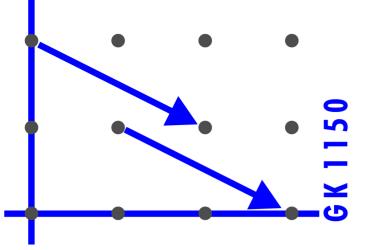
HOMOTOPY & COHOMOLOGY



Young Women in Topology

Bonn, June 25 - 27, 2010

The Homological Stability of Symmetric Groups with Twisted Coefficients

Öznur Albayrak

Definitions & Statements

In 1960, Nakaoka showed the homological stability for symmetric groups. Later Kerz has given a simple proof for Nakaoka's theorem and we generalize it to twisted coefficients.

Theorem 1 Let V be a coefficient system of degree k (see below). Then the inclusion map $\iota : \Sigma_{n-1} \to \Sigma_n$ induces an isomorphism on the homology for m < n/2 - k:

$$\iota_*: H_m(\Sigma_{n-1}; V(\underline{n-1})) \xrightarrow{\cong} H_m(\Sigma_n; V(\underline{n})).$$
(1)

Definition 1 Let \mathcal{F} be the category of finite sets and injective maps. We define a functor $\mathbf{D} : \mathcal{F} \to \mathcal{F}$ which is a disjoint union with one point. For an arbitrary finite set T, the image $\mathbf{D}(T)$ will be denoted by \dot{T} in order to simplify the notation.

Definition 2 We define a coefficient system V to be a functor $V : \mathcal{F} \to Ab$ where Ab is the category of abelian groups. The suspension sV of coefficient system V is defined by $sV = V \circ \mathbf{D}$, i.e., $sV(T) = V(\dot{T})$ for any finite set T.

For any finite set T the inclusion $T \hookrightarrow \dot{T}$ induces a natural transformation $\mu^V(T) : V(T) \to sV(T)$. We denote the cokernel of the natural transformation μ^V by ΔV .

Similar to van der Kallen [Ka], we introduce the notion of degree inductively.

Definition 3 If the degree is ≤ -1 then the coefficient system is the zero. We say that V is a coefficient system of degree $\leq k$ where $k \geq 0$ if sV is splitting and ΔV is a system of degree k - 1. Here splitting means the splitting of the short exact sequence as Σ_T -modules:

$$0 \to V(T) \to sV(T) \to \triangle V(T) \to 0$$
⁽²⁾

Lemma 1 V is coefficient system with degree ≤ 0 if and only if V is constant, i.e. V is isomorphic to a functor which is given by $T \mapsto A$ on objects and $(S \hookrightarrow T) \mapsto id_A$ on morphisms, where A is a fixed abelian group.

Example 1 Let \mathbb{F} be a field and T be an arbitrary finite set. If we define a coefficient system $V(T) := \mathbb{F}(T)$ where $\mathbb{F}(T)$ is the free abelian group generated by the elements of T, then this coefficient system has degree ≤ 1 .

Definition 4 For a finite set T, let X_T be a semi-simplicial set with all injective maps $\{0, 1, ...p\} \hookrightarrow T$ as p-simplices. We denote the augmented chain complex of X_T by $C_*(T)$.

- The symmetric group Σ_T acts transitively on the simplices.
- In Σ_T , the stabilizer of a *p*-simplex σ is $\Sigma_{T_{\sigma}}$ where T_{σ} is $T {\sigma(0), ..., \sigma(p)}$. Therefore one gets an

Sketch of the theorem part I

Theorem 2 (Kerz [Ke]) The homology of C(T) vanishes except in degree |T| - 1.

We can extend this complex to an acyclic one, $\widehat{C}(T)$:

$$0 \to ker \ d \to C_{|T|-1}(T) \xrightarrow{d} C_{|T|-2}(T) \to \dots \to C_0(T) \to C_{-1}(T) \to 0$$

For the proof of the Stability Theorem(1) we replace our permutation group Σ_n with permutation group Σ_T of an arbitrary set T, in order to use category theory.

Let $S \subset T$ be objects in \mathcal{F} with |T| = |S| + 1. We denote the relative group homology $H_m(\Sigma_T, \Sigma_S; V(T), V(S))$ by $Rel_m^V(T, S)$. Because of the long exact sequence of relative group homology:

$$. \longrightarrow Rel_{m+1}^{V}(T,S) \longrightarrow H_m(\Sigma_S;V(S)) \xrightarrow{\iota_*} H_m(\Sigma_T;V(T)) \longrightarrow Rel_m^{V}(T,S) \longrightarrow ...$$

the theorem reduces to prove $Rel_m^V(T, S) = 0$ for m < |T|/2 - k + 1.

We prove this by induction on the degree of the coefficient system and homological degree.

Induction beginning: degree -1 is obvious.

Inductive assumption Let V be a coefficient system of degree k_V then:

- $H_m(\Sigma_T, \Sigma_S; V(T), V(S)) = 0$, for $m < |T|/2 k_v + 1$ with $k_V < k$;
- $H_s(\Sigma_T, \Sigma_S; V(T), V(S)) = 0$, for s < m and $s < |T|/2 k_V + 1$ with $k_V = k$.

For the sets $\dot{S} \subset \dot{T}$, the inclusion map $\iota : \Sigma_{\dot{S}} \to \Sigma_{\dot{T}}$ leads to a ι - linear map on the coefficient modules $V(\dot{S}) \to V(\dot{T})$. For the semi-simplicial sets $X_{\dot{S}}$ and $X_{\dot{T}}$, we have a bijection between the set of $\Sigma_{\dot{S}}$ -orbits of p-simplices in $X_{\dot{S}}$ and the set of $\Sigma_{\dot{T}}$ -orbits of p-simplices in $X_{\dot{T}}$ for $p \leq |\dot{S}| - 1$. Choose representatives of p-simplices. Then for the acyclic augmented chain complexes: $\hat{C}_*(\dot{S}), \hat{C}_*(\dot{T})$, there is a spectral sequence which in our case is:

$$E_{pq}^{1} \cong H_{q}((\Sigma_{\dot{T}})_{\sigma_{p}}, (\Sigma_{\dot{S}})_{\sigma_{p}}; V(\dot{T}), V(\dot{S})) \Longrightarrow H_{p+q}(\Sigma_{\dot{T}}, \Sigma_{\dot{S}}, \widehat{C}(X^{\dot{T}}, V(\dot{T})), \widehat{C}(X^{\dot{S}}, V(\dot{S}))$$
(3)

where σ_p is the representative of *p*-simplices. The spectral sequence converges to zero since $\widehat{C}(\dot{T})$ and $\widehat{C}(\dot{S})$ are acyclic. Also one can compute that the differential $d_{pq}^1 : E_{p,q}^1 \to E_{p-1,q}^1$ is zero if *p* is odd.

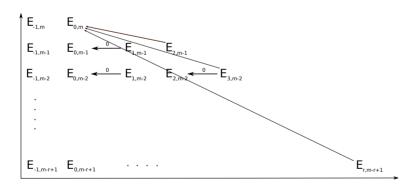
The stabilizer of a 0-simplex in $\Sigma_{\dot{T}}$; $(\Sigma_{\dot{T}})_{\sigma_0}$ is Σ_T and we take the stabilizer of the (-1)-simplex in a group by itself. Hence the differential $d^1 : E^1_{0,m} \to E^1_{-1,m}$ is

isomorphism:

 $C_p(T) \cong \mathbb{Z}\Sigma_T \otimes_{\mathbb{Z}\Sigma_{T_{\sigma}}} \mathbb{Z}.$

 $H_m(\Sigma_T, \Sigma_S; V(\dot{T}), V(\dot{S})) \longrightarrow H_m(\Sigma_{\dot{T}}, \Sigma_{\dot{S}}; V(\dot{T}), V(\dot{S})).$

Sketch of the theorem part II



Since the spectral sequence converges to zero, nothing survive to the E^{∞} -term. Moreover the groups $E^{1}_{r,m-r+1} = H_{m-r+1}((\Sigma_{\dot{T}})_{\sigma_{r}}, (\Sigma_{\dot{S}})_{\sigma_{r}}; V(\dot{T}), V(\dot{S})) \cong Rel^{s^{r+1}V}_{m-r+1}(\dot{T}_{\sigma_{r}}, \dot{S}_{\sigma_{r}})$ and $E^{1}_{r-1,m-r+1}$ are zero by induction hypothesis $(s^{r+1}V)$ has the same degree with V). Hence one can easily see that $d^{1}: E^{1}_{0,m} \to E^{1}_{-1,m}$ is an isomorphism:

Lemma 2 Suppose the induction assumption holds and V is a coefficient system of degree k. Let $S \subset T$ be objects in \mathcal{F} with |T| = |S| + 1. Then for m < |T|/2 - k + 1, $Rel_m^{sV}(T,S) \longrightarrow Rel_m^V(\dot{T},\dot{S})$ is an isomorphism.

The following lemma follows from a diagram chasing and the fact that the conjugation maps of permutation group induces identity in homology:

Lemma 3 Consider an inclusion $Q \to R$ in the category \mathcal{F} where |R| = |Q| + 1 and let $\dot{Q} = S$, $\dot{R} = T$. If the homomorphisms;

$$g_m^{RQ} : Rel_m^V(R, Q) \longrightarrow Rel_m^V(T, S)$$
$$g_m^{TS} : Rel_m^V(T, S) \longrightarrow Rel_m^V(\dot{T}, \dot{S})$$

are surjective, then the relative group homology $Rel_m^V(\dot{T}, \dot{S})$ is zero.

Lemma 4 Suppose the induction assumption holds, then the morphisms g_m^{RQ} and g_m^{TS} are surjective for m < |T|/2 - k + 1.

We have a short exact sequence of coefficient systems; $0 \to V \to sV \to \Delta V \to 0$ which leads to a long exact sequence of relative homology;

$$\ldots \to Rel_m^V(T,S) \xrightarrow{\mu_*} Rel_m^{sV}(T,S) \to Rel_m^{\triangle V}(T,S) \to \ldots$$

By the induction assumption, the last group is zero: μ_* is surjective. If we compose μ_* with the surjective map $Rel_m^{sV}(T,S) \xrightarrow{d^1} Rel_m^V(\dot{T},\dot{S})$ in Lemma(2), the composition $g_m^{TS} : Rel_m^V(T,S) \longrightarrow Rel_m^V(\dot{T},\dot{S})$ will be surjective for m < |T|/2 - k + 1. We use a similar approach for g_m^{RQ} .

Proof of the Stability Theorem 1 The natural map $Rel^V_*(T, S) \longrightarrow Rel^{sV}_*(T, S)$ is injective because sV is splitting as in equation(2). Moreover from Lemma(2) for m < |T|/2 - k + 1,

$$Rel_m^{sV}(T,S) \longrightarrow Rel_m^V(\dot{T},\dot{S})$$

is injective as well. Moreover $Rel_m^V(\dot{T}, \dot{S}) = 0$, as a corollary of Lemmas(3) and (4). Therefore considering the composition of those two injective maps, $Rel_m^V(T, S) = 0$.

Examples and Applications

Lemma 5 Let V and W be coefficient systems of degree k and m, respectively. Then $V \oplus W$ is a coefficient system of degree $\leq max(k,m)$ and $V \otimes W$ is a coefficient system of degree $\leq k + m$.

Lemma 6 Suppose \mathbb{F} is a field and X is a c-connected pointed space and let $V_m^X(T) := H_m(X^T; \mathbb{F}), m > 0$ then the degree of V_m^X is $\leq m - c$.

As an application we study the Borel construction $B_n(X) := E \Sigma_n \times_{\Sigma_n} X^n$. There is a Leray-Serre spectral sequence of $B_n(X)$:

$$E_{pq}^{2} = H_{p}(\Sigma_{n}, H_{q}(X^{n}; \mathbb{F})) \Longrightarrow H_{p+q}(E\Sigma_{n} \times_{\Sigma_{n}} X^{n})$$

and we have another one for $B_{n-1}(X)$ as well. Hence we can apply the comparison theorem of spectral sequences and we give a new proof of the following theorem:

Theorem 3 $H_m(B_{n-1}(X)) \to H_m(B_n(X))$ is an isomorphism if m < n/2.

Furthermore we hope to prove the homological stability of configuration spaces of smooth, connected, noncompact manifolds. Let $F_n(M)$ be the space of ordered configurations of n points. There is a free action of Σ_n on $F_n(M)$, permutes the points. $C_n(M) = F_n(M)/\Sigma_n$, there is a map $C_n(M) \to C_{n+1}(M)$ adding a point "near infinity" that is well-defined up to homotopy. Segal has shown that $C_n(M)$ satisfy homological stability but can one show it via Theorem(1)?

References

- [B] S. Betley, Twisted homology of symmetric groups, Proc. of AMS, 130, (2002), S. 3439-3445.
- [Iv] N. Ivanov, On the homology stability for Teichmller modular groups: Closed surfaces and twisted coefficients. In Mapping class groups and moduli spaces of Riemann surfaces, Contemp. Math., AMS, Providence, RI 150, (1993), 149-194.
- [Ke] M. Kerz, The complex of words and Nakaoka stability, Homology, Homotopy and Applications, 7, (2005), 77-85.
- [Ka] **W. van der Kallen**, *Homology stability for linear groups*, Invent. Math. **60**, (1980), no. 3, 269-295.
- [N] M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math.
 (2) 70, (1960), 16-62.
- [S] G.B. Segal, The topology of spaces of rational functions, Acta Math. 143, (1979), 39-72.

Advisors: Prof. Dr. C. F. Bödigheimer, Dr. J. Ebert Universität Bonn