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The aim of the talk

Theorem
Let (X ,A) be a topological pair. Then the diagram

Nk(X ,A)
µ //

(·)s

��

Hk(X ,A,Z2)

(·)s

��
Ň2k((X ,A)s)

µ̌
// Ȟ2k((X ,A)s,Z2),

is commutative.

The vertical arrows are the “symmetric squaring” maps in unoriented
bordism and in homology.
The horizontal arrows represent the canonical map between bordism
and homology.
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Ň2k((X ,A)s)

µ̌
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Symmetric squaring

Definition (symmetric squaring)
Let X be a topological space and define the coordinate-flipping involution
τ by

τ : X × X → X × X
(x , y) 7→ (y , x).

Then X s := X × X/τ is called the symmetric square of X.
Analogously for a topological pair (X ,A) define

(X ,A)s := ((X × X/τ), pr(X × A ∪ A× X ∪∆)),

where pr : X × X → X × X/τ denotes the canonical projection and
∆ := {(x , x)|x ∈ X} ⊂ X × X denotes the diagonal in X × X.
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Unoriented singular manifold
Definition (singular manifold)
Let (X ,A) be a topological pair.

A smooth compact bounded n-manifold (M, ∂M) together with a map

f : (M, ∂M)→ (X ,A)

is called a singular n-manifold in (X ,A).
It is denoted by (M, ∂M; f ).

Idea of bordism.
Think of this as solid!

M0

M1

B (X ,A)

f 0

**UUUUUUUUUUUUUUU

F //

f 1

33hhhhhhhhhhhhhhhhhh
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Unoriented singular bordism

bordism - more precisely
The singular manifolds (M0, ∂M0; f0) and (M1, ∂M1; f1) are called bordant
iff the disjoint union (M0 tM1, ∂(M0 tM1); f0 t f1) bords.

Definition (bords, bordant)
The n-manifold (M, ∂M; f ) is said to bord iff there exists F : B → X
which satisfies

B is a compact (n + 1)-manifold with boundary,
∂B contains M as a regular submanifold
F restricted to M is equal to f
F (∂B \M) ⊂ A.

“Bordant” is an equivalence relation and the set of equivalence classes is
called Nn(X ,A).
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Why Čech versions?

First idea
Define symmetric squaring in bordism by

(M, ∂M; f ) 7→ (M ×M/τ, . . .)

But M ×M/τ is not a manifold since τ(x , x) = (x , x).

Better idea

(M, ∂M; f ) 7→ ((M ×M \ V )/τ, . . .)

V is a neighbourhood of the diagonal in M ×M which is
nice: It’s complement is a compact, smooth, bounded manifold.
small: f × f maps V to a nbhd U of the diagonal in X × X
symmetric: It behaves well together with τ .
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Čech bordism and homology

Definition
Define

Ňn(X ,A)s := lim←−
U⊃∆

{
Nn(X s, pr(X × A ∪ A× X ∪ U))

}

and call it Čech bordism according to the definition of Čech homology

Ȟn(X ,A)s = lim←−
U⊃∆

{Hn(X s, pr(X × A ∪ A× X ∪ U),Z2)}

Theorem (isomorphy of singular and Čech versions)
Let (X ,A) be such that X is an ENR and A ⊂ X is an ENR as well.Then

Ň∗(X ,A) ' N∗(X ,A) and Ȟ∗(X ,A) ' H∗(X ,A,Z2).

Denise Krempasky Symmetric Squaring in Bordism June 25, 2010 9 / 20
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Ň∗(X ,A) ' N∗(X ,A) and Ȟ∗(X ,A) ' H∗(X ,A,Z2).
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Definition (Symmetric squaring in bordism)
Let (X ,A) be a pair of topological spaces.

The symmetric squaring in
bordism is defined as

(·)s : Nk(X ,A)→ Ň2k((X ,A)s)

[M, ∂M; f ] 7→ [M, ∂M; f ]s

:=
{[

(M ×M \ V ) /τ, ∂(−), f × f /τ |(−)

]}
U⊃∆

.

Theorem
The symmetric squaring map in bordism is well defined.
Proof(idea):
Let (M0, ∂M0; f0) ∼ (M1, ∂M1, f1) via F : W → X.Construct a bordism
(M0, ∂M0; f0)s ∼ (M1, ∂M1, f1)s as a subset of the fibred product

W ×
g

W

where g is a certain Morse function. . .
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The aim of the talk

Theorem
Let (X ,A) be a topological pair. Then the diagram

Nk(X ,A)
µ //

(·)s

��

Hk(X ,A,Z2)

(·)s

��
Ň2k((X ,A)s)

µ̌
// Ȟ2k((X ,A)s,Z2),

is commutative.

The vertical arrows are the “symmetric squaring” maps in unoriented
bordism and in homology.
The horizontal arrows represent the canonical map between bordism
and homology.

Denise Krempasky Symmetric Squaring in Bordism June 25, 2010 12 / 20



Symmetric squaring in homology

Theorem
The singular chain map

( · )s : Ck(X ,A,Z2)→ C2k((X ,A)s,Z2) by

σ =
n∑

i=1
σi 7→ σs :=

∑
i<j

1≤i,j≤n

pr](σi × σj),

induces a well defined map

( · )s : Hk(X ,A,Z2)→ Ȟ2k((X ,A)s,Z2)

This map has the nice property that it “maps fundamental classes to
fundamental classes”.
But what does that mean in the Čech context?
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Theorem (symmetric squaring and fundamental classes)
Let (B, ∂B) be a k-dimensional compact smooth oriented manifold

and let

σf ∈ Hk(B, ∂B,Z2) be its fundamental class.

Then σs
f ∈ Ȟ2k((B, ∂B)s) is the fundamental class of (B, ∂B)s in the

following sense.
For every neighbourhood U of the diagonal in B × B, there is a
fundamental class

σU
f ∈ H2k (((B × B) \ (∂ (B × B) ∪ U)) /τ, ∂(−),Z2)

which can be mapped by inclusion to

H2k(i)(σU
f ) ∈ H2k

(
Bs, pr(∂(B × B) ∪ U),Z2

)
.

And it is true that p(σs
f ) = H2k(i)(σU

f ), where p denotes the projection
onto the factor of U in the inverse limit group Ȟ2k((B, ∂B)s).

Denise Krempasky Symmetric Squaring in Bordism June 25, 2010 14 / 20



Theorem (symmetric squaring and fundamental classes)
Let (B, ∂B) be a k-dimensional compact smooth oriented manifold and let

σf ∈ Hk(B, ∂B,Z2) be its fundamental class.

Then σs
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f ∈ Ȟ2k((B, ∂B)s) is the fundamental class of (B, ∂B)s in the

following sense.
For every neighbourhood U of the diagonal in B × B, there is a
fundamental class

σU
f ∈ H2k (((B × B) \ (∂ (B × B) ∪ U)) /τ, ∂(−),Z2)

which can be mapped by inclusion to

H2k(i)(σU
f ) ∈ H2k

(
Bs, pr(∂(B × B) ∪ U),Z2

)
.

And it is true that p(σs
f ) = H2k(i)(σU

f ), where p denotes the projection
onto the factor of U in the inverse limit group Ȟ2k((B, ∂B)s).
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Denise Krempasky Symmetric Squaring in Bordism June 25, 2010 14 / 20



Theorem (symmetric squaring and fundamental classes)
Let (B, ∂B) be a k-dimensional compact smooth oriented manifold and let

σf ∈ Hk(B, ∂B,Z2) be its fundamental class.

Then σs
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The aim of the talk

Theorem
Let (X ,A) be a topological pair. Then the diagram

Nk(X ,A)
µ //

(·)s

��

Hk(X ,A,Z2)

(·)s

��
Ň2k((X ,A)s)

µ̌
// Ȟ2k((X ,A)s,Z2),

is commutative.

The vertical arrows are the “symmetric squaring” maps in unoriented
bordism and in homology.
The horizontal arrows represent the canonical map between bordism
and homology.
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Fundamental class transformation

Definition
A passage from bordism to homology can be defined in the following way:

µ : Nk(X ,A)→ Hk(X ,A,Z2)

[M, ∂M; f ] 7→ µ(M, ∂M, f ) := Hk(f )(σf),

where
σf ∈ Hk(M, ∂M,Z2) is the fundamental class and
Hk(f ) is the map which is induced by f : (M, ∂M)→ (X ,A) in
homology.

This induces a map µ̌ between the Čech versions of bordism and homology

µ̌ : Ň2k((X ,A)s)→ Ȟ2k((X ,A)s,Z2)
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Proof.

(µ([B, ∂B, f ]))s = (Hk (f ) (σf))s , with fundamental class σf of (B, ∂B)

= (Hk(f )
∑

i
σi )

s

= (
∑

i
Ck(f )σi )

s

=
∑
i<j

pr (Ck(f )σi × Ck(f )σj)

=
∑
i<j

pr (Ck(f × f )(σi × σj))

= Hk(f s)((σf)
s)

= µ̌ [B × B \ (. . .)/τ, ∂(−), f s] , because (σf)
s is the

fundamental class of (B × B \ (. . .)/τ, ∂(−)/τ))

= µ̌([B, ∂B, f ]s)

�
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What about orientations?

The coordinate flipping involution τ

preserves orientations for even dimensions k,
inverts orientations for odd dimensions k.

Theorem
Let k be even and (X ,A) a topological pair.Then the following diagram
commutes.

Ωk(X ,A)
µ //

(·)s

��

Hk(X ,A,Z)

(·)s

��
Ω̌2k((X ,A)s)

µ̌
// Ȟ2k((X ,A)s,Z),
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Thank you for your attention!
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