Configuration Spaces of Graphs

Liz Hanbury

University of Durham

Saturday 26th June, 2010

Liz Hanbury Configuration Spaces of Graphs

・ロ> < 回> < 回> < 回> < 回> < 回

Liz Hanbury Configuration Spaces of Graphs

Liz Hanbury Configuration Spaces of Graphs

Definition of Configuration Space $F(\Gamma, n)$

• Let Γ be a graph.

• $F(\Gamma, n)$ is the collection of all *n*-tuples of distinct points in Γ .

Definition

$$F(\Gamma, n) = \{(x_1, \ldots, x_n) \in \Gamma^n \mid x_i \neq x_j \text{ if } i \neq j\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition of Configuration Space $F(\Gamma, n)$

- Let Γ be a graph.
- *F*(Γ, *n*) is the collection of all *n*-tuples of distinct points in Γ.

Definition

 $F(\Gamma, n) = \{(x_1, \ldots, x_n) \in \Gamma^n \mid x_i \neq x_j \text{ if } i \neq j\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition of Configuration Space $F(\Gamma, n)$

- Let Γ be a graph.
- $F(\Gamma, n)$ is the collection of all *n*-tuples of distinct points in Γ .

Definition

$$F(\Gamma, n) = \{(x_1, \ldots, x_n) \in \Gamma^n \mid x_i \neq x_j \text{ if } i \neq j\}$$

Configuration Spaces are Important in Robotics

Liz Hanbury Configuration Spaces of Graphs

・ロ> < 回> < 回> < 回> < 回> < 回

Configuration Spaces are Important in Robotics

Liz Hanbury Configuration Spaces of Graphs

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Configuration Spaces are Important in Robotics

Liz Hanbury Configuration Spaces of Graphs

< < >> < </>

★ E ▶ ★ E ▶ E E ♥ 9 Q @

Configuration Spaces are Important in Robotics

Liz Hanbury Configuration Spaces of Graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Configuration Spaces are Important in Robotics

Liz Hanbury Configuration Spaces of Graphs

・ロ> < 回> < 回> < 回> < 回> < 回

Examples of $F(\Gamma, 2)$

Also:

 $F(K_5, 2) \simeq \Sigma_6$ (Copeland-Patty) $F(K_{3,3}, 2) \simeq \Sigma_4$ (Copeland-Patty) $F(\text{Tree}, 2) \simeq \bigvee S^1$ (Farber)

Examples of $F(\Gamma, 2)$

 \simeq 2 points.

Also:

 $F(K_5, 2) \simeq \Sigma_6$ (Copeland-Patty) $F(K_{3,3}, 2) \simeq \Sigma_4$ (Copeland-Patty) $F(\text{Tree}, 2) \simeq \bigvee S^1$ (Farber)

Examples of $F(\Gamma, 2)$

 \simeq 2 points.

 $F(S^{1}, 2)$:

Also:

 $F(K_5, 2) \simeq \Sigma_6$ (Copeland-Patty) $F(K_{3,3}, 2) \simeq \Sigma_4$ (Copeland-Patty) $F(\text{Tree}, 2) \simeq \bigvee S^1$ (Farber)

・ロ> < 回> < 回> < 回> < 回> < 回

Examples of $F(\Gamma, 2)$

F([0, 1], 2) :

 $F(S^{1}, 2)$:

Also:

 $F(K_5, 2) \simeq \Sigma_6$ (Copeland-Patty)

 $F(K_{3,3}, 2) \simeq \Sigma_4$ (Copeland-Patty)

 $F(\text{Tree}, 2) \simeq \bigvee S^1$ (Farber)

くしゃ 本面を 木田を 本面を ネロ・

Examples of $F(\Gamma, 2)$

F([0, 1], 2) :

 $F(S^{1}, 2)$:

Also:

 $F(K_5, 2) \simeq \Sigma_6$ (Copeland-Patty)

 $F(K_{3,3}, 2) \simeq \Sigma_4$ (Copeland-Patty)

 $F(\text{Tree}, 2) \simeq \bigvee S^1 \text{ (Farber)}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$F(\Gamma, 2)$ is Usually Path-Connected

- *F*([0, 1], 2) \simeq 2 points.
- $F(S^1, 2) \simeq S^1$.
- All other graphs Γ contain a vertex of valence \geq 3.
- This implies that $F(\Gamma, 2)$ is path-connected.

Conclusion

 $F(\Gamma, 2)$ is path-connected provided $\Gamma \cong [0, 1]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$F(\Gamma, 2)$ is Usually Path-Connected

- *F*([0, 1], 2) ≃ 2 points.
- $F(S^1, 2) \simeq S^1$.
- All other graphs Γ contain a vertex of valence \geq 3.
- This implies that $F(\Gamma, 2)$ is path-connected.

Conclusion

 $F(\Gamma, 2)$ is path-connected provided $\Gamma \ncong [0, 1]$.

$F(\Gamma, 2)$ is Usually Path-Connected

- *F*([0, 1], 2) \simeq 2 points.
- $F(S^1, 2) \simeq S^1$.
- All other graphs Γ contain a vertex of valence \geq 3.
- This implies that $F(\Gamma, 2)$ is path-connected.

Conclusion

 $F(\Gamma, 2)$ is path-connected provided $\Gamma \cong [0, 1]$.

$F(\Gamma, 2)$ is Usually Path-Connected

- *F*([0, 1], 2) \simeq 2 points.
- $F(S^1, 2) \simeq S^1$.
- All other graphs Γ contain a vertex of valence \geq 3.
- This implies that $F(\Gamma, 2)$ is path-connected.

Conclusion

 $F(\Gamma, 2)$ is path-connected provided $\Gamma \ncong [0, 1]$.

For $x \in \Gamma$, let supp(x) denote the closure of the simplex containing x.

Definition

 $D(\Gamma, 2) = \{(x, y) \in \Gamma \times \Gamma \mid \operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset\}$

D(Γ, 2) is a deformation retract of F(Γ, 2).
D(Γ, 2) is a 2-dimensional cell complex.

$$\chi(D(\Gamma,2)) = \chi(\Gamma)^2 + \chi(\Gamma) - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2).$$

For $x \in \Gamma$, let supp(x) denote the closure of the simplex containing x.

Definition

$D(\Gamma, 2) = \{(x, y) \in \Gamma \times \Gamma \mid \operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset\}$

• $D(\Gamma, 2)$ is a deformation retract of $F(\Gamma, 2)$.

•
$$D(\Gamma, 2)$$
 is a 2-dimensional cell complex.

$$\chi(D(\Gamma, 2)) = \chi(\Gamma)^2 + \chi(\Gamma) - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2).$$

For $x \in \Gamma$, let supp(x) denote the closure of the simplex containing x.

Definition

$D(\Gamma, 2) = \{(x, y) \in \Gamma \times \Gamma \mid \operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset\}$

D(Γ,2) is a deformation retract of F(Γ,2).
D(Γ,2) is a 2-dimensional cell complex.

$$\chi(D(\Gamma,2)) = \chi(\Gamma)^2 + \chi(\Gamma) - \sum_{\nu \in V(\Gamma)} (\mu(\nu) - 1)(\mu(\nu) - 2).$$

For $x \in \Gamma$, let supp(x) denote the closure of the simplex containing x.

Definition

 $D(\Gamma, 2) = \{(x, y) \in \Gamma \times \Gamma \mid \operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset\}$

D(Γ, 2) is a deformation retract of F(Γ, 2).
 D(Γ, 2) is a 2-dimensional cell complex.

$$\chi(D(\Gamma,2)) = \chi(\Gamma)^2 + \chi(\Gamma) - \sum_{\nu \in V(\Gamma)} (\mu(\nu) - 1)(\mu(\nu) - 2).$$

For $x \in \Gamma$, let supp(x) denote the closure of the simplex containing x.

Definition

 $D(\Gamma, 2) = \{(x, y) \in \Gamma \times \Gamma \mid \operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset\}$

- $D(\Gamma, 2)$ is a deformation retract of $F(\Gamma, 2)$.
- $D(\Gamma, 2)$ is a 2-dimensional cell complex.

$$\chi(D(\Gamma,2)) = \chi(\Gamma)^2 + \chi(\Gamma) - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2).$$

For $x \in \Gamma$, let supp(x) denote the closure of the simplex containing x.

Definition

 $D(\Gamma, 2) = \{(x, y) \in \Gamma \times \Gamma \mid \operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset\}$

- $D(\Gamma, 2)$ is a deformation retract of $F(\Gamma, 2)$.
- $D(\Gamma, 2)$ is a 2-dimensional cell complex.

$$\chi(D(\Gamma,2)) = \chi(\Gamma)^2 + \chi(\Gamma) - \sum_{\boldsymbol{v} \in V(\Gamma)} (\mu(\boldsymbol{v}) - 1)(\mu(\boldsymbol{v}) - 2).$$

In summary:

- $F(\Gamma, 2)$ is path-connected for $\Gamma \ncong [0, 1]$.
- *F*(Γ, 2) is homotopy equivalent to a 2-dimensional cell complex *D*(Γ, 2).
- We know $\chi(F(\Gamma, 2))$.

Our Aim:

- Describe $F(\Gamma, 2)$ for a large class of graphs Γ .
- Do this by studying $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$.

In summary:

- $F(\Gamma, 2)$ is path-connected for $\Gamma \ncong [0, 1]$.
- *F*(Γ, 2) is homotopy equivalent to a 2-dimensional cell complex *D*(Γ, 2).
- We know $\chi(F(\Gamma, 2))$.

Our Aim:

- Describe $F(\Gamma, 2)$ for a large class of graphs Γ .
- Do this by studying $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$.

In summary:

- $F(\Gamma, 2)$ is path-connected for $\Gamma \ncong [0, 1]$.
- *F*(Γ, 2) is homotopy equivalent to a 2-dimensional cell complex *D*(Γ, 2).
- We know $\chi(F(\Gamma, 2))$.

Our Aim:

- Describe $F(\Gamma, 2)$ for a large class of graphs Γ .
- Do this by studying $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$.

In summary:

- $F(\Gamma, 2)$ is path-connected for $\Gamma \ncong [0, 1]$.
- *F*(Γ, 2) is homotopy equivalent to a 2-dimensional cell complex *D*(Γ, 2).
- We know χ(F(Γ, 2)).

Our Aim:

- Describe $F(\Gamma, 2)$ for a large class of graphs Γ .
- Do this by studying $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$.

In summary:

- $F(\Gamma, 2)$ is path-connected for $\Gamma \ncong [0, 1]$.
- *F*(Γ, 2) is homotopy equivalent to a 2-dimensional cell complex *D*(Γ, 2).
- We know χ(F(Γ, 2)).

Our Aim:

- Describe $F(\Gamma, 2)$ for a large class of graphs Γ .
- Do this by studying $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$.

In summary:

- $F(\Gamma, 2)$ is path-connected for $\Gamma \ncong [0, 1]$.
- *F*(Γ, 2) is homotopy equivalent to a 2-dimensional cell complex *D*(Γ, 2).
- We know χ(F(Γ, 2)).

Our Aim:

- Describe $F(\Gamma, 2)$ for a large class of graphs Γ .
- Do this by studying $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$.

Liz Hanbury Configuration Spaces of Graphs

Long Exact Sequence of $(\Gamma \times \Gamma, F(\Gamma, 2))$

From now on, assume $\Gamma \ncong [0, 1], S^1$.

Lemma (Barnett-Farber)

The map $H_1(F(\Gamma, 2)) \rightarrow H_1(\Gamma \times \Gamma)$ is surjective.

From now on, assume $\Gamma \ncong [0,1], S^1$.

$$0 \to H_2(F(\Gamma, 2)) \to H_2(\Gamma \times \Gamma) \xrightarrow{\mathcal{I}} H_2(\Gamma \times \Gamma, F(\Gamma, 2)) \to$$
$$H_1(F(\Gamma, 2)) \to H_1(\Gamma \times \Gamma) \to H_1(\Gamma \times \Gamma, F(\Gamma, 2)) \to 0$$

Lemma (Barnett-Farber)

The map $H_1(F(\Gamma, 2)) \rightarrow H_1(\Gamma \times \Gamma)$ is surjective.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From now on, assume $\Gamma \ncong [0,1], S^1$.

$$0 \to H_2(F(\Gamma, 2)) \to H_2(\Gamma \times \Gamma) \xrightarrow{\mathcal{I}} H_2(\Gamma \times \Gamma, F(\Gamma, 2)) \to$$
$$H_1(F(\Gamma, 2)) \to H_1(\Gamma \times \Gamma) \to H_1(\Gamma \times \Gamma, F(\Gamma, 2)) \to 0$$

Lemma (Barnett-Farber)

The map $H_1(F(\Gamma, 2)) \to H_1(\Gamma \times \Gamma)$ is surjective.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

From now on, assume $\Gamma \ncong [0,1], S^1$.

$$0 \to H_2(F(\Gamma,2)) \to H_2(\Gamma \times \Gamma) \xrightarrow{\mathcal{I}} H_2(\Gamma \times \Gamma, F(\Gamma,2)) \to$$

$$H_1(F(\Gamma,2)) \to H_1(\Gamma \times \Gamma) \to 0$$

Lemma (Barnett-Farber)

The map $H_1(F(\Gamma, 2)) \to H_1(\Gamma \times \Gamma)$ is surjective.

From now on, assume $\Gamma \ncong [0,1], S^1$.

$$0 \to H_2(F(\Gamma,2)) \to H_2(\Gamma \times \Gamma) \xrightarrow{\mathcal{I}} H_2(\Gamma \times \Gamma, F(\Gamma,2)) \to$$

$$H_1(F(\Gamma,2)) \to H_1(\Gamma \times \Gamma) \to 0$$

Lemma (Barnett-Farber)

The map $H_1(F(\Gamma, 2)) \to H_1(\Gamma \times \Gamma)$ is surjective.

•
$$H_2(F(\Gamma, 2)) \cong \ker \mathcal{I}.$$

•
$$H_1(F(\Gamma, 2)) \cong H_1(\Gamma) \oplus H_1(\Gamma) \oplus \operatorname{coker} \mathcal{I}.$$

• Find a basis for ker $\mathcal{I} \cong H_2(F(\Gamma, 2))$.

Theorem (Barnett-Farber)

For planar graphs Γ with 'enough edges'

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 2 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2),$$

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma) + 1.$$

- For these graphs, $\operatorname{coker} \mathcal{I}$ has rank 1.
- For any planar graph, $rank(coker \mathcal{I}) \geq 1$.

• Find a basis for ker $\mathcal{I} \cong H_2(F(\Gamma, 2))$.

Theorem (Barnett-Farber)

For planar graphs Γ with 'enough edges'

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 2 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2),$$

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma) + 1.$$

- For these graphs, $\operatorname{coker} \mathcal{I}$ has rank 1.
- For any planar graph, $rank(coker \mathcal{I}) \geq 1$.

• Find a basis for ker $\mathcal{I} \cong H_2(F(\Gamma, 2))$.

Theorem (Barnett-Farber)

For planar graphs Γ with 'enough edges'

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 2 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2),$$

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma) + 1.$$

- For these graphs, $\operatorname{coker} \mathcal{I}$ has rank 1.
- For any planar graph, $\operatorname{rank}(\operatorname{coker} \mathcal{I}) \geq 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Find a basis for ker $\mathcal{I} \cong H_2(F(\Gamma, 2))$.

Theorem (Barnett-Farber)

For planar graphs Γ with 'enough edges'

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 2 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2),$$

$$b_1(\boldsymbol{F}(\boldsymbol{\Gamma}, \boldsymbol{2})) = 2b_1(\boldsymbol{\Gamma}) + 1.$$

- For these graphs, $\operatorname{coker} \mathcal{I}$ has rank 1.
- For any planar graph, rank(coker \mathcal{I}) \geq 1.

• Find a basis for ker $\mathcal{I} \cong H_2(F(\Gamma, 2))$.

Theorem (Barnett-Farber)

For planar graphs Γ with 'enough edges'

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 2 - \sum_{\nu \in V(\Gamma)} (\mu(\nu) - 1)(\mu(\nu) - 2),$$

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma) + 1.$$

- For these graphs, $\operatorname{coker} \mathcal{I}$ has rank 1.
- For any planar graph, $rank(coker \mathcal{I}) \geq 1$.

- For a large class of non-planar graphs, $\operatorname{coker} \mathcal{I} = 0$.
- We call these graphs mature.
- For a mature graph Γ we have

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma),$$

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 1 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2).$$

• If Γ is mature, $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$ are free abelian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- For a large class of non-planar graphs, $\operatorname{coker} \mathcal{I} = 0$.
- We call these graphs mature.
- For a mature graph Γ we have

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma),$$

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 1 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2).$$

• If Γ is mature, $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$ are free abelian.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- For a large class of non-planar graphs, $\operatorname{coker} \mathcal{I} = 0$.
- We call these graphs mature.
- For a mature graph Γ we have

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma),$$

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 1 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2).$$

• If Γ is mature, $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$ are free abelian.

- For a large class of non-planar graphs, $\operatorname{coker} \mathcal{I} = 0$.
- We call these graphs mature.
- For a mature graph Γ we have

$$b_1(F(\Gamma, 2)) = 2b_1(\Gamma),$$

$$b_2(F(\Gamma, 2)) = b_1(\Gamma)^2 - b_1(\Gamma) + 1 - \sum_{v \in V(\Gamma)} (\mu(v) - 1)(\mu(v) - 2).$$

• If Γ is mature, $H_1(F(\Gamma, 2))$ and $H_2(F(\Gamma, 2))$ are free abelian.

Let u, v be vertices in Γ that are not joined by an edge. Assume that $\Gamma - \{u, v\}$ connected. Let Γ' be obtained from Γ by attaching an edge at u and v. If Γ is mature, then so is Γ' .

Let u, v be vertices in Γ that are not joined by an edge. Assume that $\Gamma - \{u, v\}$ connected. Let Γ' be obtained from Γ by attaching an edge at u and v. If Γ is mature, then so is Γ' .

Let u, v be vertices in Γ that are not joined by an edge. Assume that $\Gamma - \{u, v\}$ connected. Let Γ' be obtained from Γ by attaching an edge at u and v. If Γ is mature, then so is Γ' .

Let u, v be vertices in Γ that are not joined by an edge. Assume that $\Gamma - \{u, v\}$ connected. Let Γ' be obtained from Γ by attaching an edge at u and v. If Γ is mature, then so is Γ' .

Let u, v be vertices in Γ that are not joined by an edge. Assume that $\Gamma - \{u, v\}$ connected. Let Γ' be obtained from Γ by attaching an edge at u and v. If Γ is mature, then so is Γ' .

• The complete graph K_n is mature for all $n \ge 5$.

$$b_1(F(K_n, 2)) = (n-1)(n-2),$$

$$b_2(F(K_n, 2)) = \frac{1}{4}n(n-2)(n-3)(n-5) + 1,$$

• The bipartite graph $K_{p,q}$ is mature for all $p, q \ge 3$.

 $b_1(F(K_{p,q},2)) = 2(p-1)(q-1),$ $b_2(F(K_{p,q},2)) = (p^2 - 3p + 1)(q^2 - 3q + 1).$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• The complete graph K_n is mature for all $n \ge 5$.

$$b_1(F(K_n, 2)) = (n-1)(n-2),$$

$$b_2(F(K_n, 2)) = \frac{1}{4}n(n-2)(n-3)(n-5) + 1,$$

• The bipartite graph $K_{p,q}$ is mature for all $p, q \ge 3$.

 $b_1(F(K_{p,q},2)) = 2(p-1)(q-1),$ $b_2(F(K_{p,q},2)) = (p^2 - 3p + 1)(q^2 - 3q + 1).$

• The complete graph K_n is mature for all $n \ge 5$.

$$b_1(F(K_n, 2)) = (n-1)(n-2),$$

$$b_2(F(K_n, 2)) = \frac{1}{4}n(n-2)(n-3)(n-5) + 1,$$

• The bipartite graph $K_{p,q}$ is mature for all $p, q \ge 3$.

 $b_1(F(K_{p,q},2)) = 2(p-1)(q-1),$ $b_2(F(K_{p,q},2)) = (p^2 - 3p + 1)(q^2 - 3q + 1).$

• The complete graph K_n is mature for all $n \ge 5$.

$$b_1(F(K_n, 2)) = (n-1)(n-2),$$

$$b_2(F(K_n, 2)) = \frac{1}{4}n(n-2)(n-3)(n-5) + 1,$$

• The bipartite graph $K_{p,q}$ is mature for all $p, q \ge 3$.

 $b_1(F(K_{p,q},2)) = 2(p-1)(q-1),$ $b_2(F(K_{p,q},2)) = (p^2 - 3p + 1)(q^2 - 3q + 1).$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

• The complete graph K_n is mature for all $n \ge 5$.

$$b_1(F(K_n, 2)) = (n-1)(n-2),$$

$$b_2(F(K_n, 2)) = \frac{1}{4}n(n-2)(n-3)(n-5) + 1,$$

• The bipartite graph $K_{p,q}$ is mature for all $p, q \ge 3$.

$$b_1(F(K_{p,q},2)) = 2(p-1)(q-1),$$

 $b_2(F(K_{p,q},2)) = (p^2 - 3p + 1)(q^2 - 3q + 1).$

Non-Examples I

The following imply that Γ is not mature:

Γ contains a univalent vertex.

C decomposes as a wedge of two connected graphs Γ₁ and Γ₂.

★ E ▶ ★ E ▶ E E ♥ 9 Q @

Non-Examples II H.-Farber

C decomposes as a double wedge of two connected graphs Γ₁ and Γ₂, each different from [0, 1].

・ロ> < 回> < 回> < 回> < 回> < 回

Summary

- Configuration spaces of graphs are relevant to motion planning in robotics.
- Barnett-Farber calculated b₁(F(Γ, 2)) and b₂(F(Γ, 2)) for a large class of planar graphs Γ.
- Farber and I calculated H₁(F(Γ,2)) and H₂(F(Γ,2)) for a large class of non-planar graphs.

Summary

- Configuration spaces of graphs are relevant to motion planning in robotics.
- Barnett-Farber calculated b₁(F(Γ, 2)) and b₂(F(Γ, 2)) for a large class of planar graphs Γ.
- Farber and I calculated H₁(F(Γ,2)) and H₂(F(Γ,2)) for a large class of non-planar graphs.

- Configuration spaces of graphs are relevant to motion planning in robotics.
- Barnett-Farber calculated b₁(F(Γ,2)) and b₂(F(Γ,2)) for a large class of planar graphs Γ.
- Farber and I calculated H₁(F(Γ,2)) and H₂(F(Γ,2)) for a large class of non-planar graphs.

- Configuration spaces of graphs are relevant to motion planning in robotics.
- Barnett-Farber calculated b₁(F(Γ,2)) and b₂(F(Γ,2)) for a large class of planar graphs Γ.
- Farber and I calculated H₁(F(Γ,2)) and H₂(F(Γ,2)) for a large class of non-planar graphs.

Let Γ be a metric graph and r > 0.

Definition

 $F_r(\Gamma, 2) = \{(x, y) \in \Gamma \times \Gamma \mid d(x, y) \ge 2r\}$

He shows:

- For $r > \frac{1}{2}$ diam(Γ), $F_r(\Gamma, 2) = \emptyset$.
- **2** For $r < \epsilon_{\Gamma}$, $F_r(\Gamma, 2) \simeq F(\Gamma, 2)$.
- If $F_r(\Gamma, 2)$ assumes only finitely many homotopy types.

Let Γ be a metric graph and r > 0.

Definition

$$F_r(\Gamma,2) = \{(x,y) \in \Gamma \times \Gamma \mid d(x,y) \ge 2r\}$$

He shows:

• For
$$r > \frac{1}{2}$$
diam(Γ), $F_r(\Gamma, 2) = \emptyset$.

2 For
$$r < \epsilon_{\Gamma}$$
, $F_r(\Gamma, 2) \simeq F(\Gamma, 2)$.

If $F_r(\Gamma, 2)$ assumes only finitely many homotopy types.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let Γ be a metric graph and r > 0.

Definition

$$F_r(\Gamma,2) = \{(x,y) \in \Gamma \times \Gamma \mid d(x,y) \ge 2r\}$$

He shows:

1 For
$$r > \frac{1}{2}$$
diam(Γ), $F_r(\Gamma, 2) = \emptyset$.

(a) For
$$r < \epsilon_{\Gamma}$$
, $F_r(\Gamma, 2) \simeq F(\Gamma, 2)$.

If $F_r(\Gamma, 2)$ assumes only finitely many homotopy types.

Let Γ be a metric graph and r > 0.

Definition

$$F_r(\Gamma,2) = \{(x,y) \in \Gamma \times \Gamma \mid d(x,y) \ge 2r\}$$

He shows:

• For
$$r > \frac{1}{2}$$
diam(Γ), $F_r(\Gamma, 2) = \emptyset$.

(2) For
$$r < \epsilon_{\Gamma}$$
, $F_r(\Gamma, 2) \simeq F(\Gamma, 2)$.

If $F_r(\Gamma, 2)$ assumes only finitely many homotopy types.

Let Γ be a metric graph and r > 0.

Definition

$$F_r(\Gamma,2) = \{(x,y) \in \Gamma \times \Gamma \mid d(x,y) \ge 2r\}$$

He shows:

• For
$$r > \frac{1}{2}$$
diam(Γ), $F_r(\Gamma, 2) = \emptyset$.

2 For
$$r < \epsilon_{\Gamma}$$
, $F_r(\Gamma, 2) \simeq F(\Gamma, 2)$.

 $F_r(\Gamma, 2)$ assumes only finitely many homotopy types.

Let Γ be a metric graph and r > 0.

Definition

$$F_r(\Gamma,2) = \{(x,y) \in \Gamma \times \Gamma \mid d(x,y) \ge 2r\}$$

He shows:

• For
$$r > \frac{1}{2}$$
diam(Γ), $F_r(\Gamma, 2) = \emptyset$.

2 For
$$r < \epsilon_{\Gamma}$$
, $F_r(\Gamma, 2) \simeq F(\Gamma, 2)$.

I $F_r(\Gamma, 2)$ assumes only finitely many homotopy types.