HOMOTOPY & COHOMOLOGY

Young Women in Topology

Bonn, June 25 - 27, 2010

Some computations on homology of moduli spaces of surfaces Rui Wang

Factorable normed categories

Let \mathscr{C} be a small category and \mathscr{M} be its set of morphisms. A **norm** on \mathscr{C} is a map $N : \mathscr{M} \to \mathbb{N}$ satisfying

(N1) $N(g) = 0 \iff g$ is an identity morphism

(N2) $N(g_1 \circ g_2) \leq N(g_1) + N(g_2)$, if g_1, g_2 are composable

For example, a normed group can be seen as a normed category with one object and with the group elements as morphisms. Our motivating example is the category of pairings Λ_p . Its objects are all fixedpoint-free involutions λ in the symmetric group \mathfrak{S}_{2p} ; and for any two objects $\lambda_1, \lambda_2 \in \mathbf{A}_p$, there is exactly one morphism $\tau = \lambda_2 \lambda_1^{-1} : \lambda_1 \longrightarrow \lambda_2$. We define the norm $N = N_{\Lambda_p}$ on Λ_p to be $N_{\Lambda_p}(\lambda_2 \lambda_1) = \frac{1}{2} N_{\mathfrak{S}_{2p}}(\lambda_2 \lambda_1)$, where $N_{\mathfrak{S}_{2p}}$ is the word length norm on \mathfrak{S}_{2p} with respect to the set of all transpositions.

Consider the **bar complex** $B_*(\mathscr{C})$ of \mathscr{C} . $B_q(\mathscr{C})$ is the free \mathbb{Z} -module generated by q-tuples of composable morphisms $\gamma = (g_q, \ldots, g_1)$, where the elements g_i are not identity morphisms.

We extend the norm N to generators of $B_*(\mathscr{C})$ by defining $N(\gamma) = \sum_{i=1}^q N(g_i)$. The norm filtration $\mathcal{F}_h B_*(\mathscr{C})$ is the free \mathbb{Z} -submodule of $B_*(\mathscr{C})$ generated by all γ with $N(\gamma) \leq h$. The complex of successive quotients $\mathcal{N}_*(\mathscr{C};h) = \mathcal{F}_h B_*(\mathscr{C})/\mathcal{F}_{h-1} B_*(\mathscr{C})$ is called the **norm complex at norm** h of \mathscr{C} . In other words, it is the h-th column of the E^0 -term of the spectral sequence corresponding to the norm filtration. The induced boundary operator ∂' , that is, the differential d^0 , is given by

$$d_i(g_q, \dots, g_1) = \begin{cases} (g_q, \dots, g_{i+1} \circ g_i, \dots, g_1) & \text{if } N(g_{i+1} g_i) = N(g_{i+1}) + N(g_i), \\ 0 & \text{if } N(g_{i+1} g_i) < N(g_{i+1}) + N(g_i). \end{cases}$$

To study the properties of $\mathcal{N}_*(\mathscr{C};h)$, we generalize the concept of factorability for a normed group introduced by B. Visy ([V]) to normed categories: We call \mathscr{C} factorable with respect to the norm N, if there is a map $\eta: \mathcal{M} \to \mathcal{M} \times \mathcal{M}, g \mapsto \eta(g) =: (\overline{g}, g')$, such that for all $g \in \mathcal{M}$ and $t \in \mathcal{M}$ with N(t) = 1

(F1)
$$N(g') = 1$$
 (F2) $\overline{g} \circ g' = g$ (F3) $N(\overline{g}) + N(g') = N(g)$
(F4) $N(\eta(g \circ t)) = N(g) + N(t) \iff N((\overline{g} \circ \overline{g' \circ t}, (g' \circ t)')) = N(g) + N(t)$
(F5) $N(\eta(g \circ t)) = N(g) + N(t) \implies (g \circ t)' = (g' \circ t)'$

Following the method from B. Visy on factorable normed groups, we have the following result:

Theorem. If \mathscr{C} is a factorable category with respect to the norm N, then the homology of the complex $\mathcal{N}_*(\mathscr{C};h)$ is concentrated in the top degree $h: H_q(\mathcal{N}_*(\mathscr{C};h)) = 0$, if q < h.

Any factorable group is a factorable category, and any category \mathscr{C} with the *constant norm*-i.e. the norm N with N(q) = m > 0 for every $q \neq$ identity-is factorable. Another example is given by the free category F(Q) generated by a quiver Q, with the word length norm with respect to the set of arrows of Q. Our example, the category of pairings, is also factorable. Here for $\tau = \lambda_2 \lambda_1^{-1}$,

Application to moduli spaces

The norm filtrations of $B_*(\mathfrak{S}_p)$ and $B_*(\Lambda_p)$ have important connections with moduli spaces of surfaces and can be used to compute their homology groups. Denote by $\mathfrak{Mod} = \mathfrak{Mod}_{a,1}^m$ (resp. $\mathfrak{N} = \mathfrak{N}_{a,1}^m$) the moduli space of Riemann surfaces (resp. non-orientable (Kleinian) surfaces) of genus $g \ge 0$ with one boundary curve and $m \geq 0$ permutable punctures. Since the relation between $B_*(\mathfrak{S}_p)$ and \mathfrak{Mod} is already better known, here we describe \mathfrak{N} in more detail. Put h = g + m + 1 in this case.

Using the Hilbert uniformization method, Bödigheimer (see [E] and [Z]) found a finite bi-complex $NP = NP_{q,1}^{m}$ with a subcomplex NP' such that $NP \setminus NP'$ is an open manifold of dimension 3h and homotopy equivalent to \mathfrak{N} . Surprisingly, the cells of NP are given by q-tuples $\Sigma = (\tau_q, \ldots, \tau_1)$ of composable morphisms in the category of pairings Λ_p , satisfying

(M1) τ_1 is a morphism from λ_0 (M2) $N_{\mathbf{A}_n}(\Sigma) \leq h$ (M3) $N_{\mathfrak{S}_{2n}}(\tau_q \cdots \tau_1 \cdot \lambda_0 \cdot J) \geq 2(p-m-1),$

where λ_0 and J denote the pairings $(2p-1,2p)\cdots(2i-1,2i)\cdots(1,2)$ and $(2p-1,2p-2)\cdots(2i,2i+1)\cdots(2$ $(1) \cdots (2,3)(1,2p)$ respectively. For the parameters p and q we have $0 \le p \le 2h$ and $0 \le q \le h$. The cells violating equality in (M2) or (M3) correspond to "degenerate" surfaces. Note that NP/NP' is equivalent to the one-point-compactification of \mathfrak{N} ; furthermore, \mathfrak{N} is non-orientable.

The boundary operator $\partial = \partial' + (-1)^q \partial''$ of NP decomposes into a vertical part ∂' and a horizontal part ∂'' . It turns out that ∂' is precisely the boundary operator of the norm complex of the category of pairings. Thus, the *p*-th column of the E^0 -term of the spectral sequence associated to the double complex $\mathbb{NQ}_{\bullet\bullet}$ of cellular chains of NP_{••}/NP'_{••} is exactly the norm complex $\mathcal{N}(\Lambda_p; h)$.

Using the above theorem on the homology of $\mathcal{N}_*(\Lambda_p; h)$, we conclude that the vertical homology $E_{p,q}^1 =$ $H_q(\mathbb{NQ}_{p,\bullet},\partial')$ is concentrated in the top degree q = h; thus the E^1 -term is a chain complex with differential induced by ∂'' , and the spectral sequence collapses with $E^2 = E^{\infty}$. Furthermore, parallel to the case of \mathfrak{Mod} , under the orientation coefficient system \mathcal{O} , we have the following result:

Theorem. The vertical homology $E_{p,q}^1 = H_q(\mathbb{NQ}_{p,\bullet}; \mathcal{O})$ is concentrated in the top degree q = h.

Again, the E^1 -term is a chain complex with differential induced by ∂'' , and the spectral sequence collapses with $E^2 = E^{\infty}$.

Let $V_n^N(h) = H_h(\mathbb{NQ}_{p,\bullet}, \partial') = \ker(\partial' : \mathcal{N}(\Lambda_p; h) \to \mathcal{N}(\Lambda_p; h-1))$. This is a similar construction as the Visy complex for symmetric groups. Condition (M3) selects the correct summand of $\mathbb{NQ}_{\bullet\bullet}$, whose decomposition into summands corresponds to moduli spaces $\mathfrak{N}_{q,1}^m$, one for each (g,m) with given h = g + m + 1. The direct summand of $V_n^N(h)$ for a given $m \leq h$ is denoted by $V_{\bullet}(h,m)$. Due to Poincaré duality the \mathbb{Z}_2 homology of $V_{\bullet}(h,m)$ is the \mathbb{Z}_2 -cohomology of the moduli space $\mathfrak{N}_{g,1}^m$. To obtain the integral (co)homology

 $\tau' := (\lambda_1(k), \lambda_1(\tau^{-1}(k)))(k, \tau^{-1}(k))$

with k being the maximal element not fixed by τ .

Homology computations (I)

The tables below show parts of the integral homology of \mathfrak{M} for h = 6, and of \mathfrak{N} for h = 3, 4, 5 and $\mathfrak{N}_{1,1}^0$. The list of the torsion summands of the forms $\mathbb{Z}_{2^k}(1 \le k \le 6)$, $\mathbb{Z}_{3^k}(1 \le k \le 4)$, $\mathbb{Z}_{5^k}(k = 1, 2)$, \mathbb{Z}_7 , \mathbb{Z}_{11} , \mathbb{Z}_{13} is complete.

In all tables, $\beta_n(\ell)$ is the *n*-th mod- ℓ Betti number and $* \in \{11, 13, 17, 19\}, * \in \{7, 11, 13, 17, 19\},$ $\star \in \{3, 5, 7, 11, 13, 17, 19\}$ —the corresponding Betti numbers are equal.

M	n	Torsion	$\beta_n(2)$	$\beta_n(3)$	$\beta_n(5)$	$\beta_n(7)$	$\beta_n(*)$
	0		1	1	1	1	1
	1		0	0	0	0	0
	2	\mathbb{Z}_2	2	1	1	1	1
	3	$\mathbb{Z}_2, \mathbb{Z}_4, \mathbb{Z}_3, \mathbb{Z}_7$	4	2	1	2	1
\mathbf{m}^0	4	$\mathbb{Z}_2^2, \mathbb{Z}_3^2$	4	3	0	1	0
$m_{3,1}$	5	$\mathbb{Z}_2, \mathbb{Z}_3$	4	4	1	1	1
	6	\mathbb{Z}_2^3	5	2	1	1	1
	7	\mathbb{Z}_2	4	0	0	0	0
	8		1	0	0	0	0
	9		1	1	1	1	1
	0		1	1	1	1	1
	1	$\mathbb{Z}_2^2, \mathbb{Z}_5$	2	0	1	0	0
	2	\mathbb{Z}_2^2	5	1	2	1	1
	3	\mathbb{Z}_2^4	9	3	3	3	3
$\mathfrak{M}^2_{2,1}$	4	$\mathbb{Z}_2^5, \mathbb{Z}_3^3$	10	4	1	1	1
	5	$\mathbb{Z}_2^4, \mathbb{Z}_3$	11	6	2	2	2
	6	\mathbb{Z}_2^3	9	3	2	2	2
	7	\mathbb{Z}_2	4	0	0	0	0
	8		1	0	0	0	0
	0		1	1	1	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	\mathbb{Z}_2	2	1	1	1	1
	\mathbb{Z}_2^3	4	0	0	0	0	
$\mathfrak{M}^4_{1,1}$	3	\mathbb{Z}_2^3	8	2	2	2	2
	4	\mathbb{Z}_2^2	8	3	3	3	3
	5	\mathbb{Z}_2	5	2	2	2	2
	6		2	1	1	1	1
	0		1	1	1	1	1
	1		1	1	1	1	1
\mathfrak{M}^{6}	2	\mathbb{Z}_2	1	0	0	0	0
••••0,1	3	\mathbb{Z}_2	2	0	0	0	0
	4	\mathbb{Z}_3	1	1	0	0	0
	5		0	1	0	0	0

N	n	Torsion	$\beta_n(2)$	$\beta_n(3)$	$\beta_n(5)$	$\beta_n(\mathbf{x})$
	0		1	1	1	1
	1	\mathbb{Z}_2^2	2	0	0	0
	2	$\mathbb{Z}_2^{\overline{4}}$	6	0	0	0
\mathbf{m}^0	3	$\mathbb{Z}_2^{\overline{4}}, \mathbb{Z}_4^3, \mathbb{Z}_5$	12	1	2	1
$\mathfrak{I}_{4,1}$	4	$\mathbb{Z}_2^8, \mathbb{Z}_4, \mathbb{Z}_3$	17	2	2	1
	5	$\mathbb{Z}_2^{\overline{8}}, \mathbb{Z}_3$	17	2	0	0
	6	\mathbb{Z}_2^2	10	1	0	0
	7	_	3	1	1	1
	0		1	1	1	1
	1	\mathbb{Z}_2^4	4	0	0	0
	2	\mathbb{Z}_2^8	12	0	0	0
\mathbf{m}^1	3	$\mathbb{Z}_2^8, \mathbb{Z}_4^3$	23	4	4	4
$n_{3,1}$	4	$\mathbb{Z}_2^{11}, \mathbb{Z}_4$	29	6	6	6
	5	\mathbb{Z}_2^8	23	3	3	3
	6	\mathbb{Z}_2^-	9	0	0	0
	7		1	0	0	0
	0		1	1	1	1
	1	\mathbb{Z}_2^4	4	0	0	0
	2	$\mathbb{Z}_2^{\overline{7}}$	11	0	0	0
$\mathfrak{N}^2_{2,1}$	3	$\mathbb{Z}_2^{\overline{7}}, \mathbb{Z}_4$	20	5	5	5
,	4	$\mathbb{Z}_2^{\overline{7}}$	21	6	6	6
	5	$\mathbb{Z}_2^{\overline{2}}$	11	2	2	2
	6		2	0	0	0
	0		1	1	1	1
$\mathfrak{N}^3_{1,1}$	1	\mathbb{Z}_2^3	4	1	1	1
	2	\mathbb{Z}_2^5	8	0	0	0
	3	\mathbb{Z}_2^2	10	3	3	3
	4	\mathbb{Z}_2	7	4	4	4
	5		2	1	1	1

of $\mathfrak{N}_{a,1}^m$, we use the orientation coefficient system $\mathcal{O}_{a,1}$

The chain complex $V_{\bullet}(h,m)$ is still large, but small enough for computations using the computer.

Homology computations (II)

N	n Torsion	$\beta_n(2)$	$\beta_n(\star)$
	0	1	1
	$1 \mathbb{Z}_2$	2	1
$\mathfrak{N}^4_{0,1}$	$2 \mathbb{Z}_2^2$	3	0
,	$3 \mathbb{Z}_4$	3	0
	4	1	0
	0	1	1
	$1 \mathbb{Z}_2^3$	3	0
	$2 \mathbb{Z}_2^5$	8	0
$\mathfrak{N}^{0}_{3,1}$	$3 \mathbb{Z}_{2}^{3}, \mathbb{Z}_{4}^{2}$	12	2
	$4 \mathbb{Z}_{2}^{2}$	9	2
	$5 \mathbb{Z}_2$	4	1
	6	1	0

	N	n	Torsion	$\beta_n(2)$	$\beta_n(\star)$
		0		1	1
		1	\mathbb{Z}_2^3	3	0
	\mathbf{m}^1	2	\mathbb{Z}_2^4	7	0
	$n_{2,1}$	3	\mathbb{Z}_2^2	9	3
		4	\mathbb{Z}_2	5	2
		5		1	0
		0		1	1
	$\mathfrak{N}^2_{1,1}$	1	\mathbb{Z}_2^3	4	1
		2	\mathbb{Z}_2^4	7	0
		3		6	2
		4		2	2
		0		1	1
		1	\mathbb{Z}_2	2	1
	$\mathfrak{N}^3_{0,1}$	2	\mathbb{Z}_2	2	0
	. /				

N	n	Torsion	$\beta_n(2)$	$\beta_n(\star)$
	0		1	1
\mathbf{m}^0	1	\mathbb{Z}_2^2	2	0
$n_{2,1}$	2	\mathbb{Z}_2	3	0
	3		2	1
	0		1	1
\mathbf{m}^1	1	\mathbb{Z}_2^2	3	1
$n_{1,1}$	2	\mathbb{Z}_2	3	0
	3		1	0
	0		1	1
$\mathfrak{N}^2_{0,1}$	1	\mathbb{Z}_2	2	1
	2		1	0
	0		1	1
$\mathfrak{N}^{0}_{1,1}$	1	\mathbb{Z}_2	2	1
,	2		1	0

References

[A]**J.** Abhau, Die Homologie von Modulräumen Riemannscher Flächen - Berechnungen für $q \leq 2$. Diplom thesis, Bonn (2005).

1

0

- [ABE] J. Abhau, C.-F. Bödigheimer, R. Ehrenfried, The homology of the mapping class group $\Gamma_{2,1}$ for surfaces of genus 2 with a boundary curve. Geometry & Topology Monographs, 14, (2008), 1-25.
- [E]J. Ebert, Hilbert-Uniformisierung Kleinscher Flächen. Diplom thesis, Bonn (2003).

|3|

- [V]**B.** Visy, Homology of Normed Groups and of Graph Complexes, applied to Moduli Spaces. Ph.D. thesis, in preparation.
- $[\mathbf{Z}]$ M. Zaw, The moduli space of non-classical directed Klein surfaces. Math. Proc. Camb. Phil. Soc., 136, (2004), 599-615.

Advisor: Prof. Dr. Bödigheimer Universität Bonn