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Definition of Configuration Space F (Γ, n)

Let Γ be a graph.
F (Γ,n) is the collection of all n-tuples of distinct points in Γ.

Definition
F (Γ,n) = {(x1, . . . , xn) ∈ Γn | xi 6= xj if i 6= j}
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Examples of F (Γ, 2)

Also:

F (K5,2) ' Σ6 (Copeland-Patty)

F (K3,3,2) ' Σ4 (Copeland-Patty)

F (Tree,2) '
∨
N

S1 (Farber)
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F (Γ, 2) is Usually Path-Connected

F ([0,1],2) ' 2 points.
F (S1,2) ' S1.
All other graphs Γ contain a vertex of valence ≥ 3.
This implies that F (Γ,2) is path-connected.

Conclusion
F (Γ,2) is path-connected provided Γ � [0,1].
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The Discrete Configuration Space D(Γ, 2)

For x ∈ Γ, let supp(x) denote the closure of the simplex
containing x .

Definition
D(Γ,2) = {(x , y) ∈ Γ× Γ | supp(x) ∩ supp(y) = ∅}

D(Γ,2) is a deformation retract of F (Γ,2).
D(Γ,2) is a 2-dimensional cell complex.

χ(D(Γ,2)) = χ(Γ)2 + χ(Γ)−
∑

v∈V (Γ)

(µ(v)− 1)(µ(v)− 2).
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Our Aim

In summary:

F (Γ,2) is path-connected for Γ � [0,1].
F (Γ,2) is homotopy equivalent to a 2-dimensional cell
complex D(Γ,2).
We know χ(F (Γ,2)).

Our Aim:
Describe F (Γ,2) for a large class of graphs Γ.
Do this by studying H1(F (Γ,2)) and H2(F (Γ,2)).
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Long Exact Sequence of (Γ× Γ, F (Γ, 2))

From now on, assume Γ � [0,1],S1.

Lemma (Barnett-Farber)

The map H1(F (Γ,2))→ H1(Γ× Γ) is surjective.

H2(F (Γ,2)) ∼= ker I.
H1(F (Γ,2)) ∼= H1(Γ)⊕ H1(Γ)⊕ coker I.
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Planar Case
Barnett-Farber

Find a basis for ker I ∼= H2(F (Γ,2)).

Theorem (Barnett-Farber)
For planar graphs Γ with ‘enough edges’

b2(F (Γ,2)) = b1(Γ)2 − b1(Γ) + 2−
∑

v∈V (Γ)

(µ(v)− 1)(µ(v)− 2),

b1(F (Γ,2)) = 2b1(Γ) + 1.

For these graphs, coker I has rank 1.
For any planar graph, rank(coker I) ≥ 1.
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Non-planar Case

For a large class of non-planar graphs, coker I = 0.
We call these graphs mature.
For a mature graph Γ we have

b1(F (Γ,2)) = 2b1(Γ),

b2(F (Γ,2)) = b1(Γ)2 − b1(Γ) + 1−
∑

v∈V (Γ)

(µ(v)− 1)(µ(v)− 2).

If Γ is mature, H1(F (Γ,2)) and H2(F (Γ,2)) are free abelian.
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Key Result

Theorem (H.-Farber)
Let u, v be vertices in Γ that are not joined by an edge. Assume
that Γ− {u, v} connected. Let Γ′ be obtained from Γ by
attaching an edge at u and v. If Γ is mature, then so is Γ′.
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Examples
H.-Farber

The complete graph Kn is mature for all n ≥ 5.

b1(F (Kn,2)) = (n − 1)(n − 2),

b2(F (Kn,2)) = 1
4n(n − 2)(n − 3)(n − 5) + 1,

The bipartite graph Kp,q is mature for all p,q ≥ 3.

b1(F (Kp,q,2)) = 2(p − 1)(q − 1),

b2(F (Kp,q,2)) = (p2 − 3p + 1)(q2 − 3q + 1).
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Non-Examples I
H.-Farber

The following imply that Γ is not mature:
1 Γ contains a univalent vertex.

2 Γ decomposes as a wedge of two connected graphs Γ1
and Γ2.
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Non-Examples II
H.-Farber

3 Γ decomposes as a double wedge of two connected
graphs Γ1 and Γ2, each different from [0,1].
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Summary

Configuration spaces of graphs are relevant to motion
planning in robotics.
Barnett-Farber calculated b1(F (Γ,2)) and b2(F (Γ,2)) for a
large class of planar graphs Γ.
Farber and I calculated H1(F (Γ,2)) and H2(F (Γ,2)) for a
large class of non-planar graphs.
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Configuration Spaces of Thick Particles
Kenneth Deeley

Let Γ be a metric graph and r > 0.

Definition
Fr (Γ,2) = {(x , y) ∈ Γ× Γ |d(x , y) ≥ 2r}

He shows:

1 For r > 1
2diam(Γ), Fr (Γ,2) = ∅.

2 For r < εΓ, Fr (Γ,2) ' F (Γ,2).
3 Fr (Γ,2) assumes only finitely many homotopy types.
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