Symmetric Squaring in Bordism

Denise Krempasky
Georg-August University Göttingen

June 25, 2010

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{\text {s }} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{\mathrm{s}}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{\mathrm{s}}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{aligned}
& \mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
& \text { (.) })^{\mathrm{s}} \downarrow \\
& ()^{\mathrm{s}} \downarrow \\
& \check{\mathcal{N}}_{2 k}\left((X, A)^{\mathbf{s}}\right) \xrightarrow[\check{\mu}]{ } \check{H}_{2 k}\left((X, A)^{\text {s }}, \mathbb{Z}_{2}\right),
\end{aligned}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{s} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{s}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Symmetric squaring

Definition (symmetric squaring)
Let X be a topological space and define the coordinate-flipping involution τ by

$$
\begin{aligned}
\tau: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto(y, x)
\end{aligned}
$$

Symmetric squaring

Definition (symmetric squaring)
Let X be a topological space and define the coordinate-flipping involution τ by

$$
\begin{aligned}
\tau: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto(y, x)
\end{aligned}
$$

Then $X^{s}:=X \times X / \tau$ is called the symmetric square of X.

Symmetric squaring

Definition (symmetric squaring)

Let X be a topological space and define the coordinate-flipping involution τ by

$$
\begin{aligned}
\tau: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto(y, x)
\end{aligned}
$$

Then $X^{\mathbf{s}}:=X \times X / \tau$ is called the symmetric square of X.
Analogously for a topological pair (X, A) define

$$
(X, A)^{\mathrm{s}}:=((X \times X / \tau), p r(X \times A \cup A \times X \cup \Delta))
$$

Symmetric squaring

Definition (symmetric squaring)

Let X be a topological space and define the coordinate-flipping involution τ by

$$
\begin{aligned}
\tau: X \times X & \rightarrow X \times X \\
(x, y) & \mapsto(y, x)
\end{aligned}
$$

Then $X^{\mathbf{s}}:=X \times X / \tau$ is called the symmetric square of X.
Analogously for a topological pair (X, A) define

$$
(X, A)^{\mathrm{s}}:=((X \times X / \tau), p r(X \times A \cup A \times X \cup \Delta))
$$

where pr: $X \times X \rightarrow X \times X / \tau$ denotes the canonical projection and $\Delta:=\{(x, x) \mid x \in X\} \subset X \times X$ denotes the diagonal in $X \times X$.

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{s} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{s}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Unoriented singular manifold

Definition (singular manifold)
Let (X, A) be a topological pair.

Unoriented singular manifold

Definition (singular manifold)
Let (X, A) be a topological pair.
A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

$$
f:(M, \partial M) \rightarrow(X, A)
$$

Unoriented singular manifold

Definition (singular manifold)
Let (X, A) be a topological pair.
A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

$$
f:(M, \partial M) \rightarrow(X, A)
$$

is called a singular n-manifold in (X, A).

Unoriented singular manifold

Definition (singular manifold)
Let (X, A) be a topological pair.
A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

$$
f:(M, \partial M) \rightarrow(X, A)
$$

is called a singular n-manifold in (X, A).
It is denoted by $(M, \partial M ; f)$.

Unoriented singular manifold

Definition (singular manifold)
Let (X, A) be a topological pair.
A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

$$
f:(M, \partial M) \rightarrow(X, A)
$$

is called a singular n-manifold in (X, A).
It is denoted by $(M, \partial M ; f)$.
Idea of bordism.
Think of this as solid!

Unoriented singular bordism

bordism - more precisely

The singular manifolds ($M_{0}, \partial M_{0} ; f_{0}$) and ($M_{1}, \partial M_{1} ; f_{1}$) are called bordant iff the disjoint union ($M_{0} \sqcup M_{1}, \partial\left(M_{0} \sqcup M_{1}\right)$; $f_{0} \sqcup f_{1}$) bords.

Unoriented singular bordism

bordism - more precisely

The singular manifolds $\left(M_{0}, \partial M_{0} ; f_{0}\right)$ and $\left(M_{1}, \partial M_{1} ; f_{1}\right)$ are called bordant iff the disjoint union ($M_{0} \sqcup M_{1}, \partial\left(M_{0} \sqcup M_{1}\right)$; $f_{0} \sqcup f_{1}$) bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M ; f)$ is said to bord iff there exists $F: B \rightarrow X$ which satisfies

Unoriented singular bordism

bordism - more precisely

The singular manifolds ($M_{0}, \partial M_{0} ; f_{0}$) and ($M_{1}, \partial M_{1} ; f_{1}$) are called bordant iff the disjoint union ($M_{0} \sqcup M_{1}, \partial\left(M_{0} \sqcup M_{1}\right)$; $f_{0} \sqcup f_{1}$) bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M ; f)$ is said to bord iff there exists $F: B \rightarrow X$ which satisfies

- B is a compact $(n+1)$-manifold with boundary,

Unoriented singular bordism

bordism - more precisely

The singular manifolds $\left(M_{0}, \partial M_{0} ; f_{0}\right)$ and $\left(M_{1}, \partial M_{1} ; f_{1}\right)$ are called bordant iff the disjoint union ($M_{0} \sqcup M_{1}, \partial\left(M_{0} \sqcup M_{1}\right)$; $f_{0} \sqcup f_{1}$) bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M ; f)$ is said to bord iff there exists $F: B \rightarrow X$ which satisfies

- B is a compact $(n+1)$-manifold with boundary,
- ∂B contains M as a regular submanifold

Unoriented singular bordism

bordism - more precisely

The singular manifolds $\left(M_{0}, \partial M_{0} ; f_{0}\right)$ and $\left(M_{1}, \partial M_{1} ; f_{1}\right)$ are called bordant iff the disjoint union $\left(M_{0} \sqcup M_{1}, \partial\left(M_{0} \sqcup M_{1}\right)\right.$; $\left.f_{0} \sqcup f_{1}\right)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M ; f)$ is said to bord iff there exists $F: B \rightarrow X$ which satisfies

- B is a compact $(n+1)$-manifold with boundary,
- ∂B contains M as a regular submanifold
- F restricted to M is equal to f

Unoriented singular bordism

bordism - more precisely

The singular manifolds $\left(M_{0}, \partial M_{0} ; f_{0}\right)$ and $\left(M_{1}, \partial M_{1} ; f_{1}\right)$ are called bordant iff the disjoint union $\left(M_{0} \sqcup M_{1}, \partial\left(M_{0} \sqcup M_{1}\right)\right.$; $\left.f_{0} \sqcup f_{1}\right)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M ; f)$ is said to bord iff there exists $F: B \rightarrow X$ which satisfies

- B is a compact $(n+1)$-manifold with boundary,
- ∂B contains M as a regular submanifold
- F restricted to M is equal to f
- $F(\partial B \backslash M) \subset A$.

Unoriented singular bordism

bordism - more precisely

The singular manifolds $\left(M_{0}, \partial M_{0} ; f_{0}\right)$ and $\left(M_{1}, \partial M_{1} ; f_{1}\right)$ are called bordant iff the disjoint union ($M_{0} \sqcup M_{1}, \partial\left(M_{0} \sqcup M_{1}\right)$; $f_{0} \sqcup f_{1}$) bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M ; f)$ is said to bord iff there exists $F: B \rightarrow X$ which satisfies

- B is a compact $(n+1)$-manifold with boundary,
- ∂B contains M as a regular submanifold
- F restricted to M is equal to f
- $F(\partial B \backslash M) \subset A$.
"Bordant" is an equivalence relation and the set of equivalence classes is called $\mathcal{N}_{n}(X, A)$.

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{s} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{s}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Why Čech versions?

First idea
Define symmetric squaring in bordism by

Why Čech versions?

First idea

Define symmetric squaring in bordism by

$$
(M, \partial M ; f) \mapsto(M \times M / \tau, \ldots)
$$

Why Čech versions?

First idea

Define symmetric squaring in bordism by

$$
(M, \partial M ; f) \mapsto(M \times M / \tau, \ldots)
$$

But $M \times M / \tau$ is not a manifold since $\tau(x, x)=(x, x)$.

Why Čech versions?

First idea

Define symmetric squaring in bordism by

$$
(M, \partial M ; f) \mapsto(M \times M / \tau, \ldots)
$$

But $M \times M / \tau$ is not a manifold since $\tau(x, x)=(x, x)$.

Better idea

$$
(M, \partial M ; f) \mapsto((M \times M \backslash V) / \tau, \ldots)
$$

Why Čech versions?

First idea

Define symmetric squaring in bordism by

$$
(M, \partial M ; f) \mapsto(M \times M / \tau, \ldots)
$$

But $M \times M / \tau$ is not a manifold since $\tau(x, x)=(x, x)$.

Better idea

$$
(M, \partial M ; f) \mapsto((M \times M \backslash V) / \tau, \ldots)
$$

V is a neighbourhood of the diagonal in $M \times M$ which is

Why Čech versions?

First idea

Define symmetric squaring in bordism by

$$
(M, \partial M ; f) \mapsto(M \times M / \tau, \ldots)
$$

But $M \times M / \tau$ is not a manifold since $\tau(x, x)=(x, x)$.

Better idea

$$
(M, \partial M ; f) \mapsto((M \times M \backslash V) / \tau, \ldots)
$$

V is a neighbourhood of the diagonal in $M \times M$ which is

- nice: It's complement is a compact, smooth, bounded manifold.

Why Čech versions?

First idea

Define symmetric squaring in bordism by

$$
(M, \partial M ; f) \mapsto(M \times M / \tau, \ldots)
$$

But $M \times M / \tau$ is not a manifold since $\tau(x, x)=(x, x)$.

Better idea

$$
(M, \partial M ; f) \mapsto((M \times M \backslash V) / \tau, \ldots)
$$

V is a neighbourhood of the diagonal in $M \times M$ which is

- nice: It's complement is a compact, smooth, bounded manifold.
- small: $f \times f$ maps V to a nbhd U of the diagonal in $X \times X$

Why Čech versions?

First idea

Define symmetric squaring in bordism by

$$
(M, \partial M ; f) \mapsto(M \times M / \tau, \ldots)
$$

But $M \times M / \tau$ is not a manifold since $\tau(x, x)=(x, x)$.

Better idea

$$
(M, \partial M ; f) \mapsto((M \times M \backslash V) / \tau, \ldots)
$$

V is a neighbourhood of the diagonal in $M \times M$ which is

- nice: It's complement is a compact, smooth, bounded manifold.
- small: $f \times f$ maps V to a nbhd U of the diagonal in $X \times X$
- symmetric: It behaves well together with τ.

Čech bordism and homology

Definition

Define

$$
\check{\mathcal{N}}_{n}(X, A)^{\mathbf{s}}:=\lim _{U \supset \Delta}\left\{\mathcal{N}_{n}\left(X^{\mathbf{s}}, \overline{\operatorname{pr}(X \times A \cup A \times X \cup U)}\right)\right\}
$$

Čech bordism and homology

Definition

Define

$$
\check{\mathcal{N}}_{n}(X, A)^{\mathrm{s}}:={\underset{U}{\dot{U} \supset \Delta}}\left\{\mathcal{N}_{n}\left(X^{\mathrm{s}}, \overline{\operatorname{pr}(X \times A \cup A \times X \cup U)}\right)\right\}
$$

and call it Čech bordism

Čech bordism and homology

Definition

Define

$$
\check{\mathcal{N}}_{n}(X, A)^{\mathbf{s}}:=\lim _{\breve{U} \Delta \Delta}\left\{\mathcal{N}_{n}\left(X^{\mathbf{s}}, \overline{\operatorname{pr}(X \times A \cup A \times X \cup U)}\right)\right\}
$$

and call it Čech bordism according to the definition of Čech homology

Čech bordism and homology

Definition

Define

$$
\check{\mathcal{N}}_{n}(X, A)^{\mathbf{s}}:=\lim _{\breve{U} \Delta \Delta}\left\{\mathcal{N}_{n}\left(X^{\mathbf{s}}, \overline{\operatorname{pr}(X \times A \cup A \times X \cup U)}\right)\right\}
$$

and call it Čech bordism according to the definition of Čech homology

Čech bordism and homology

Definition

Define

$$
\check{\mathcal{N}}_{n}(X, A)^{\mathrm{s}}:=\lim _{U \supset \Delta}\left\{\mathcal{N}_{n}\left(X^{\mathrm{s}}, \overline{\operatorname{pr}(X \times A \cup A \times X \cup U)}\right)\right\}
$$

and call it Čech bordism according to the definition of Čech homology

$$
\check{H}_{n}(X, A)^{\mathbf{s}}={\underset{U}{U \supset \Delta}}^{\lim _{n}}\left\{H_{n}\left(X^{\mathbf{s}}, \operatorname{pr}(X \times A \cup A \times X \cup U), \mathbb{Z}_{2}\right)\right\}
$$

Theorem (isomorphy of singular and Čech versions)
Let (X, A) be such that X is an ENR and $A \subset X$ is an ENR as well.

Čech bordism and homology

Definition

Define
and call it Čech bordism according to the definition of Čech homology

Theorem (isomorphy of singular and Čech versions)
Let (X, A) be such that X is an ENR and $A \subset X$ is an ENR as well.Then

$$
\check{\mathcal{N}}_{*}(X, A) \simeq \mathcal{N}_{*}(X, A) \text { and } \check{H}_{*}(X, A) \simeq H_{*}\left(X, A, \mathbb{Z}_{2}\right)
$$

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{s} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{s}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Definition (Symmetric squaring in bordism)
Let (X, A) be a pair of topological spaces.

Definition (Symmetric squaring in bordism)
Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

Definition (Symmetric squaring in bordism)
Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$
\begin{aligned}
(\cdot)^{\mathrm{s}}: \mathcal{N}_{k}(X, A) & \rightarrow \check{\mathcal{N}}_{2 k}\left((X, A)^{\mathrm{s}}\right) \\
{[M, \partial M ; f] } & \mapsto[M, \partial M ; f]^{\mathrm{s}} \\
& :=\left\{\left[(M \times M \backslash V) / \tau, \partial(-), f \times f / \tau_{\mid(-)}\right]\right\}_{U \supset \Delta}
\end{aligned}
$$

Definition (Symmetric squaring in bordism)

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$
\begin{aligned}
&(\cdot)^{s}: \mathcal{N}_{k}(X, A) \rightarrow \check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \\
& {[M, \partial M ; f] } \mapsto[M, \partial M ; f]^{s} \\
&:=\left\{\left[(M \times M \backslash V) / \tau, \partial(-), f \times f / \tau_{\mid(-)]}\right]\right\}_{U \supset \Delta} .
\end{aligned}
$$

Theorem
The symmetric squaring map in bordism is well defined.

Definition (Symmetric squaring in bordism)

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$
\begin{aligned}
&(\cdot)^{s}: \mathcal{N}_{k}(X, A) \rightarrow \check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \\
& {[M, \partial M ; f] } \mapsto[M, \partial M ; f]^{s} \\
&:=\left\{\left[(M \times M \backslash V) / \tau, \partial(-), f \times f / \tau_{\mid(-)]}\right]\right\}_{U \supset \Delta} .
\end{aligned}
$$

Theorem
The symmetric squaring map in bordism is well defined.
Proof(idea):

Definition (Symmetric squaring in bordism)

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$
\begin{aligned}
&(\cdot)^{s}: \mathcal{N}_{k}(X, A) \rightarrow \check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \\
& {[M, \partial M ; f] } \mapsto[M, \partial M ; f]^{s} \\
&:=\left\{\left[(M \times M \backslash V) / \tau, \partial(-), f \times f / \tau_{\mid(-)]}\right]\right\}_{U \supset \Delta} .
\end{aligned}
$$

Theorem
The symmetric squaring map in bordism is well defined.
Proof(idea):
Let $\left(M_{0}, \partial M_{0} ; f_{0}\right) \sim\left(M_{1}, \partial M_{1}, f_{1}\right)$ via $F: W \rightarrow X$.

Definition (Symmetric squaring in bordism)

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$
\begin{aligned}
(\cdot)^{\mathbf{s}}: \mathcal{N}_{k}(X, A) & \rightarrow \check{\mathcal{N}}_{2 k}\left((X, A)^{\mathbf{s}}\right) \\
{[M, \partial M ; f] } & \mapsto[M, \partial M ; f]^{\mathbf{s}} \\
& :=\left\{\left[(M \times M \backslash V) / \tau, \partial(-), f \times f / \tau_{\mid(-)}\right]\right\}_{U \supset \Delta} .
\end{aligned}
$$

Theorem

The symmetric squaring map in bordism is well defined.
Proof(idea):
Let $\left(M_{0}, \partial M_{0} ; f_{0}\right) \sim\left(M_{1}, \partial M_{1}, f_{1}\right)$ via $F: W \rightarrow X$. Construct a bordism $\left(M_{0}, \partial M_{0} ; f_{0}\right)^{\mathbf{s}} \sim\left(M_{1}, \partial M_{1}, f_{1}\right)^{\mathbf{s}}$ as a subset of the fibred product

Definition (Symmetric squaring in bordism)

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$
\begin{aligned}
(\cdot)^{\mathbf{s}}: \mathcal{N}_{k}(X, A) & \rightarrow \check{\mathcal{N}}_{2 k}\left((X, A)^{\mathbf{s}}\right) \\
{[M, \partial M ; f] } & \mapsto[M, \partial M ; f]^{\mathbf{s}} \\
& :=\left\{\left[(M \times M \backslash V) / \tau, \partial(-), f \times f / \tau_{\mid(-)}\right]\right\}_{U \supset \Delta} .
\end{aligned}
$$

Theorem

The symmetric squaring map in bordism is well defined.
Proof(idea):
Let $\left(M_{0}, \partial M_{0} ; f_{0}\right) \sim\left(M_{1}, \partial M_{1}, f_{1}\right)$ via $F: W \rightarrow X$.Construct a bordism $\left(M_{0}, \partial M_{0} ; f_{0}\right)^{\mathbf{s}} \sim\left(M_{1}, \partial M_{1}, f_{1}\right)^{\mathbf{s}}$ as a subset of the fibred product

$$
\underset{g}{W} \underset{g}{ } W
$$

Definition (Symmetric squaring in bordism)

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$
\begin{aligned}
(\cdot)^{\mathbf{s}}: \mathcal{N}_{k}(X, A) & \rightarrow \check{\mathcal{N}}_{2 k}\left((X, A)^{\mathbf{s}}\right) \\
{[M, \partial M ; f] } & \mapsto[M, \partial M ; f]^{\mathbf{s}} \\
& :=\left\{\left[(M \times M \backslash V) / \tau, \partial(-), f \times f / \tau_{\mid(-)}\right]\right\}_{U \supset \Delta} .
\end{aligned}
$$

Theorem

The symmetric squaring map in bordism is well defined.
Proof(idea):
Let $\left(M_{0}, \partial M_{0} ; f_{0}\right) \sim\left(M_{1}, \partial M_{1}, f_{1}\right)$ via $F: W \rightarrow X$. Construct a bordism $\left(M_{0}, \partial M_{0} ; f_{0}\right)^{\mathbf{s}} \sim\left(M_{1}, \partial M_{1}, f_{1}\right)^{\mathbf{s}}$ as a subset of the fibred product

$$
\underset{g}{W} W
$$

where g is a certain Morse function. . .

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{s} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{s}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Symmetric squaring in homology

Theorem

The singular chain map

$$
\begin{aligned}
& (\cdot)^{\mathbf{s}}: C_{k}\left(X, A, \mathbb{Z}_{2}\right) \rightarrow C_{2 k}\left((X, A)^{\mathbf{s}}, \mathbb{Z}_{2}\right) \text { by } \\
& \quad \sigma=\sum_{i=1}^{n} \sigma_{i} \mapsto \sigma^{\mathbf{s}}:=\sum_{\substack{i<j \\
1 \leq i, j \leq n}} \operatorname{pr}_{\sharp}\left(\sigma_{i} \times \sigma_{j}\right),
\end{aligned}
$$

Symmetric squaring in homology

Theorem

The singular chain map

$$
\begin{aligned}
& (\cdot)^{\mathbf{s}}: C_{k}\left(X, A, \mathbb{Z}_{2}\right) \rightarrow C_{2 k}\left((X, A)^{\mathbf{s}}, \mathbb{Z}_{2}\right) \text { by } \\
& \quad \sigma=\sum_{i=1}^{n} \sigma_{i} \mapsto \sigma^{\mathbf{s}}:=\sum_{\substack{i<j \\
1 \leq i, j \leq n}} \operatorname{pr}_{\sharp}\left(\sigma_{i} \times \sigma_{j}\right),
\end{aligned}
$$

induces a well defined map

$$
(\cdot)^{\mathrm{s}}: H_{k}\left(X, A, \mathbb{Z}_{2}\right) \rightarrow \check{H}_{2 k}\left((X, A)^{\mathrm{s}}, \mathbb{Z}_{2}\right)
$$

Symmetric squaring in homology

Theorem

The singular chain map

$$
\begin{aligned}
(\cdot)^{\mathbf{s}}: C_{k}\left(X, A, \mathbb{Z}_{2}\right) \rightarrow C_{2 k}\left((X, A)^{\mathbf{s}}, \mathbb{Z}_{2}\right) \text { by } \\
\sigma=\sum_{i=1}^{n} \sigma_{i} \mapsto \sigma^{\mathbf{s}}:=\sum_{\substack{i<j \\
1 \leq i, j \leq n}} p r_{\sharp}\left(\sigma_{i} \times \sigma_{j}\right),
\end{aligned}
$$

induces a well defined map

$$
(\cdot)^{\mathbf{s}}: H_{k}\left(X, A, \mathbb{Z}_{2}\right) \rightarrow \check{H}_{2 k}\left((X, A)^{\mathbf{s}}, \mathbb{Z}_{2}\right)
$$

This map has the nice property that it "maps fundamental classes to fundamental classes".

Symmetric squaring in homology

Theorem

The singular chain map

$$
\begin{aligned}
& (\cdot)^{\mathbf{s}}: C_{k}\left(X, A, \mathbb{Z}_{2}\right) \rightarrow C_{2 k}\left((X, A)^{\mathbf{s}}, \mathbb{Z}_{2}\right) \text { by } \\
& \quad \sigma=\sum_{i=1}^{n} \sigma_{i} \mapsto \sigma^{\mathbf{s}}:=\sum_{\substack{i<j \\
1 \leq i, j \leq n}} \operatorname{pr}_{\sharp}\left(\sigma_{i} \times \sigma_{j}\right),
\end{aligned}
$$

induces a well defined map

$$
(\cdot)^{\mathbf{s}}: H_{k}\left(X, A, \mathbb{Z}_{2}\right) \rightarrow \check{H}_{2 k}\left((X, A)^{\mathbf{s}}, \mathbb{Z}_{2}\right)
$$

This map has the nice property that it "maps fundamental classes to fundamental classes".
But what does that mean in the Čech context?

Theorem (symmetric squaring and fundamental classes)
Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold

Theorem (symmetric squaring and fundamental classes)
Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let $\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right)$ be its fundamental class.

Theorem (symmetric squaring and fundamental classes)
Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

$$
\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right) \text { be its fundamental class. }
$$

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2 k}\left((B, \partial B)^{\mathbf{s}}\right)$

Theorem (symmetric squaring and fundamental classes)
Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

$$
\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right) \text { be its fundamental class. }
$$

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2 k}\left((B, \partial B)^{\mathbf{s}}\right)$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.

Theorem (symmetric squaring and fundamental classes)
Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

$$
\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right) \text { be its fundamental class. }
$$

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2 k}\left((B, \partial B)^{\mathbf{s}}\right)$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.
For every neighbourhood U of the diagonal in $B \times B$,

Theorem (symmetric squaring and fundamental classes)
Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

$$
\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right) \text { be its fundamental class. }
$$

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2 k}\left((B, \partial B)^{\mathbf{s}}\right)$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.
For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$
\sigma_{\mathbf{f}}^{U} \in H_{2 k}\left(((B \times B) \backslash(\partial(B \times B) \cup U)) / \tau, \partial(-), \mathbb{Z}_{2}\right)
$$

Theorem (symmetric squaring and fundamental classes)

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

$$
\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right) \text { be its fundamental class. }
$$

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2 k}\left((B, \partial B)^{\mathbf{s}}\right)$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.
For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$
\sigma_{\mathbf{f}}^{U} \in H_{2 k}\left(((B \times B) \backslash(\partial(B \times B) \cup U)) / \tau, \partial(-), \mathbb{Z}_{2}\right)
$$

which can be mapped by inclusion to

$$
H_{2 k}(i)\left(\sigma_{\mathbf{f}}^{U}\right) \in H_{2 k}\left(B^{\mathbf{s}}, \overline{\operatorname{pr}(\partial(B \times B) \cup U)}, \mathbb{Z}_{2}\right) .
$$

Theorem (symmetric squaring and fundamental classes)

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

$$
\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right) \text { be its fundamental class. }
$$

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2 k}\left((B, \partial B)^{\mathbf{s}}\right)$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.
For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$
\sigma_{\mathbf{f}}^{U} \in H_{2 k}\left(((B \times B) \backslash(\partial(B \times B) \cup U)) / \tau, \partial(-), \mathbb{Z}_{2}\right)
$$

which can be mapped by inclusion to

$$
H_{2 k}(i)\left(\sigma_{\mathbf{f}}^{U}\right) \in H_{2 k}\left(B^{\mathrm{s}}, \overline{\operatorname{pr}(\partial(B \times B) \cup U)}, \mathbb{Z}_{2}\right) .
$$

And it is true that $p\left(\sigma_{\mathbf{f}}^{\mathbf{s}}\right)=H_{2 k}(i)\left(\sigma_{\mathbf{f}}^{U}\right)$,

Theorem (symmetric squaring and fundamental classes)

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

$$
\sigma_{\mathbf{f}} \in H_{k}\left(B, \partial B, \mathbb{Z}_{2}\right) \text { be its fundamental class. }
$$

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2 k}\left((B, \partial B)^{\mathbf{s}}\right)$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.
For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$
\sigma_{\mathbf{f}}^{U} \in H_{2 k}\left(((B \times B) \backslash(\partial(B \times B) \cup U)) / \tau, \partial(-), \mathbb{Z}_{2}\right)
$$

which can be mapped by inclusion to

$$
H_{2 k}(i)\left(\sigma_{\mathbf{f}}^{U}\right) \in H_{2 k}\left(B^{\mathrm{s}}, \overline{\operatorname{pr}(\partial(B \times B) \cup U)}, \mathbb{Z}_{2}\right) .
$$

And it is true that $p\left(\sigma_{\mathbf{f}}^{\mathbf{s}}\right)=H_{2 k}(i)\left(\sigma_{\mathbf{f}}^{U}\right)$, where p denotes the projection onto the factor of U in the inverse limit group $\check{H}_{2 k}\left((B, \partial B)^{\mathrm{s}}\right)$.

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{s} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{s}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Fundamental class transformation

Definition

A passage from bordism to homology can be defined in the following way:

Fundamental class transformation

Definition

A passage from bordism to homology can be defined in the following way:

$$
\begin{aligned}
\mu: \mathcal{N}_{k}(X, A) & \rightarrow H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
{[M, \partial M ; f] } & \mapsto \mu(M, \partial M, f):=H_{k}(f)\left(\sigma_{\mathbf{f}}\right),
\end{aligned}
$$

Fundamental class transformation

Definition

A passage from bordism to homology can be defined in the following way:

$$
\begin{aligned}
\mu: \mathcal{N}_{k}(X, A) & \rightarrow H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
{[M, \partial M ; f] } & \mapsto \mu(M, \partial M, f):=H_{k}(f)\left(\sigma_{\mathbf{f}}\right),
\end{aligned}
$$

where

Fundamental class transformation

Definition

A passage from bordism to homology can be defined in the following way:

$$
\begin{aligned}
\mu: \mathcal{N}_{k}(X, A) & \rightarrow H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
{[M, \partial M ; f] } & \mapsto \mu(M, \partial M, f):=H_{k}(f)\left(\sigma_{\mathbf{f}}\right),
\end{aligned}
$$

where

- $\sigma_{\mathbf{f}} \in H_{k}\left(M, \partial M, \mathbb{Z}_{2}\right)$ is the fundamental class and

Fundamental class transformation

Definition

A passage from bordism to homology can be defined in the following way:

$$
\begin{aligned}
\mu: \mathcal{N}_{k}(X, A) & \rightarrow H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
{[M, \partial M ; f] } & \mapsto \mu(M, \partial M, f):=H_{k}(f)\left(\sigma_{\mathbf{f}}\right),
\end{aligned}
$$

where

- $\sigma_{\mathbf{f}} \in H_{k}\left(M, \partial M, \mathbb{Z}_{2}\right)$ is the fundamental class and
- $H_{k}(f)$ is the map which is induced by $f:(M, \partial M) \rightarrow(X, A)$ in homology.

Fundamental class transformation

Definition

A passage from bordism to homology can be defined in the following way:

$$
\begin{aligned}
\mu: \mathcal{N}_{k}(X, A) & \rightarrow H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
{[M, \partial M ; f] } & \mapsto \mu(M, \partial M, f):=H_{k}(f)\left(\sigma_{\mathbf{f}}\right),
\end{aligned}
$$

where

- $\sigma_{\mathbf{f}} \in H_{k}\left(M, \partial M, \mathbb{Z}_{2}\right)$ is the fundamental class and
- $H_{k}(f)$ is the map which is induced by $f:(M, \partial M) \rightarrow(X, A)$ in homology.

This induces a map $\check{\mu}$ between the Čech versions of bordism and homology

Fundamental class transformation

Definition

A passage from bordism to homology can be defined in the following way:

$$
\begin{aligned}
\mu: \mathcal{N}_{k}(X, A) & \rightarrow H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
{[M, \partial M ; f] } & \mapsto \mu(M, \partial M, f):=H_{k}(f)\left(\sigma_{\mathbf{f}}\right),
\end{aligned}
$$

where

- $\sigma_{\mathbf{f}} \in H_{k}\left(M, \partial M, \mathbb{Z}_{2}\right)$ is the fundamental class and
- $H_{k}(f)$ is the map which is induced by $f:(M, \partial M) \rightarrow(X, A)$ in homology.

This induces a map $\check{\mu}$ between the Čech versions of bordism and homology

$$
\check{\mu}: \check{\mathcal{N}}_{2 k}\left((X, A)^{\mathrm{s}}\right) \rightarrow \check{H}_{2 k}\left((X, A)^{\mathrm{s}}, \mathbb{Z}_{2}\right)
$$

The aim of the talk

Theorem
Let (X, A) be a topological pair. Then the diagram

$$
\begin{gathered}
\mathcal{N}_{k}(X, A) \xrightarrow{\mu} H_{k}\left(X, A, \mathbb{Z}_{2}\right) \\
(\cdot)^{s} \downarrow \\
\check{\mathcal{N}}_{2 k}\left((X, A)^{s}\right) \xrightarrow[\check{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{s}, \mathbb{Z}_{2}\right),
\end{gathered}
$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Proof.

Proof.

$(\mu([B, \partial B, f]))^{\mathbf{s}}=$

Proof.

$$
(\mu([B, \partial B, f]))^{\mathbf{s}}=\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}
$$

Proof.

$(\mu([B, \partial B, f]))^{\mathbf{s}}=\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}$, with fundamental class $\sigma_{\mathbf{f}}$ of $(B, \partial B)$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}} \\
& =\left(\sum_{i} C_{k}(f) \sigma_{i}\right)^{\mathbf{s}}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}} \\
& =\left(\sum_{i} C_{k}(f) \sigma_{i}\right)^{\mathbf{s}} \\
& =\sum_{i<j} \operatorname{pr}\left(C_{k}(f) \sigma_{i} \times C_{k}(f) \sigma_{j}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}} \\
& =\left(\sum_{i} C_{k}(f) \sigma_{i}\right)^{\mathbf{s}} \\
& =\sum_{i<j} p r\left(C_{k}(f) \sigma_{i} \times C_{k}(f) \sigma_{j}\right) \\
& =\sum_{i<j} p r\left(C_{k}(f \times f)\left(\sigma_{i} \times \sigma_{j}\right)\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}} \\
& =\left(\sum_{i} C_{k}(f) \sigma_{i}\right)^{\mathbf{s}} \\
& =\sum_{i<j} \operatorname{pr}\left(C_{k}(f) \sigma_{i} \times C_{k}(f) \sigma_{j}\right) \\
& =\sum_{i<j} \operatorname{pr}\left(C_{k}(f \times f)\left(\sigma_{i} \times \sigma_{j}\right)\right) \\
& =H_{k}\left(f^{\mathbf{s}}\right)\left(\left(\sigma_{\mathbf{f}}\right)^{\mathbf{s}}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}} \\
& =\left(\sum_{i} C_{k}(f) \sigma_{i}\right)^{\mathbf{s}} \\
& =\sum_{i<j} p r\left(C_{k}(f) \sigma_{i} \times C_{k}(f) \sigma_{j}\right) \\
& =\sum_{i<j} p r\left(C_{k}(f \times f)\left(\sigma_{i} \times \sigma_{j}\right)\right) \\
& =H_{k}\left(f^{\mathbf{s}}\right)\left(\left(\sigma_{\mathbf{f}}\right)^{\mathbf{s}}\right) \\
& =\check{\mu}\left[B \times B \backslash(\ldots) / \tau, \partial(-), f^{\mathbf{s}}\right]
\end{aligned}
$$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}} \\
& =\left(\sum_{i} C_{k}(f) \sigma_{i}\right)^{\mathbf{s}} \\
& =\sum_{i<j} \operatorname{pr}\left(C_{k}(f) \sigma_{i} \times C_{k}(f) \sigma_{j}\right) \\
& =\sum_{i<j} \operatorname{pr}\left(C_{k}(f \times f)\left(\sigma_{i} \times \sigma_{j}\right)\right) \\
& =H_{k}\left(f^{\mathbf{s}}\right)\left(\left(\sigma_{\mathbf{f}}\right)^{\mathbf{s}}\right) \\
& =\check{\mu}\left[B \times B \backslash(\ldots) / \tau, \partial(-), f^{\mathbf{s}}\right], \text { because }\left(\sigma_{\mathbf{f}}\right)^{\mathbf{s}} \text { is the } \\
& \text { fundamental class of }(B \times B \backslash(\ldots) / \tau, \partial(-) / \tau))
\end{aligned}
$$

Proof.

$$
\begin{aligned}
(\mu([B, \partial B, f]))^{\mathbf{s}} & =\left(H_{k}(f)\left(\sigma_{\mathbf{f}}\right)\right)^{\mathbf{s}}, \text { with fundamental class } \sigma_{\mathbf{f}} \text { of }(B, \partial B) \\
& =\left(H_{k}(f) \sum_{i} \sigma_{i}\right)^{\mathbf{s}} \\
& =\left(\sum_{i} C_{k}(f) \sigma_{i}\right)^{\mathbf{s}} \\
& =\sum_{i<j} p r\left(C_{k}(f) \sigma_{i} \times C_{k}(f) \sigma_{j}\right) \\
& =\sum_{i<j} p r\left(C_{k}(f \times f)\left(\sigma_{i} \times \sigma_{j}\right)\right) \\
& =H_{k}\left(f^{\mathbf{s}}\right)\left(\left(\sigma_{\mathbf{f}}\right)^{\mathbf{s}}\right) \\
& =\check{\mu}\left[B \times B \backslash(\ldots) / \tau, \partial(-), f^{\mathbf{s}}\right], \text { because }\left(\sigma_{\mathbf{f}}\right)^{\mathbf{s}} \text { is the } \\
& \text { fundamental class of }(B \times B \backslash(\ldots) / \tau, \partial(-) / \tau)) \\
& =\check{\mu}\left([B, \partial B, f]^{\mathbf{s}}\right)
\end{aligned}
$$

What about orientations?

The coordinate flipping involution τ

What about orientations?

The coordinate flipping involution τ

- preserves orientations for even dimensions k,

What about orientations?

The coordinate flipping involution τ

- preserves orientations for even dimensions k,
- inverts orientations for odd dimensions k.

What about orientations?

The coordinate flipping involution τ

- preserves orientations for even dimensions k,
- inverts orientations for odd dimensions k.

Theorem
Let k be even and (X, A) a topological pair.

What about orientations?

The coordinate flipping involution τ

- preserves orientations for even dimensions k,
- inverts orientations for odd dimensions k.

Theorem

Let k be even and (X, A) a topological pair. Then the following diagram commutes.

$$
\begin{gathered}
\Omega_{k}(X, A) \xrightarrow{\mu} H_{k}(X, A, \mathbb{Z}) \\
(\cdot)^{\mathrm{s}} \downarrow \\
\check{\Omega}_{2 k}\left((X, A)^{\mathrm{s}}\right) \xrightarrow[\breve{\mu}]{\longrightarrow} \check{H}_{2 k}\left((X, A)^{\mathrm{s}}, \mathbb{Z}\right),
\end{gathered}
$$

Thank you for your attention!

References:
图 P. E. Conner, E. E. Floyd, Differentiable periodic maps, Bull. Amer. Math. Soc. 68, (1962), 76-86.
A. Dold, Lectures on algebraic topology., Second Edition, Springer-Verlag, Berlin, 200, Grundlehren der Mathematischen Wissenschaften, (1980), xi+377.
D. Nakiboğlu, Die Dachabbildung in ganzzahliger Čech-Homologie, diploma thesis, http://arxiv.org/pdf/1002.1449.
T. Schick, R. Simon, S. Spiez, H. Torunczyk, A parametrized version of the Borsuk Ulam theorem, preprint, http://arxiv.org/pdf/0709.1774v4.
R. Thom, Quelques propriétés globales des variétés différentiables., Comment. Math. Helv. 28, (1954), 17-86.

