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1 Announcement

The Graduiertenkolleg GRK 1150 Homotopy and Cohomology will hold its next summer
school on the topic of Novikov Morse Theory between September 10th and 15th at the
monastery Steinfeld in the Eifel area, west of Bonn.

All participants must apply; the deadline for applications is June 26th, 2006; see details
below. The summer school will be in the style of a seminar, i.e. all participants are expected
to prepare a talk from the program below.

The places are limited, but external applications are well-come.

The prerequisites are a good knowledge in differential topology, in singular homology and
cohomology, and in classical Morse theory.

For information about the location, see http://www.kloster-steinfeld.de
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2 Topic

Morse theory is a very appropriate mean to study the topology of a manifold. One studies
on a (compact) manifold X of dimension n a smooth function f : X → R with only
non-degenerate critical points. A non-critical point can be pushed along the (negative)
gradient flow towards a minimum of f as long as no critical point comes in its way. If f
has only one critical point, we expect X to be contractible; if f has only two critical points,
we expect X to be a sphere. In general, we expect the topology (or rather the homotopy
type, or the homology type) of X to be determined by the number, the indices, and the
interconnections of critical points via flow lines.
See not only the textbooks [Milnor, Matsumoto] for this, but also the surveys [Bott-1982,
Bott-1988].

In Morse theory it is not really the function f , but its gradient vector field (or gradient
flow), or dually the 1-form ω = df , which is used to define critical points, their index,
a cell or handle decomposition and to derive the famous Morse inequalities. Thus it is
natural to ask for a theory where one starts with a closed 1-form ω instead of a function f
to arrive at similar or refined theorems; one assumes that ω has only Morse-Type zeroes.
This is Novikov-Morse theory. Note that a Morse function gives the 1-form ω = df ;
since this is an exact form, its cohomology class ξ = [ω] in the first DeRham cohomology
H1

dR(X) = H1(X;R) is trivial. We will see that most results depend only on a cohomology
class ξ ∈ H1(X;R) and that classical Morse theory is the special case ξ = 0.

The main results of classical Morse theory are a relation between the number cj(f) of
critical points of index j of f and the Betti numbers bFj := dimFHj(X;F), for j = 0, 1, . . . , n.
The Morse inequalities are

bFj ≤ cj(f) (1)
j∑

k=0

(−1)j−kbFk ≤
j∑

k=0

(−1)j−kck(f) (2)

for j = 0, 1, . . . , n and any field coefficients F.
One can rephrase this by setting bj := bQj , which is the rank (i.e. the minimal number
of generators) of the free part of the integral homology Hj(X;Z), and setting qj(X) to
be the minimal number of generators of the torsion part of Hj(X;Z). Then we have for
j = 0, 1, . . . , n :

bj + qj + qj−1 ≤ cj(f) (3)

qj +

j∑

k=0

(−1)j−kbk ≤
j∑

k=0

(−1)j−kck(f) (4)

The main result of Novikov Morse theory will be an analogue result to the last two equa-
tions, where cj(f) is replaced by the number of critical points cj(ω) of a closed 1-form of
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Morse type, and the new Novikov Betti numbers bj(ξ) and Novikov torsion numbers qj(ξ)
are defined as follows. The cohomology class ξ = [ω] ∈ H1(X;R) = HomZ(π1(x),R) defines
a homomorphism g 7→ tξ(g) from the group ring Z[π1(X)] to the Novikov ring N = Nov(R)
consisting of all formal power series

∑
γ∈R nγt

γ in one variable t, with integral coefficients
nγ such that for any a ∈ R there are only finitely many γ > a with nγ 6= 0. We therefore
have a local coefficient Lξ system associated to ξ; and we define the Novikov homology
by Hj(X;Lξ). It is important that the Novikov ring N is a principal ideal domain and
that Hj(X;Lξ) is a finitely generated module over N . Now finally, bj(ξ) resp. qj(ξ) is
defined to be the minimal number of generators of the free part resp. of the torsion part
of Hj(X;Lξ), regarded as modules over N .

These numbers satisfy bj(ξ) ≤ bj(0) = bj and
∑n

j (−1)jbj(ξ) =
∑n

j (−1)jbj(0) = χ(X), the
Euler characteristic of X. The Novikov-Morse inequalities are now

bj(ξ) + qj(ξ) + qj−1(ξ) ≤ cj(ω) (5)

qj(ξ) +

j∑

k=0

(−1)j−kbk(ξ) ≤
j∑

k=0

(−1)j−kck(ω) (6)

for any closed 1-form ω of Morse-type and cohomology class ξ = [ω], and j = 0, 1, . . . , n.
See [Novikov-1981, Novikov-1982] for the origins of this theory.

Further applications of this theory include a signature theorem, symplectic circle actions,
and the Lusternik-Schnirelmann category of the manifold.

List of talks

1. Classical Morse theory

Since Novikov Morse theory generalizes classical Morse theory, it might be useful to give
first a review of Morse theory. Define the notion of a Morse function f : X → R and its
gradient vector field ω and gradient flow, its critical points, their non-degeneracy and their
index. Construct the Morse complex C•(f), with the critical points as basis, and define
the boundary operator ∂ via the gradient flow connections of critical points. Construct
the cell decomposition and handle decomposition associated of f . This leads to the Morse
inequalities between the Betti numbers bj of the manifold and the numbers of critical points
cj(f) of the Morse function as mentioned above.
References: [Bott-1982], [Bott-1988], [Matsumoto], [Milnor].

2. Closed 1-forms

The geometry of a Morse function f depends only on its differential ω = df . This may sug-
gest to extend Morse theory from exact 1-forms to closed 1-forms which are not necessarily
exact, — and this is what Novikov’s generalisation is about. Explain how circle-valued
Morse theory is a special case of this principle, proof [Farber, Lemma 2.1]. Give a quick
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reminder of DeRham cohomology and its isomorphism to singular cohomology with real
coefficients H∗(X;R). Explain the period homomorphism Perξ : H1(X;Z) → R associated
to ξ = [ω]. Define its rank and image group Γ ≤ R. Consider the covering manifold
associated to the kernel of the period homomorphism, where the pull-back of ω is exact.
Reference: [Farber, 2.1].

3. Novikov rings

Define the Novikov ring Nov(Γ) of an additive subgroup Γ of R. Describe its group of
units, explain that this is a principal ideal domain and its flatness properties. The Novikov
ring contains the group ring Z[Γ] and the inverses of some of its elements. Therefore, it
contains the corresponding localisation R(Γ). Explain that it is a principal ideal domain,
and that the Novikov ring is flat over R(Γ).
The construction of the universal Novikov complex works over Z[π]-algebras in which
certain square matrices are invertible. Show that R(Γ) (and hence the Novikov ring)
satisfies this condition. Explain that there is a universal ring for this situation, the Cohn
localisation. Other examples are given by the ring C, using transcendental numbers, and
the Novikov-Sikorav completion of the group ring.
References: [Farber, 1.2, 1.3, and 3.1].

4. Novikov homology

Explain local coefficient systems L, and homology with local coefficients H∗(X;L), and
the relation to the (co)homology of (universal) coverings. Introduce the local system Lξ

associated to a cohomology class ξ ∈ H1(X;R). Explain the notions of monodromy and
flatness of bundles. Define the Novikov (co)homology as H∗(X;Lξ).
Reference: [Farber, 1.4].

5. Novikov numbers

Define the Novikov Betti numbers bj(ξ) and the Novikov torsion numbers qj(ξ) of a closed
1-form ω resp. its cohomology class ξ = [ω] in three equivalent ways [Farber, 1.5.1–1.5.3].
Prove the main properties, in particular show that the Novikov Betti numbers are bounded
by the usual Betti numbers and are equal to the usual Betti numbers in case ξ = 0, and
that the Novikov Euler characteristic equals the usual Euler characteristic. Discuss some
complexes with two 1-cells and one 2-cell.
References: [Farber, 1.5 and 1.6].

6. The geometry of Novikov theory

A Riemannian metric on a manifold X associates to a closed 1-form ω a vector field and
thus a flow. (Do not mention that a symplectic form does the same. This will be important
later, but might be confusing at this time.) The flow lines of these vector fields may differ
from those of an exact 1-form in two ways: there may be closed orbits, and there may be
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homoclinic orbits. Give the intuitive idea behind the Novikov complex, which uses the lift
of the vector field and its flow to the covering determined by the 1-form, and explain how
one may try to use equivariant intersection numbers to define the Novikov complex.
Reference: [Farber, 2.2].

7. The universal Novikov complex I

Construct the universal complex in the rank 1 case. While not logically necessary, it might
be helpful to see this before the general case. It uses the chain collapse operation. Make
sure to emphasize the appearance of the localisation.
Reference: [Farber, 4.1 and 4.2].

8. The universal Novikov complex II

The purpose of this and the following talk is to construct the universal complex in the
general case. For motivation, refer to the rank 1 case as often as possible.
Reference: [Farber, first part of 4.3].

9. The universal Novikov complex III

See previous talk.
Reference: [Farber, second part of 4.3].

10. The Novikov inequalities

The existence of a geometric model for the chain complex of a manifold leads to a connection
between the geometry and the homotopy type of the underlying manifold. Mention the
analogous situation for the cellular complex of a CW-decomposition. In the case at hand,
one obtains a relationship between the number of singularities of the closed 1-form ω and
the Novikov-Betti and Novikov torsion numbers bj(ξ) resp. qj(ξ) of its cohomology class
ξ = [ω], as stated above.
Reference: [Farber, 1.1, 2.3, perhaps 3.2 and 3.3].

11. Examples

At this time of the program, everybody will be curious whether the theory can be applied
to some non-trivial examples. Give three of these to illustrate the techniques learned so
far: mapping tori (again), 3-manifolds obtained by surgery along connected sums of trefoil
knots, and 3-manifolds obtained by adding a handle to a lens space.
Reference: [Farber, 3.4].
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12. Symmetries I: equivariant Novikov theory

Discuss basic 1-forms for actions of a compact Lie group on X. Define equivariant Novikov
numbers as the Novikov numbers of the Borel quotient. Prove the equivariant Novikov
inequalities, asserting that the equivariant Morse data dominate the equivariant Novikov
data.
References: [Farber, 7.1, 7.2].

13. Symmetries II: symplectic circle actions

On a symplectic manifold X, the symplectic form induces a correspondence between closed
1-form and symplectic vector fields. In particular, a symplectic circle action determines a
symplectic vector field and hence a closed 1-form. This is to be thought of as a generalised
moment map, being the differential of the moment map in the case of a Hamilton action.
Prove that in this situation, the equivariant Novikov Betti numbers of the generalised
moment map are determined by the Betti numbers of the fixed point set.
Reference: [Farber, 7.3].

14. Symmetries III: a signature theorem

Prove that the signature of a symplectic manifold with a symplectic circle action which
has only isolated singularities is determined by the equivariant Novikov numbers of its
generalised moment map.
Reference: [Farber, 7.4].

15. Exactness of the Novikov inequalities

If π1(X) is infinite cyclic, and the dimension n of the manifold X is at least 6, there is in
every cohomology class ξ a form ω such that the first of the Novikov-Morse inequalities is
indeed an equality.
This generalises Smale’s theorems which lead to the proof of the Poincare conjecture in
high dimensions. And it re-proves the Brouwder-Levine result which characterises mapping
tori of simply-connected manifolds.
The proof of the main theorem would take too long, so emphasize the interrelationship of
the results.
Reference: [Farber, 8.1].

6



16. Lusternik-Schnirelmann category for 1-forms

The Lusterik-Schnirelmann category cat(X) of a space X is the minimal number l such that
there are l+1 subsets F0, F1, . . . , Fl covering X with null-homotopic inclusions hk : Fk → X.
The connection to Morse theory is that any Morse function f : X → R on a manifold X
must have at least cat(X) + 1 critical points.
Given a 1-form ω on X one can replace the condition of h0 being null-homotopic by the
weaker condition that for the path integrals

∫
γx

ω ≤ −N holds for any x ∈ F0 and any

positive number N ; here γx(t) = h0(x, t) is the track curve of the point x under the
homotopy h0 with h0(x, 0) = x. This new number cat(X, ξ) depends on the homology
class ξ = [ω], and one has cat(X, ξ) ≤ cat(X). Explain and prove [Farber, Theorem 10.14].
References: [Farber, 10.1–10.4].
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3 Schedule

Arrival: Sunday, September 10th, 2006, before dinner at 18:00,
bus from Bonn to Steinfeld departs at 16:00 from Beringstrasse.

Daily schedule: Monday Tuesday Wednesday Thursday Friday
Breakfast : 08:00 - 09:00
Talk : 09:00 - 10:00 1 5 9 11 15
Talk : 10:30 - 11:30 2 6 10 12 16
Lunch : 12:00 - 13:30
Coffee : 14:30 - 15:00
Talk : 15:00 - 16:00 3 7 - 13
Talk : 16:30 - 17:30 4 8 - 14
Dinner : 18:00 - 19:00

Wednesday afternoon : free or excursion.

Departure: Friday, September 15th, 2006 after lunch,
bus from Steinfeld to Bonn departs at 14:00.

4 Application

Accommodation
Kloster Steinfeld is an active monastery, founded around the year 920 A.D., located in
a very beautiful region to the west of Bonn. It is known for its organ and its Sunday
afternoon concerts. It has a boarding school and offers seminar rooms and accommodation
for external seminars as ours. Most rooms are double rooms; some rooms have their own
bathroom and shower. We will be offered breakfast, lunch and dinner.

Transportation
There will be a bus from Bonn to Kloster Steinfeld (leaving on Sunday, September 10th,
2006, at 16:00 from Beringstrasse 1), and back from Kloster Steinfeld to Bonn (leaving
Kloster Steinfeld on Friday, September 15th, 2006, after lunch at 14:00). The bus ride
takes about 90 minutes.

Costs
The costs of 220,– Euro for the week include accommodation in a double room, the meals
and the transportation from Bonn to Steinfeld (Sunday) and back (Friday). If you will
occupy a single room, please add 50,– Euro.
For fellows of the GRK 1150 the costs, except for the single room surcharge of 50,– Euro,
are covered.

Application
To apply, please send an email to the office of the GRK 1150 (grk1150@math.uni-bonn.de),
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containing the following:
- your name,
- your university,
- your supervisor,
- two talks from the program above you are willing to prepare,
- whether you need a single room,
- whether you will use the bus.

The deadline is June 26th, 2006.

Questions
For questions about the organisation contact Frau S. George at the office of the GRK 1150
(email: grk1150@math.uni-bonn.de).
For questions concerning the talks contact Prof. Bödigheimer (email: boedigheimer@math.uni-
bonn.de) or Dr. Szymik (email: markus.szymik@ruhr-uni-bochum.de).
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