Research Seminar of the GRK 1150 Homotopy and Cohomology (WS 2008-2009):

The J-homomorphism and the Adams conjecture Organizers: Johannes Ebert; Gerald Gaudens

Talk 1. (Gérald Gaudens) Introduction to K-theory and overwiew.

Talk 2. (Achim Beckers) Definition of the e-invariant in terms of the Chern character [4], section 7. Omit 7.8 until 7.14. (Remark: Adams denotes it by λ ; e has another meaning and later both invariants will be shown to coicide). Include the proof of Theorems 7.15 and 7.16 of [4], which are given in section 10. The discussion depends on the number-theoretic results of [2], section 2 and on some results of [2], section 5 concerning the relationship between the Chern character and the Thom isomorphisms in K-theory and cohomology. A source which might be more accessible is [7], Chapter 4. Hatcher only discusses the complex case (which is both easier and weaker), but his exposition is not mixed up with the other approach to the e-invariant which will be discussed later.

Talk 3. Adams operations (Jan Möllers). Introduce the Adams operations ψ^k for both complex and real K-theory and prove their main properties, including their values on spheres. This is done in many places in the literature, for example [5], [6], [7]. Explain the periodicity theorem for Adams operations, [3], Thm 5.1. and give an idea of its proof.

Talk 4. (Ferit Deniz) The e-invariant in terms of homological algebra [1], sections 3, 6. Section 3 describes a general framework, which is specialized to K-theory in section 6. Then show that the two definitions of the e-invariant coincide (this is done [4], chapter 7. Also discuss [4], section 9.

So far, we have established a lower bound on the order of the image of the *J*-homomorphism. The next two talks will give an upper bound.

Talk 5. (Christian Ausoni) Spherical fibrations, the Adams conjecture and an upper bound for Im(J). Basic facts about spherical fibrations and interpretation of the J-homomorphism as a forgetful map from vector bundles to spherical fibrations. Introduce the Adams Conjecture (Conjecture 1.2 of [1]), which is now a theorem. Show Theorem 3.7 of [2]; the ambiguity in its statement is solved by the Adams conjecture. Talk 6. (Johannes Ebert) The proof of the Adams conjecture.

Talk 7. (Marco Schlichting) Toda brackets and the behaviour of the e-invariant with respect to Toda brackets, [4], sections 4, 5, 11.

Talk 8. (Nasko Karamanov) The periodic elements, [4], section 12.

References

- [1] Adams: On the groups J(X) I
- [2] Adams: On the groups J(X) II
- [3] Adams: On the groups J(X) III
- [4] Adams: On the groups J(X) IV
- [5] Adams: Vector fields on spheres
- [6] Husemoller: Fibre Bundles
- [7] Hatcher: Vector bundles and K-theory, available on the author's homepage.