} / \gamma_{2}^{n}$ is generated by the following elements

$$
\begin{array}{ll}
{\left[\varepsilon_{i}, \varepsilon_{j}\right] \cdot \gamma_{2}^{n}(i<j),} & {\left[\varepsilon_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n},} \\
{\left[\varepsilon_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n},} & {\left[\alpha_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n}(i<j),} \\
{\left[\alpha_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n},} & {\left[\psi_{i}^{2}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}(i<j) .}
\end{array}
$$

By Lemma 6.23 we have

- $\left[\varepsilon_{i}, \alpha_{i}\right] \cdot \gamma_{2}^{n}=0$ and $\left[\psi_{i}^{2}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}=0$,
- $\left[\alpha_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n}=\left[\alpha_{i}, \psi_{i}^{2}\right]\left[\psi_{j}^{2}, \alpha_{j}\right] \cdot \gamma_{2}^{n}=\left[\alpha_{i}, \psi_{i}^{2}\right] \cdot \gamma_{2}^{n}-\left[\alpha_{j}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}(i \neq j)$.

Thus it suffices to show that $\left[\varepsilon_{i}, \varepsilon_{j}\right]$ is a sum of $\left[\varepsilon_{i}, \alpha_{j}\right],\left[\varepsilon_{i}, \psi_{j}^{2}\right]$ and $\left[\alpha_{i}, \psi_{j}^{2}\right]$ modulo γ_{2}^{n}.

$$
\begin{aligned}
{\left[\varepsilon_{i}, \varepsilon_{j}\right] } & =\varepsilon_{i} \circ \varepsilon_{j} \circ \varepsilon_{i}^{-1} \circ \varepsilon_{j}^{-1} \stackrel{\mathrm{L.} .623 \mathrm{a})}{=} \varepsilon_{i} \circ \varepsilon_{j} \circ \delta_{j} \circ \varepsilon_{i}^{-1} \circ \delta_{j}^{-1} \circ \varepsilon_{j}^{-1} \\
& =\left[\varepsilon_{i}, \varepsilon_{j} \circ \delta_{j}\right] \stackrel{\text { Prop. }}{=} 4.9\left[\varepsilon_{i}, \varepsilon_{j} \circ \psi_{j}^{2} \circ \varepsilon_{j}^{-1} \circ \psi_{j}^{2} \circ \alpha_{j}\right] \\
& \stackrel{\mathrm{L.2.2}}{\equiv}\left[\varepsilon_{i}, \varepsilon_{j}\right] \circ\left[\varepsilon_{i}, \psi_{j}^{2}\right] \circ\left[\varepsilon_{i}, \varepsilon_{j}^{-1}\right] \circ\left[\varepsilon_{i}, \psi_{j}^{2}\right] \circ\left[\varepsilon_{i}, \alpha_{j}\right] \\
& \stackrel{\mathrm{L.2.9}}{\equiv}\left[\varepsilon_{i}, \varepsilon_{j}\right] \circ\left[\varepsilon_{i}, \psi_{j}^{2}\right] \circ\left[\varepsilon_{i}, \varepsilon_{j}\right]^{-1} \circ\left[\varepsilon_{i}, \psi_{j}^{2}\right] \circ\left[\varepsilon_{i}, \alpha_{j}\right] \\
& \equiv\left[\varepsilon_{i}, \psi_{j}^{2}\right]^{2} \circ\left[\varepsilon_{i}, \alpha_{j}\right] \bmod \gamma_{2}^{n} .
\end{aligned}
$$

This means

$$
\left[\varepsilon_{i}, \varepsilon_{j}\right] \cdot \gamma_{2}^{n}=\left[\varepsilon_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n} .
$$

For the estimation of the $b_{n, 2}$, we count the numbers of generators: We have $(n-1)(n-2)$ generators of the form $\left[\varepsilon_{i}, \alpha_{j}\right] \cdot \gamma_{2}^{n}(i \neq j)$ and $2(n-1)^{2}$ generators of the form $\left[\varepsilon_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}$ or $\left[\alpha_{i}, \psi_{j}^{2}\right] \cdot \gamma_{2}^{n}$. It follows that there are at most

$$
(n-1)(n-2)+2(n-1)^{2}=3 n^{2}-7 n+4
$$

generators. Hence we obtain

$$
0 \leq b_{n, 2} \leq 3 n^{2}-7 n+4
$$

Our second main theorem states the surprising fact that the quotients $\gamma_{i}\left(K_{n}\right) / \gamma_{i+1}\left(K_{n}\right)$ are finite groups for all $i \geq 1$.

Theorem 6.25. Let $n \geq 2$ and $i \geq 1$. Then the group $\gamma_{i}\left(K_{n}\right) / \gamma_{i+1}\left(K_{n}\right)$ is a finite abelian group of the form $(\mathbb{Z} / 2 \mathbb{Z})^{b_{n, i}}$ with

$$
0 \leq b_{n, i} \leq(3 n-3)^{i-1} \cdot\left(3 n^{2}-7 n+4\right)
$$

Proof. For the case $n=2$ see Corollary 6.20. For $n \geq 3$ apply Corollary 2.13 to Proposition 6.24 and Proposition 6.9.

By Proposition 4.9 the group K_{n} is not torsion-free. Thus by Proposition 2.16 there are two possibilities:

Proposition 6.26. Let $n \geq 3$. Then we have either

- there is a natural number $i_{0} \in \mathbb{N}_{0}$ such that $\gamma_{i_{0}}^{n} / \gamma_{i_{0}+1}^{n}$ is not torsionfree or
- K_{n} is not residually nilpotent, i.e. $\bigcap_{i=0}^{\infty} \gamma_{i}\left(K_{n}\right) \neq 1$.

Chapter 7

Further Results

In this chapter we present some results concerned with the relationship between the classical Torelli group IA $\left(F_{n}\right)$ and the generalized Torelli group K_{n}.

7.1 $\operatorname{IA}\left(F_{n-1}\right)$ AS A SUBGROUP OF K_{n}

Let $n \geq 3$ and F_{n} be the free group generated by $x, y_{1}, \ldots, y_{n-1}$. Define

$$
A_{n-1}:=\left\{\begin{array}{l|l}
\varphi \in \operatorname{Aut}\left(F_{n}\right) & \begin{array}{l}
\varphi(x)=x \\
\varphi\left(y_{i}\right) \in\left\langle y_{1}, \ldots, y_{n-1}\right\rangle
\end{array}
\end{array}\right\} \leq \operatorname{Aut}\left(F_{n}\right) .
$$

Let $G_{n-1} \leq F_{n}$ be the subgroup generated by y_{1}, \ldots, y_{n-1}, which is a free group on the $n-1$ free generators y_{1}, \ldots, y_{n-1}. Define ι : $\operatorname{Aut}\left(G_{n-1}\right) \rightarrow A_{n-1}$ to be the homomorphism which sends an automor$\operatorname{phism} \varphi \in \operatorname{Aut}\left(G_{n-1}\right)$ to the automorphism defined by

$$
\left\{x \mapsto x, \quad y_{1} \mapsto \varphi\left(y_{1}\right), \ldots, \quad y_{n-1} \mapsto \varphi\left(y_{n-1}\right)\right\} .
$$

Then the homomorphism ι is obviously an isomorphism. From now on we will identify A_{n-1} with $\operatorname{Aut}\left(G_{n-1}\right)$.

The group Aut $^{+}\left(G_{n-1}\right)$ is generated by the automorphisms $\lambda_{i j}$ and $\nu_{i j}$ for $1 \leq i, j \leq n-1, i \neq j$ and we see that $\operatorname{Aut}^{+}\left(G_{n-1}\right) \leq \Gamma^{+}\left(C_{2}, \pi\right)$ by Corollary 4.4. Let $\operatorname{IA}\left(G_{n-1}\right)$ denote the classical Torelli group of $\operatorname{Aut}\left(G_{n-1}\right)$. By Theorem 3.2 the group IA $\left(G_{n-1}\right)$ is generated by

$$
\operatorname{kon}_{i j}:\left\{y_{i} \mapsto y_{j} y_{i} y_{j}^{-1}\right\} \quad \text { and } \quad \kappa_{i j k}:\left\{y_{i} \mapsto y_{i} y_{j} y_{k} y_{j}^{-1} y_{k}^{-1}\right\} .
$$

By Lemma 4.11 we have $\operatorname{IA}\left(G_{n-1}\right) \leq K_{n}$.

Proposition 7.1. Let $n \geq 3$. Then the following diagram commutes

Proof. It suffices to show that the right square in the diagram commutes. We know from Chapter 3.1 that

$$
\rho_{1}\left(\nu_{i j}\right)=E_{j i} \quad \text { and } \quad \rho_{1}\left(\lambda_{i j}\right)=E_{j i} .
$$

Furthermore we have by Proposition 4.5

$$
\begin{aligned}
\sigma_{-1}\left(\nu_{i j}\right)=E_{j i} \quad \text { and } \quad \sigma_{-1}\left(\lambda_{i j}\right) & \stackrel{\mathrm{L} .4 .4}{=} \\
& =\sigma_{-1}\left(\operatorname{kon}_{i x}^{-1} \circ \delta_{j} \circ \mathrm{kon}_{i x} \circ \delta_{j} \circ \nu_{i j}\right) \\
& =O_{i}^{-1} \cdot I_{n-1} \cdot O_{i} \cdot I_{n-1} \cdot E_{j i}=E_{j i} .
\end{aligned}
$$

Since Aut ${ }^{+}\left(G_{n-1}\right)$ is generated by $\nu_{i j}$ and $\lambda_{i j}$ the Proposition follows.
The inclusion $\iota: \operatorname{IA}\left(G_{n-1}\right) \hookrightarrow K_{n}$ induces a homomorphism

$$
\begin{equation*}
\iota: \operatorname{IA}\left(G_{n-1}\right)^{\mathrm{ab}} \rightarrow K_{n}^{\mathrm{ab}} \tag{7.1}
\end{equation*}
$$

We compute the images of the generators of $\operatorname{IA}\left(G_{n-1}\right)^{\text {ab }}$ under ι :

$$
\begin{aligned}
\iota\left[\mathrm{kon}_{i j}\right] & =\left[\mathrm{kon}_{i j}\right] \stackrel{\mathrm{L} .6 .8}{=}\left[\alpha_{j}\right], \\
\iota\left[\kappa_{i j k}\right] & =\left[\kappa_{i j k}\right] \stackrel{\mathrm{L} .6 .8}{=} 0 .
\end{aligned}
$$

Hence we proved the following proposition.
Proposition 7.2. Let $n \geq 3$ and $\iota: \operatorname{IA}\left(G_{n-1}\right)^{\mathrm{ab}} \rightarrow K_{n}^{\mathrm{ab}}$ be the map defined in (7.1). Then we have

$$
\operatorname{Im}(\iota)=\mathcal{A}_{n}
$$

where $\mathcal{A}_{n}=\left\langle\alpha_{1}, \ldots, \alpha_{n-1}\right\rangle$ (see Chapter 6.2). In particular $\operatorname{Im}(\iota)$ is either isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{n-1}$ or to 0 .

7.2 The relation between $\operatorname{IA}\left(F_{n}\right)$ and K_{n}

In this section we assume that $n \geq 2$. Let F_{n} be the free group generated by $x, y_{1}, \ldots, y_{n-1}$ and $\operatorname{Inn}\left(F_{n}\right)$ be its group of inner automorphisms. For each $w \in F_{n}$ we have an induced inner automorphism $i(w)$, where

$$
i(w)(y)=w y w^{-1}
$$

for all $y \in F_{n}$. Since the center of F_{n} is trivial, the map $i: F_{n} \rightarrow \operatorname{Inn}\left(F_{n}\right)$ is an isomorphism, i.e.

$$
\operatorname{Inn}\left(F_{n}\right) \cong F_{n} .
$$

Hence we obtain the following generators for $\operatorname{Inn}\left(F_{n}\right)$.
Proposition 7.3. The group $\operatorname{Inn}\left(F_{n}\right)$ is generated by the inner automorphisms $i(x), i\left(y_{1}\right), \ldots, i\left(y_{n-1}\right)$.

Notice that for $n=2$ we obtain

$$
\operatorname{IA}\left(F_{2}\right)=\operatorname{Inn}\left(F_{2}\right) \cong F_{2} .
$$

Hence $\operatorname{IA}\left(F_{2}\right)$ is a free group on two generators.
Lemma 7.4. We have

$$
\operatorname{Inn}\left(F_{n}\right) \leq \operatorname{IA}\left(F_{n}\right)
$$

Proof. We show that the generators of $\operatorname{Inn}\left(F_{n}\right)$ given by Proposition 7.3 are in IA $\left(F_{n}\right)$:

$$
\begin{aligned}
i(x)= & \operatorname{kon}_{1 x} \circ \ldots \circ \operatorname{kon}_{n-1, x} \in \operatorname{IA}\left(F_{n}\right) \\
i\left(y_{j}\right)= & \operatorname{kon}_{1 j} \circ \ldots \circ \operatorname{kon}_{j-1, j} \circ \\
& \operatorname{kon}_{j+1, j} \circ \ldots \circ \operatorname{kon}_{n-1, j} \circ \operatorname{kon}_{x j} \in \operatorname{IA}\left(F_{n}\right)
\end{aligned}
$$

for $1 \leq j \leq n-1$.
Notice that by Lemma 4.3 we have

$$
\operatorname{Inn}\left(F_{n}\right) \leq \operatorname{IA}\left(F_{n}\right) \leq \Gamma^{+}\left(C_{2}, \pi\right)
$$

We are now going to analyze the representation σ_{-1} restricted to $\operatorname{Inn}\left(F_{n}\right)$. Let us first consider the images of the generators of $\operatorname{Inn}\left(F_{n}\right)$ under σ_{-1}.

Lemma 7.5. We have

$$
\sigma_{-1}(i(x))=-I_{n-1} \quad \text { and } \quad \sigma_{-1}\left(i\left(y_{j}\right)\right)=I_{n-1}
$$

for $1 \leq j \leq n-1$. In particular the image of $\operatorname{Inn}\left(F_{n}\right)$ under σ_{-1} is isomorphic to C_{2}.

Proof.

\[

\]

If we identify $\operatorname{Inn}\left(F_{n}\right)$ with F_{n} itself and the image of $\operatorname{Inn}\left(F_{n}\right)$ under σ_{-1} with $C_{2}=\left\langle g \mid g^{2}=1\right\rangle$, we obtain by Lemma 7.5

$$
\sigma_{-1}: F_{n} \rightarrow C_{2}
$$

This map is determined by

$$
x \mapsto g, \quad y_{1} \mapsto 1, \ldots \quad y_{n-1} \mapsto 1 .
$$

If we compare this map with $\pi: F_{n} \rightarrow C_{2}$ defined in Chapter 4.2, we see that they are identical. Thus we recover here the map $\pi: F_{n} \rightarrow C_{2}$, which was the starting point of the whole. Recapitulatory we have the following proposition.

Proposition 7.6. Let $n \geq 2$. Then the following diagram commutes

Notice that, since R is a free group on $2 n-1$ generators, the group $\operatorname{Inn}\left(F_{n}\right) \cap K_{n}$ is also free on $2 n-1$ generators.

Corollary 7.7. Let $n \geq 2$. The group $\operatorname{IA}\left(F_{n}\right) \cap K_{n}$ contains a free group on $2 n-1$ generators. In fact for $n=2$ the group $\operatorname{IA}\left(F_{2}\right) \cap K_{2}$ is a free group on three generators.

Proof. This follows immediately from the fact that

$$
\operatorname{Inn}\left(F_{n}\right) \leq \operatorname{IA}\left(F_{n}\right)
$$

for all $n \geq 3$ and

$$
\operatorname{Inn}\left(F_{2}\right)=\operatorname{IA}\left(F_{2}\right) .
$$

Until here we considered the restriction of σ_{-1} to $\operatorname{Inn}\left(F_{n}\right) \leq \Gamma^{+}\left(C_{2}, \pi\right)$. We are now going to study the map σ_{-1} restricted to $\mathrm{IA}\left(F_{n}\right)$. Thus let us first calculate the images of the generators of $\operatorname{IA}\left(F_{n}\right)$ under σ_{-1}.

Lemma 7.8. Let $n \geq 2$. We have

$$
\begin{array}{ll}
\sigma_{-1}\left(\kappa_{i j k}\right)=1, & \sigma_{-1}\left(\operatorname{kon}_{i j}\right)=1 \\
\sigma_{-1}\left(\kappa_{i j}\right)=1, & \sigma_{-1}\left(\operatorname{kon}_{i x}\right)=O_{i} \\
\sigma_{-1}\left(\operatorname{kon}_{x i}\right)=1, & \sigma_{-1}\left(\tau_{i j}\right)=E_{j i}^{-2}
\end{array}
$$

Proof. The automorphisms $\kappa_{i j k}, \operatorname{kon}_{i j}, \kappa_{i j}$ and kon $_{x i}$ are in the kernel of σ_{-1} by Lemma 4.11 and Theorem 4.14. We know from Proposition 4.5 that $\sigma_{-1}\left(\operatorname{kon}_{i x}\right)=O_{i}$. Hence it suffices to show that $\sigma_{-1}\left(\tau_{i j}\right)=E_{j i}^{-2}$:

$$
\begin{array}{rll}
\sigma_{-1}\left(\tau_{i j}\right) & \stackrel{\text { Cor. } 4.4}{=} & \sigma_{-1}\left(\operatorname{kon}_{i x}^{-1} \circ \nu_{i j} \circ \mathrm{kon}_{i x} \circ \nu_{i j}^{-1}\right) \\
& \stackrel{\text { L. } 4.5}{=} & O_{i} \cdot E_{j i} \cdot O_{i} \cdot E_{j i}^{-1}=E_{j i}^{-2} .
\end{array}
$$

It follows that the image of σ_{-1} restricted to $\operatorname{IA}\left(F_{n}\right)$ is generated by $E_{i j}^{2}$ for $1 \leq i, j \leq n-1(i \neq j)$ and O_{i} for $1 \leq i \leq n-1$. By Proposition 5.3 this image equals

$$
\Gamma_{n-1}(2)=\left\{M \in \mathrm{GL}(n-1, \mathbb{Z}) \mid M \equiv I_{n-1} \quad \bmod 2\right\}
$$

Hence we obtain the following exact sequence

$$
1 \rightarrow \mathrm{IA}\left(F_{n}\right) \cap K_{n} \rightarrow \mathrm{IA}\left(F_{n}\right) \xrightarrow{\sigma_{-1}} \Gamma_{n-1}(2) \rightarrow 1
$$

Notice that for $n=2$ this sequence coincides with the sequence given in Proposition 7.6.

On the other hand we can restrict the map $\rho_{1}: \operatorname{Aut}\left(F_{n}\right) \rightarrow \operatorname{GL}(n, \mathbb{Z})$ to $K_{n} \leq \operatorname{Aut}\left(F_{n}\right)$. Thus let us calculate the images of the generators of K_{n} under ρ_{1}.

Lemma 7.9. Let $n \geq 2$. We have

$$
\rho_{1}\left(\varepsilon_{i}\right)=\rho_{1}\left(\delta_{i}\right)=E_{i+1,1} \quad \text { and } \quad \rho_{1}\left(\psi_{i}^{2}\right)=E_{1, i+1}^{2}
$$

for $1 \leq i \leq n-1$.

Proof. This is clear by Chapter 3.1
It follows that the image of ρ_{1} restricted to K_{n} is generated by $E_{1 j}^{2}$ for $2 \leq j \leq n$ and $E_{i 1}$ for $2 \leq i \leq n$. By Proposition 5.5 this group equals

$$
\widetilde{\Gamma_{n}^{1}}(2)=\left\{A \in \mathrm{SL}(n, \mathbb{Z}) \left\lvert\, A \equiv\left(\begin{array}{c|ccc}
1 & 0 & \ldots & 0 \\
\hline * & I_{n-1}
\end{array}\right) \quad \bmod 2\right.\right\} .
$$

Thus we obtain an exact sequence

$$
1 \rightarrow \operatorname{IA}\left(F_{n}\right) \cap K_{n} \rightarrow K_{n} \xrightarrow{\rho_{1}} \widetilde{\Gamma_{n}^{1}}(2) \rightarrow 1 .
$$

Chapter 8

Appendix

```
Aut<p,q,u>:=Group<p,q,u | p^ 2, q^2, (p*q)^4,
u*q*u*q*u^-1*q}\mp@subsup{|}{}{\wedge}-1*\mp@subsup{u}{}{\wedge}-1*\mp@subsup{q}{}{\wedge}-1,(p*q*p*u\mp@subsup{)}{}{\wedge}2,(u*p*q\mp@subsup{)}{}{\wedge}3>
K2:=sub<Aut | u , p*u^2*p , p*u*q*u*p*q > ;
H<a,b,c>:=Rewrite(Aut,K2);
```

Result:
$>\mathrm{H}$;
Finitely presented group H on 3 generators
Generators as words in group Aut
$\mathrm{a}=\mathrm{p} * \mathrm{u} * \mathrm{p} * \mathrm{u}^{\wedge}-1 * \mathrm{q} * \mathrm{p}$
$\mathrm{b}=\mathrm{q} * \mathrm{p} * \mathrm{u} * \mathrm{q} * \mathrm{u}^{\wedge}-1 * \mathrm{p}$
$\mathrm{c}=\mathrm{p} * \mathrm{u} * \mathrm{q} * \mathrm{u} * \mathrm{p} * \mathrm{q}$
Relations
$c^{\wedge} 2=\operatorname{Id}(H)$
$\mathrm{a} * \mathrm{c} * \mathrm{a}^{\wedge}-1 * \mathrm{c}=\operatorname{Id}(\mathrm{H})$
$\mathrm{b}^{\wedge} 2 * \mathrm{c} * \mathrm{~b}^{\wedge}-2 * \mathrm{c}=\operatorname{Id}(\mathrm{H})$
$c * a^{\wedge}-1 * b * a * b * a * c * b^{\wedge}-1 * a^{\wedge}-1 * b^{\wedge}-1=\operatorname{Id}(H)$

```
\(\mathrm{K} 2<\mathrm{a}, \mathrm{b}, \mathrm{c}>:=\operatorname{Group}<\mathrm{a}, \mathrm{b}, \mathrm{c} \mid \mathrm{a}^{\wedge} 2, \mathrm{~b} * \mathrm{a} * \mathrm{~b}^{\wedge}-1 * \mathrm{a}^{\wedge}-1\),
\(\left(c^{\wedge}-1 * a\right)^{\wedge} 2 *(c * a)^{\wedge} 2,\left(c^{\wedge}-1 * b\right)^{\wedge} 2 *\left(c * b^{\wedge}-1\right)^{\wedge} 2>;\)
N2: =NilpotentQuotient (K2,2);
gamma12<a, b>:=CommutatorSubgroup(N2);
```


Result:

> gamma12;
GrpGPC : gamma12 of order $2^{\wedge} 2$ on 2 PC-generators PC-Relations:
$a^{\wedge} 2=\operatorname{Id}($ gamma12) ,
$\mathrm{b}^{\wedge} 2=\mathrm{Id}($ gamma12)

Here is an alternative, which can also be used to compute higher quotients:

```
K2<a,b,c>:=Group<a,b,c | a^2, b*a*b^-1*a^-1,
(c^-1*a)^2*(c*a)^2,(c^-1*b)^2*(c*b^-1)^2>;
N1,pi1:=NilpotentQuotient(K2,1);
N2,pi2:=NilpotentQuotient(K2,2);
f := hom< N2->N1 | [ pi2(g)->pi1(g) :
g in Generators(K2)]>;
Kernel(f);
```


Bibliography

[1] S. Andreadakis. On the automorphisms of free groups and free nilpotent groups. Proc. London Math. Soc., 15:239-268, 1965.
[2] D. Appel. Linear representations of the automorphism group of a free group. Master Thesis, Düsseldorf, 2006.
[3] S. Bachmuth. Inducued automorphisms of free groups and free metabelian groups. Trans. Amer. Math. Soc., 122:1-17, 1966.
[4] P. Bundschuh. Einführung in die Zahlentheorie. 5. Auflage, Springer, Berlin, 2002.
[5] F. Grunewald, A. Lubotzky. Linear Representations of the Automorphism Group of a Free Group. eprint arXiv:math/0606182, to appear in Geom. funct. analysis, 2006.
[6] E. Formanek. Characterizing a Free Group in Its Automorphism Group. Journal of Algebra, 133:424-432, 1990.
[7] W. Gaschütz. Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden. Math. Z., 60:274-286, 1954.
[8] M. Hall. The theory of groups. Chelsea Publ. Co., New York, 1976.
[9] D. Johnson. A survey of the Torelli group. Contemporary Math., 20:165-179, 1983.
[10] D. L. Johnson. Presentation of Groups. Cambridge University Press, Cambridge, 1976.
[11] W. Magnus. Über n-dimensionale Gittertransformationen. Acta Math., 64:353-367, 1934.
[12] J. Milnor. Introduction to algebraic K-theory. Princeton University Press, New Jersey, 1971.
[13] J. Nielsen. Die Gruppe der dreidimensionalen Gittertransformationen. Kgl. Danske Videnskabernes Selskab., Math. Fys. Meddelelser V, 12:1-29, 1924.
[14] J. Nielsen. Die Isomorphismengruppe der freien Gruppen. Math. Ann., 91:169-209, 1924.
[15] D. Robinson. A Course in the Theory of Groups. Springer, New York, 1996.
[16] W. Magnus, A. Karrass, D. Solitar. Combinatorial Group Theory. Dover Publications, Inc., Mineola, New York, 2004.

Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe angefertigt. Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen.

Düsseldorf, den 8. August 2007

