HOMOTOPY \& COHOMOLOGY

Young Women in Topology

Bonn, June 25-27, 2010

Some computations on homology

of moduli spaces of surfaces
Rui Wang

Factorable normed categories

Let \mathscr{C} be a small category and \mathscr{M} be its set of morphisms. A norm on \mathscr{C} is a map $N: \mathscr{M} \rightarrow \mathbb{N}$ satisfying (N1) $N(g)=0 \Longleftrightarrow g$ is an identity morphism
(N2) $N\left(g_{1} \circ g_{2}\right) \leq N\left(g_{1}\right)+N\left(g_{2}\right)$, if g_{1}, g_{2} are composable
For example, a normed group can be seen as a normed category with one object and with the group elements as morphisms. Our motivating example is the category of pairings $\mathbf{\Lambda}_{p}$. Its objects are all fixed-point-free involutions λ in the symmetric group $\mathfrak{S}_{2 p}$; and for any two objects $\lambda_{1}, \lambda_{2} \in \Lambda_{p}$, there is exactly one morphism $\tau=\lambda_{2} \lambda_{1}^{-1}: \lambda_{1} \longrightarrow \lambda_{2}$. We define the norm $N=N_{\Lambda_{p}}$ on Λ_{p} to be $N_{\Lambda_{p}}\left(\lambda_{2} \lambda_{1}\right)=\frac{1}{2} N_{\mathfrak{S}_{2 p}}\left(\lambda_{2} \lambda_{1}\right)$, where $N_{\mathfrak{S}_{2 p}}$ is the word length norm on $\mathfrak{S}_{2 p}$ with respect to the set of all transpositions.
Consider the bar complex $B_{*}(\mathscr{C})$ of $\mathscr{C} . B_{q}(\mathscr{C})$ is the free \mathbb{Z}-module generated by q-tuples of composable morphisms $\gamma=\left(g_{q}, \ldots, g_{1}\right)$, where the elements g_{i} are not identity morphisms.
We extend the norm N to generators of $B_{*}(\mathscr{C})$ by defining $N(\gamma)=\sum_{i=1}^{q} N\left(g_{i}\right)$. The norm filtration $\mathcal{F}_{h} B_{*}(\mathscr{C})$ is the free \mathbb{Z}-submodule of $B_{*}(\mathscr{C})$ generated by all γ with $N(\gamma) \leq h$. The complex of successive quotients $\mathcal{N}_{*}(\mathscr{C} ; h)=\mathcal{F}_{h} B_{*}(\mathscr{C}) / \mathcal{F}_{h-1} B_{*}(\mathscr{C})$ is called the norm complex at norm h of \mathscr{b}. In other words, it is the h-th column of the E^{0}-term of the spectral sequence corresponding to the norm filtration. The induced boundary operator ∂^{\prime}, that is, the differential d^{0}, is given by

$$
d_{i}\left(g_{q}, \ldots, g_{1}\right)= \begin{cases}\left(g_{q}, \ldots, g_{i+1} \circ g_{i}, \ldots, g_{1}\right) & \text { if } N\left(g_{i+1} g_{i}\right)=N\left(g_{i+1}\right)+N\left(g_{i}\right), \\ 0 & \text { if } N\left(g_{i+1} g_{i}\right)<N\left(g_{i+1}\right)+N\left(g_{i}\right)\end{cases}
$$

To study the properties of $\mathcal{N}_{*}(\mathscr{C} ; h)$, we generalize the concept of factorability for a normed group introduced by B. Visy ([V]) to normed categories: We call \mathscr{C} factorable with respect to the norm N, if there is a map $\eta: \mathscr{M} \rightarrow \mathscr{M} \times \mathscr{M}, g \mapsto \eta(g)=:\left(\bar{g}, g^{\prime}\right)$, such that for all $g \in \mathscr{M}$ and $t \in \mathscr{M}$ with $N(t)=1$
$\begin{array}{lll}\text { (F1) } N\left(g^{\prime}\right)=1 & \text { (F2) } \bar{g} \circ g^{\prime}=g & \text { (F3) } N(\bar{g})+N\left(g^{\prime}\right)=N(g)\end{array}$
(F4) $N(\eta(g \circ t))=N(g)+N(t) \Longleftrightarrow N\left(\left(\bar{g} \circ \overline{g^{\prime} \circ t},\left(g^{\prime} \circ t\right)^{\prime}\right)\right)=N(g)+N(t)$
(F5) $N(\eta(g \circ t))=N(g)+N(t) \Longrightarrow(g \circ t)^{\prime}=\left(g^{\prime} \circ t\right)^{\prime}$
Following the method from B. Visy on factorable normed groups, we have the following result:
Theorem. If \mathscr{C} is a factorable category with respect to the norm N, then the homology of the complex $\mathcal{N}_{*}(\mathscr{C} ; h)$ is concentrated in the top degree $h: H_{q}\left(\mathcal{N}_{*}(\mathscr{C} ; h)\right)=0$, if $q<h$
Any factorable group is a factorable category, and any category \mathscr{C} with the constant norm-i.e. the norm N with $N(g)=m>0$ for every $g \neq$ identity-is factorable. Another example is given by the free category $F(Q)$ generated by a quiver Q, with the word length norm with respect to the set of arrows of Q. Our example, the category of pairings, is also factorable. Here for $\tau=\lambda_{2} \lambda_{1}^{-1}$
$\tau^{\prime}:=\left(\lambda_{1}(k), \lambda_{1}\left(\tau^{-1}(k)\right)\right)\left(k, \tau^{-1}(k)\right)$
with k being the maximal element not fixed by τ

Application to moduli spaces

The norm filtrations of $B_{*}\left(\mathfrak{S}_{p}\right)$ and $B_{*}\left(\boldsymbol{\Lambda}_{p}\right)$ have important connections with moduli spaces of surfaces and can be used to compute their homology groups. Denote by $\mathfrak{M o d}_{\mathfrak{O}}=\mathfrak{M o d}_{g, 1}^{m}\left(\right.$ resp. $\left.\mathfrak{N}=\mathfrak{N}_{g, 1}^{m}\right)$ the moduli space of Riemann surfaces (resp. non-orientable (Kleinian) surfaces) of genus $g \geq 0$ with one boundary curve and $m \geq 0$ permutable punctures. Since the relation between $B_{*}\left(\mathfrak{S}_{p}\right)$ and $\mathfrak{M o d}$ is already better known, here we describe \mathfrak{N} in more detail. Put $h=g+m+1$ in this case.

Using the Hilbert uniformization method, Bödigheimer (see [E] and [Z]) found a finite bi-complex $\mathrm{NP}=\mathrm{NP}_{g, 1}^{m}$ with a subcomplex NP^{\prime} such that $\mathrm{NP} \backslash \mathrm{NP}^{\prime}$ is an open manifold of dimension $3 h$ and homotopy equivalent to \mathfrak{N}. Surprisingly, the cells of NP are given by q-tuples $\Sigma=\left(\tau_{q}, \ldots, \tau_{1}\right)$ of composable morphisms in the category of pairings $\boldsymbol{\Lambda}_{p}$, satisfying
(M1) $\quad \tau_{1}$ is a morphism from $\lambda_{0} \quad(\mathrm{M} 2) \quad N_{\Lambda_{p}}(\Sigma) \leq h \quad(\mathrm{M} 3) \quad N_{\mathfrak{S}_{2 p}}\left(\tau_{q} \cdots \tau_{1} \cdot \lambda_{0} \cdot J\right) \geq 2(p-m-1)$, where λ_{0} and J denote the pairings $(2 p-1,2 p) \cdots(2 i-1,2 i) \cdots(1,2)$ and $(2 p-1,2 p-2) \cdots(2 i, 2 i+$ 1) $\cdots(2,3)(1,2 p)$ respectively. For the parameters p and q we have $0 \leq p \leq 2 h$ and $0 \leq q \leq h$. The cells violating equality in (M2) or (M3) correspond to "degenerate" surfaces. Note that $N P / N P^{\prime}$ is equivalent to the one-point-compactification of \mathfrak{N}; furthermore, \mathfrak{N} is non-orientable

The boundary operator $\partial=\partial^{\prime}+(-1)^{q} \partial^{\prime \prime}$ of NP decomposes into a vertical part ∂^{\prime} and a horizontal part $\partial^{\prime \prime}$. It turns out that ∂^{\prime} is precisely the boundary operator of the norm complex of the category of pairings. Thus, the p-th column of the E^{0}-term of the spectral sequence associated to the double complex $\mathbb{N Q}$.. of cellular chains of $\mathrm{NP}_{. .} / \mathrm{NP}^{\prime}{ }_{.}$. is exactly the norm complex $\mathcal{N}\left(\boldsymbol{\Lambda}_{p} ; h\right)$

Using the above theorem on the homology of $\mathcal{N}_{*}\left(\boldsymbol{\Lambda}_{p} ; h\right)$, we conclude that the vertical homology $E_{p, q}^{1}=$ $H_{q}\left(\mathbb{N Q}_{p, \mathbf{\bullet}}, \partial^{\prime}\right)$ is concentrated in the top degree $q=h$; thus the E^{1}-term is a chain complex with differential induced by $\partial^{\prime \prime}$, and the spectral sequence collapses with $E^{2}=E^{\infty}$. Furthermore, parallel to the case of $\mathfrak{M o d}$, under the orientation coefficient system \mathcal{O}, we have the following result:

Theorem. The vertical homology $E_{p, q}^{1}=H_{q}\left(\mathbb{N}_{p, \bullet} ; \mathcal{O}\right)$ is concentrated in the top degree $q=h$.
Again, the E^{1}-term is a chain complex with differential induced by $\partial^{\prime \prime}$, and the spectral sequence collapses with $E^{2}=E^{\infty}$.

Let $V_{p}^{N}(h)=H_{h}\left(\mathbb{N}_{p, \bullet}, \partial^{\prime}\right)=\operatorname{ker}\left(\partial^{\prime}: \mathcal{N}\left(\boldsymbol{\Lambda}_{p} ; h\right) \rightarrow \mathcal{N}\left(\boldsymbol{\Lambda}_{p} ; h-1\right)\right)$. This is a similar construction as the Visy complex for symmetric groups. Condition (M3) selects the correct summand of $\mathbb{N Q}$.., whose decomposition into summands corresponds to moduli spaces $\mathfrak{N}_{g 1}^{m}$, one for each (g, m) with given $h=g+m+1$. The direct summand of $V_{n}^{N}(h)$ for a given $m<h$ is denoted by $V_{\bullet}(h, m)$. Due to Poincaré duality the $\mathbb{Z}_{2^{-}}$ homology of $V_{\bullet}(h, m)$ is the \mathbb{Z}_{2}-cohomology of the moduli space $\mathfrak{N}_{g, 1}^{m}$. To obtain the integral (co)homology of $\mathfrak{N}_{g, 1}^{m}$, we use the orientation coefficient system \mathcal{O}.
The chain complex $V_{\mathbf{\bullet}}(h, m)$ is still large, but small enough for computations using the computer

Homology computations (I)
The tables below show parts of the integral homology of \mathfrak{M} for $h=6$, and of \mathfrak{N} for $h=3,4,5$ and $\mathfrak{N}_{1,1}^{0}$ The list of the torsion summands of the forms $\mathbb{Z}_{2^{k}}(1 \leq k \leq 6), \mathbb{Z}_{3^{k}}(1 \leq k \leq 4), \mathbb{Z}_{5^{k}}(k=1,2), \mathbb{Z}_{7}, \mathbb{Z}_{11}, \mathbb{Z}_{13}$ is complete.
In all tables, $\beta_{n}(\ell)$ is the n-th mod- ℓ Betti number and $* \in\{11,13,17,19\}, * \in\{7,11,13,17,19\}$ $\star \in\{3,5,7,11,13,17,19\}$-the corresponding Betti numbers are equal.

\mathfrak{M}	n	Torsion	$\beta_{n}(2)$	$\beta_{n}(3)$	$\beta_{n}(5)$	$\beta_{n}(7)$	$\beta_{n}(*)$
$\mathfrak{M}_{3,1}^{0}$	0		1	1	1	1	1
	1		0	0	0	0	0
	2		2	1	1	1	1
	3	$\mathbb{Z}_{2}, \mathbb{Z}_{4}, \mathbb{Z}_{3}, \mathbb{Z}_{7}$	4	2	1	2	1
	4	$\mathbb{Z}_{2}^{2}, \mathbb{Z}_{3}^{2}$	4	3	0	1	0
	5	$\mathbb{Z}_{2}, \mathbb{Z}_{3}$	4	4	1	1	1
	6	\mathbb{Z}_{2}^{3}	5	2	1	1	1
	7	\mathbb{Z}_{2}	4	0	0	0	0
	8		1	0	0	0	0
	9		1	1	1	1	1
$\mathfrak{M}_{2,1}^{2}$	0		1	1	1	1	1
	1	$\mathbb{Z}_{2}^{2}, \mathbb{Z}_{5}$	2	0	1	0	0
	2		5	1	2	1	1
	3		9	3	3	3	3
	4	$\mathbb{Z}_{2}^{5}, \mathbb{Z}_{3}^{3}$	10	4	1	1	1
	5	$\mathbb{Z}_{2}^{4}, \mathbb{Z}_{3}$	11	6	2	2	2
	6	\mathbb{Z}_{2}^{3}	9	3	2	2	2
	7	\mathbb{Z}_{2}	4	0	0	0	0
	8		1	0	0	0	0
$\mathfrak{M}_{1,1}^{4}$	0		1	1	1	1	1
	1	\mathbb{Z}_{2}	2	1	1	1	1
	2	\mathbb{Z}_{2}^{3}	4	0	0	0	0
	3	\mathbb{Z}_{2}^{3}	8	2	2	2	2
	4	\mathbb{Z}_{2}^{2}	8	3	3	3	3
	5	\mathbb{Z}_{2}	5	2	2	2	2
	6		2	1	,	1	1
$\mathfrak{M}_{0,1}^{6}$	0		1	1	1	1	1
	1		1	1	1	1	1
	2	\mathbb{Z}_{2}	1	0	0	0	0
	3	\mathbb{Z}_{2}	2	0	0	0	0
	4	\mathbb{Z}_{3}	1	1	0	0	0
	5		0	1	0	0	0

Homology computations (II)

\mathfrak{N}	n	Torsion	$\beta_{n}(2)$	$\beta_{n}(\star)$
	0		1	1
	1	\mathbb{Z}_{2}^{3}	3	0
$\mathfrak{N}_{2,1}^{1}$	2	\mathbb{Z}_{2}^{4}	7	0
	3	\mathbb{Z}_{2}^{2}	9	3
	4	\mathbb{Z}_{2}	5	2
	5		1	0
	0		1	1
	1	\mathbb{Z}_{2}^{3}	4	1
$\mathfrak{N}_{1,1}^{2}$	2	\mathbb{Z}_{2}^{4}	7	0
	3		6	2
	4		2	2
	0		1	1
	1	\mathbb{Z}_{2}	2	1
$\mathfrak{N}_{0,1}^{3}$	2	\mathbb{Z}_{2}	2	0
	3		1	0

\mathfrak{N}	n	Torsion	$\beta_{n}(2)$	$\beta_{n}(*)$
$\mathfrak{N}_{2,1}^{0}$	0		1	1
	1	\mathbb{Z}_{2}^{2}	2	0
	2	\mathbb{Z}_{2}	3	0
	3		2	1
$\mathfrak{N}_{1,1}^{1}$	0		1	1
	1	\mathbb{Z}_{2}^{2}	3	1
	2	\mathbb{Z}_{2}	3	0
	3		1	0
$\mathfrak{N}_{0,1}^{2}$	0		1	1
	1	\mathbb{Z}_{2}	2	1
	2		1	0
$\mathfrak{N}_{1,1}^{0}$	0		1	1
	1	\mathbb{Z}_{2}	2	1
	2		1	0

References

[A] J. Abhau, Die Homologie von Modulräumen Riemannscher Flächen - Berechnungen für $g \leq 2$. Diplom thesis, Bonn (2005).
[ABE] J. Abhau, C.-F. Bödigheimer, R. Ehrenfried, The homology of the mapping class group Γ_{2} for surfaces of genus 2 with a boundary curve. Geometry \& Topology Monographs, 14, (2008), 1-25.
[E] J. Ebert, Hilbert-Uniformisierung Kleinscher Flächen. Diplom thesis, Bonn (2003).
[V] B. Visy, Homology of Normed Groups and of Graph Complexes, applied to Moduli Spaces. Ph.D. thesis, in preparation.
[Z] M. Zaw, The moduli space of non-classical directed Klein surfaces. Math. Proc. Camb. Phil. Soc., 136, (2004), 599-615.

Advisor: Prof. Dr. Bödigheimer

Universität Bonn

