Symmetric Squaring in Bordism

Denise Krempasky

Georg-August University Göttingen

June 25, 2010

Denise Krempasky

Symmetric Squaring in Bordism

■ ▶ ▲ ≣ ▶ ■ ∽ � ⌒ June 25, 2010 1 / 20

(日) (四) (日) (日) (日)

Theorem

Let (X, A) be a topological pair. Then the diagram

$$\begin{array}{c|c} \mathcal{N}_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}_2) \\ (\cdot)^{\mathfrak{s}} & & (\cdot)^{\mathfrak{s}} \\ \check{\mathcal{N}}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\check{\mu}} & \check{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}_2), \end{array}$$

is commutative.

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem

Let (X, A) be a topological pair. Then the diagram

$$\begin{array}{c|c} \mathcal{N}_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}_2) \\ (\cdot)^{\mathfrak{s}} & & (\cdot)^{\mathfrak{s}} \\ \check{\mathcal{N}}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\check{\mu}} & \check{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}_2), \end{array}$$

is commutative.

• The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.

Theorem

Let (X, A) be a topological pair. Then the diagram

$$\begin{array}{c|c} \mathcal{N}_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}_2) \\ & & & & & \\ (\cdot)^{\mathfrak{s}} & & & (\cdot)^{\mathfrak{s}} \\ & & & & & \\ \mathcal{N}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\mu} & \mathcal{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}_2) \end{array}$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Definition (symmetric squaring)

Let X be a topological space and define the coordinate-flipping involution τ by

au : X imes X o X imes X $(x, y) \mapsto (y, x).$

Definition (symmetric squaring)

Let X be a topological space and define the coordinate-flipping involution τ by

$$f:X imes X o X imes X \ (x,y)\mapsto (y,x).$$

Then $X^{s} := X \times X/\tau$ is called the symmetric square of X.

Definition (symmetric squaring)

Let X be a topological space and define the coordinate-flipping involution τ by

$$au : X imes X o X imes X \ (x,y) \mapsto (y,x).$$

Then $X^{s} := X \times X/\tau$ is called the symmetric square of X. Analogously for a topological pair (X, A) define

 $(X, A)^{\mathbf{s}} := ((X \times X/\tau), pr(X \times A \cup A \times X \cup \Delta)),$

Definition (symmetric squaring)

Let X be a topological space and define the coordinate-flipping involution τ by

$$au : X imes X o X imes X \ (x,y) \mapsto (y,x).$$

Then $X^{s} := X \times X/\tau$ is called the symmetric square of X. Analogously for a topological pair (X, A) define

 $(X, A)^{\mathsf{s}} := ((X \times X/\tau), pr(X \times A \cup A \times X \cup \Delta)),$

where $pr: X \times X \to X \times X/\tau$ denotes the canonical projection and $\Delta := \{(x, x) | x \in X\} \subset X \times X$ denotes the diagonal in $X \times X$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let (X, A) be a topological pair. Then the diagram

$$\begin{array}{c|c} \mathcal{N}_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}_2) \\ & & & & & \\ (\cdot)^{\mathfrak{s}} & & & (\cdot)^{\mathfrak{s}} \\ & & & & & \\ \mathcal{N}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\mu} & \mathcal{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}_2) \end{array}$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Definition (singular manifold)

Let (X, A) be a topological pair.

< /□ > < Ξ

Definition (singular manifold)

Let (X, A) be a topological pair.

A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

 $f\colon (M,\partial M)\to (X,A)$

Definition (singular manifold)

Let (X, A) be a topological pair.

A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

 $f: (M, \partial M) \to (X, A)$

is called a singular n-manifold in (X, A).

Definition (singular manifold)

Let (X, A) be a topological pair.

A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

 $f: (M, \partial M) \to (X, A)$

is called a singular n-manifold in (X, A). It is denoted by $(M, \partial M; f)$.

Definition (singular manifold)

Let (X, A) be a topological pair.

A smooth compact bounded n-manifold $(M, \partial M)$ together with a map

 $f\colon (M,\partial M)\to (X,A)$

is called a singular n-manifold in (X, A). It is denoted by $(M, \partial M; f)$.

Idea of bordism.

Think of this as solid!

bordism - more precisely

The singular manifolds $(M_0, \partial M_0; f_0)$ and $(M_1, \partial M_1; f_1)$ are called bordant iff the disjoint union $(M_0 \sqcup M_1, \partial (M_0 \sqcup M_1); f_0 \sqcup f_1)$ bords.

bordism - more precisely

The singular manifolds $(M_0, \partial M_0; f_0)$ and $(M_1, \partial M_1; f_1)$ are called bordant iff the disjoint union $(M_0 \sqcup M_1, \partial (M_0 \sqcup M_1); f_0 \sqcup f_1)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M; f)$ is said to bord iff there exists $F : B \to X$ which satisfies

A D F A B F A B F A B

bordism - more precisely

The singular manifolds $(M_0, \partial M_0; f_0)$ and $(M_1, \partial M_1; f_1)$ are called bordant iff the disjoint union $(M_0 \sqcup M_1, \partial (M_0 \sqcup M_1); f_0 \sqcup f_1)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M; f)$ is said to bord iff there exists $F : B \to X$ which satisfies

• *B* is a compact (*n*+1)-manifold with boundary,

A D F A B F A B F A B

bordism - more precisely

The singular manifolds $(M_0, \partial M_0; f_0)$ and $(M_1, \partial M_1; f_1)$ are called bordant iff the disjoint union $(M_0 \sqcup M_1, \partial (M_0 \sqcup M_1); f_0 \sqcup f_1)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M; f)$ is said to bord iff there exists $F : B \to X$ which satisfies

- B is a compact (n + 1)-manifold with boundary,
- ∂B contains M as a regular submanifold

A D F A B F A B F A B

bordism - more precisely

The singular manifolds $(M_0, \partial M_0; f_0)$ and $(M_1, \partial M_1; f_1)$ are called bordant iff the disjoint union $(M_0 \sqcup M_1, \partial (M_0 \sqcup M_1); f_0 \sqcup f_1)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M; f)$ is said to bord iff there exists $F : B \to X$ which satisfies

- B is a compact (n + 1)-manifold with boundary,
- ∂B contains M as a regular submanifold
- F restricted to M is equal to f

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

bordism - more precisely

The singular manifolds $(M_0, \partial M_0; f_0)$ and $(M_1, \partial M_1; f_1)$ are called bordant iff the disjoint union $(M_0 \sqcup M_1, \partial (M_0 \sqcup M_1); f_0 \sqcup f_1)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M; f)$ is said to bord iff there exists $F : B \to X$ which satisfies

- B is a compact (n + 1)-manifold with boundary,
- ∂B contains M as a regular submanifold
- F restricted to M is equal to f
- $F(\partial B \setminus M) \subset A$.

< □ > < □ > < □ > < □ > < □ > < □ >

bordism - more precisely

The singular manifolds $(M_0, \partial M_0; f_0)$ and $(M_1, \partial M_1; f_1)$ are called bordant iff the disjoint union $(M_0 \sqcup M_1, \partial (M_0 \sqcup M_1); f_0 \sqcup f_1)$ bords.

Definition (bords, bordant)

The n-manifold $(M, \partial M; f)$ is said to bord iff there exists $F : B \to X$ which satisfies

- B is a compact (n + 1)-manifold with boundary,
- ∂B contains M as a regular submanifold
- F restricted to M is equal to f
- $F(\partial B \setminus M) \subset A$.

"Bordant" is an equivalence relation and the set of equivalence classes is called $\mathcal{N}_n(X, A)$.

A D N A B N A B N A B N

Theorem

Let (X, A) be a topological pair. Then the diagram

$$\begin{array}{c|c} \mathcal{N}_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}_2) \\ & & & & & \\ (\cdot)^{\mathfrak{s}} & & & (\cdot)^{\mathfrak{s}} \\ & & & & & \\ \mathcal{N}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\mu} & \mathcal{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}_2) \end{array}$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

First idea

Define symmetric squaring in bordism by

(日) (四) (日) (日) (日)

First idea

Define symmetric squaring in bordism by

$$(M, \partial M; f) \mapsto (M \times M/\tau, \ldots)$$

(日) (四) (日) (日) (日)

First idea

Define symmetric squaring in bordism by

$$(M, \partial M; f) \mapsto (M \times M/\tau, \ldots)$$

But $M \times M/\tau$ is not a manifold since $\tau(x, x) = (x, x)$.

Image: A Image: A

First idea

Define symmetric squaring in bordism by

$$(M, \partial M; f) \mapsto (M \times M/\tau, \ldots)$$

But $M \times M/\tau$ is not a manifold since $\tau(x, x) = (x, x)$.

Better idea

$$(M, \partial M; f) \mapsto ((M \times M \setminus V) / \tau, \ldots)$$

A D N A B N A B N A B N

First idea

Define symmetric squaring in bordism by

$$(M, \partial M; f) \mapsto (M \times M/\tau, \ldots)$$

But $M \times M/\tau$ is not a manifold since $\tau(x, x) = (x, x)$.

Better idea

$$(M, \partial M; f) \mapsto ((M \times M \setminus V) / \tau, \ldots)$$

V is a neighbourhood of the diagonal in $M \times M$ which is

(日) (四) (日) (日) (日)

First idea

Define symmetric squaring in bordism by

$$(M, \partial M; f) \mapsto (M \times M/\tau, \ldots)$$

But $M \times M/\tau$ is not a manifold since $\tau(x, x) = (x, x)$.

Better idea

$$(M, \partial M; f) \mapsto ((M \times M \setminus V) / \tau, \ldots)$$

- V is a neighbourhood of the diagonal in $M \times M$ which is
 - nice: It's complement is a compact, smooth, bounded manifold.

< □ > < □ > < □ > < □ > < □ > < □ >

First idea

Define symmetric squaring in bordism by

$$(M, \partial M; f) \mapsto (M \times M/\tau, \ldots)$$

But $M \times M/\tau$ is not a manifold since $\tau(x, x) = (x, x)$.

Better idea

$$(M, \partial M; f) \mapsto ((M \times M \setminus V) / \tau, \ldots)$$

- V is a neighbourhood of the diagonal in $M \times M$ which is
 - nice: It's complement is a compact, smooth, bounded manifold.
 - small: $f \times f$ maps V to a nbhd U of the diagonal in $X \times X$

< □ > < □ > < □ > < □ > < □ > < □ >

First idea

Define symmetric squaring in bordism by

$$(M, \partial M; f) \mapsto (M \times M/\tau, \ldots)$$

But $M \times M/\tau$ is not a manifold since $\tau(x, x) = (x, x)$.

Better idea

$$(M, \partial M; f) \mapsto ((M \times M \setminus V) / \tau, \ldots)$$

V is a neighbourhood of the diagonal in $M \times M$ which is

- nice: It's complement is a compact, smooth, bounded manifold.
- small: $f \times f$ maps V to a nbhd U of the diagonal in $X \times X$
- symmetric: It behaves well together with τ .

(日) (四) (日) (日) (日)

Definition

Define

$$\check{\mathcal{N}}_n(X,A)^{\mathbf{s}} := \varprojlim_{U\supset\Delta} \left\{ \mathcal{N}_n(X^{\mathbf{s}}, \overline{pr(X \times A \cup A \times X \cup U)}) \right\}$$

A D N A B N A B N A B N

Definition

Define

$$\check{\mathcal{N}}_n(X,A)^{\mathbf{s}} := \varprojlim_{U\supset\Delta} \left\{ \mathcal{N}_n(X^{\mathbf{s}}, \overline{pr(X \times A \cup A \times X \cup U)}) \right\}$$

and call it Čech bordism

A D N A B N A B N A B N

Definition

Define

$$\check{\mathcal{N}}_n(X,A)^{\mathbf{s}} := \varprojlim_{U\supset\Delta} \left\{ \mathcal{N}_n(X^{\mathbf{s}}, \overline{pr(X \times A \cup A \times X \cup U)}) \right\}$$

and call it Čech bordism according to the definition of Čech homology

< □ > < 同 > < 回 > < Ξ > < Ξ

Definition

Define

$$\check{\mathcal{N}}_n(X,A)^{\mathbf{s}} := \lim_{U\supset\Delta} \left\{ \mathcal{N}_n(X^{\mathbf{s}}, \overline{pr(X \times A \cup A \times X \cup U)}) \right\}$$

and call it Čech bordism according to the definition of Čech homology

$$\check{H}_n(X,A)^{\mathbf{s}} = \lim_{U \supset \Delta} \{H_n(X^{\mathbf{s}}, pr(X \times A \cup A \times X \cup U), \mathbb{Z}_2)\}$$

Definition

Define

$$\check{\mathcal{N}}_n(X,A)^{\mathbf{s}} := \varprojlim_{U \supset \Delta} \left\{ \mathcal{N}_n(X^{\mathbf{s}}, \overline{pr(X \times A \cup A \times X \cup U)}) \right\}$$

and call it Čech bordism according to the definition of Čech homology

$$\check{H}_n(X,A)^{\mathbf{s}} = \lim_{U \supset \Delta} \{H_n(X^{\mathbf{s}}, pr(X \times A \cup A \times X \cup U), \mathbb{Z}_2)\}$$

Theorem (isomorphy of singular and Čech versions) Let (X, A) be such that X is an ENR and $A \subset X$ is an ENR as well.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Definition

Define

$$\check{\mathcal{N}}_n(X,A)^{\mathbf{s}} := \lim_{U \supset \Delta} \left\{ \mathcal{N}_n(X^{\mathbf{s}}, \overline{pr(X \times A \cup A \times X \cup U)}) \right\}$$

and call it Čech bordism according to the definition of Čech homology

$$\check{H}_n(X,A)^{\mathbf{s}} = \lim_{U \supset \Delta} \{H_n(X^{\mathbf{s}}, pr(X \times A \cup A \times X \cup U), \mathbb{Z}_2)\}$$

Theorem (isomorphy of singular and Čech versions)

Let (X, A) be such that X is an ENR and $A \subset X$ is an ENR as well. Then

 $\check{\mathcal{N}}_*(X,A) \simeq \mathcal{N}_*(X,A)$ and $\check{H}_*(X,A) \simeq H_*(X,A,\mathbb{Z}_2).$

< □ > < □ > < □ > < □ > < □ > < □ >

The aim of the talk

Theorem

Let (X, A) be a topological pair. Then the diagram

$$\begin{array}{c|c} \mathcal{N}_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}_2) \\ & & & & & \\ (\cdot)^{\mathfrak{s}} & & & (\cdot)^{\mathfrak{s}} \\ & & & & & \\ \mathcal{N}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\mu} & \mathcal{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}_2) \end{array}$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

• • = • • = •

Let (X, A) be a pair of topological spaces.

イロト イポト イヨト イヨト

э

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

3

イロト イポト イヨト イヨト

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$\begin{aligned} (\cdot)^{\mathbf{s}} \colon \mathcal{N}_{k}(X,A) &\to \check{\mathcal{N}}_{2k}((X,A)^{\mathbf{s}}) \\ [M,\partial M;f] &\mapsto [M,\partial M;f]^{\mathbf{s}} \\ &:= \left\{ \left[(M \times M \setminus V) / \tau, \partial(-), f \times f / \tau_{|(-)} \right] \right\}_{U \supset \Delta} \end{aligned}$$

3

(日) (四) (日) (日) (日)

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$\begin{aligned} (\cdot)^{\mathbf{s}} \colon \mathcal{N}_{k}(X,A) &\to \check{\mathcal{N}}_{2k}((X,A)^{\mathbf{s}}) \\ [M,\partial M;f] &\mapsto [M,\partial M;f]^{\mathbf{s}} \\ &:= \left\{ \left[(M \times M \setminus V) / \tau, \partial(-), f \times f / \tau_{|(-)} \right] \right\}_{U \supset \Delta} \end{aligned}$$

Theorem

The symmetric squaring map in bordism is well defined.

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

Theorem

The symmetric squaring map in bordism is well defined. *Proof(idea)*:

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$\begin{split} (\cdot)^{\mathbf{s}} &: \mathcal{N}_{k}(X, A) \to \check{\mathcal{N}}_{2k}((X, A)^{\mathbf{s}}) \\ & [M, \partial M; f] \mapsto [M, \partial M; f]^{\mathbf{s}} \\ & := \left\{ \left[(M \times M \setminus V) \, / \tau, \partial(-), f \times f / \tau_{|(-)} \right] \right\}_{U \supset \Delta} \end{split}$$

Theorem

The symmetric squaring map in bordism is well defined. **Proof(idea)**: Let $(M_0, \partial M_0; f_0) \sim (M_1, \partial M_1, f_1)$ via $F: W \rightarrow X$.

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$\begin{split} (\cdot)^{\mathbf{s}} &: \mathcal{N}_{k}(X, A) \to \check{\mathcal{N}}_{2k}((X, A)^{\mathbf{s}}) \\ & [M, \partial M; f] \mapsto [M, \partial M; f]^{\mathbf{s}} \\ & := \left\{ \left[(M \times M \setminus V) \, / \tau, \partial(-), f \times f / \tau_{|(-)} \right] \right\}_{U \supset \Delta} \end{split}$$

Theorem

The symmetric squaring map in bordism is well defined. **Proof(idea)**: Let $(M_0, \partial M_0; f_0) \sim (M_1, \partial M_1, f_1)$ via $F: W \rightarrow X$.Construct a bordism $(M_0, \partial M_0; f_0)^{s} \sim (M_1, \partial M_1, f_1)^{s}$ as a subset of the fibred product

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$\begin{split} (\cdot)^{\mathbf{s}} &: \mathcal{N}_{k}(X, A) \to \check{\mathcal{N}}_{2k}((X, A)^{\mathbf{s}}) \\ & [M, \partial M; f] \mapsto [M, \partial M; f]^{\mathbf{s}} \\ & := \left\{ \left[(M \times M \setminus V) \, / \tau, \partial(-), f \times f / \tau_{|(-)} \right] \right\}_{U \supset \Delta} \end{split}$$

Theorem

The symmetric squaring map in bordism is well defined. **Proof(idea)**: Let $(M_0, \partial M_0; f_0) \sim (M_1, \partial M_1, f_1)$ via $F: W \rightarrow X$.Construct a bordism $(M_0, \partial M_0; f_0)^{s} \sim (M_1, \partial M_1, f_1)^{s}$ as a subset of the fibred product

$$W \underset{g}{\times} W$$

Let (X, A) be a pair of topological spaces. The symmetric squaring in bordism is defined as

$$\begin{split} (\cdot)^{\mathbf{s}} &: \mathcal{N}_{k}(X, A) \to \check{\mathcal{N}}_{2k}((X, A)^{\mathbf{s}}) \\ & [M, \partial M; f] \mapsto [M, \partial M; f]^{\mathbf{s}} \\ & := \left\{ \left[(M \times M \setminus V) \, / \tau, \partial(-), f \times f / \tau_{|(-)} \right] \right\}_{U \supset \Delta} \end{split}$$

Theorem

The symmetric squaring map in bordism is well defined. **Proof(idea)**: Let $(M_0, \partial M_0; f_0) \sim (M_1, \partial M_1, f_1)$ via $F: W \to X$. Construct a bordism $(M_0, \partial M_0; f_0)^{s} \sim (M_1, \partial M_1, f_1)^{s}$ as a subset of the fibred product

$W \underset{g}{\times} W$

where g is a certain Morse function...

The aim of the talk

Theorem

Let (X, A) be a topological pair. Then the diagram

$$\begin{array}{c|c} \mathcal{N}_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}_2) \\ (\cdot)^{\mathfrak{s}} & & (\cdot)^{\mathfrak{s}} \\ \check{\mathcal{N}}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\check{\mu}} & \check{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}_2), \end{array}$$

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

• • = • • = •

Theorem

The singular chain map

$$(\cdot)^{\mathbf{s}} \colon C_k(X, A, \mathbb{Z}_2) \to C_{2k}((X, A)^{\mathbf{s}}, \mathbb{Z}_2)$$
 by
$$\sigma = \sum_{i=1}^n \sigma_i \mapsto \sigma^{\mathbf{s}} := \sum_{\substack{i < j \\ 1 \le i, j \le n}} pr_{\sharp}(\sigma_i \times \sigma_j),$$

3

(日) (四) (日) (日) (日)

Theorem

The singular chain map

$$(\cdot)^{\mathbf{s}} \colon C_k(X, A, \mathbb{Z}_2) \to C_{2k}((X, A)^{\mathbf{s}}, \mathbb{Z}_2)$$
 by
$$\sigma = \sum_{i=1}^n \sigma_i \mapsto \sigma^{\mathbf{s}} := \sum_{\substack{i < j \\ 1 \le i, j \le n}} pr_{\sharp}(\sigma_i \times \sigma_j),$$

induces a well defined map

$$(\cdot)^{\mathbf{s}} \colon H_k(X, A, \mathbb{Z}_2) \to \check{H}_{2k}((X, A)^{\mathbf{s}}, \mathbb{Z}_2)$$

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

The singular chain map

$$(\cdot)^{\mathbf{s}} \colon C_k(X, A, \mathbb{Z}_2) \to C_{2k}((X, A)^{\mathbf{s}}, \mathbb{Z}_2)$$
 by
$$\sigma = \sum_{i=1}^n \sigma_i \mapsto \sigma^{\mathbf{s}} := \sum_{\substack{i < j \\ 1 \le i, j \le n}} pr_{\sharp}(\sigma_i \times \sigma_j),$$

induces a well defined map

$$(\cdot)^{\mathbf{s}} \colon H_k(X, A, \mathbb{Z}_2) \to \check{H}_{2k}((X, A)^{\mathbf{s}}, \mathbb{Z}_2)$$

This map has the nice property that it "maps fundamental classes to fundamental classes".

• • = • • =

Theorem

The singular chain map

$$(\cdot)^{\mathbf{s}} \colon C_k(X, A, \mathbb{Z}_2) \to C_{2k}((X, A)^{\mathbf{s}}, \mathbb{Z}_2)$$
 by
$$\sigma = \sum_{i=1}^n \sigma_i \mapsto \sigma^{\mathbf{s}} := \sum_{\substack{i < j \\ 1 \le i, j \le n}} pr_{\sharp}(\sigma_i \times \sigma_j),$$

induces a well defined map

$$(\cdot)^{\mathbf{s}} \colon H_k(X, A, \mathbb{Z}_2) \to \check{H}_{2k}((X, A)^{\mathbf{s}}, \mathbb{Z}_2)$$

This map has the nice property that it "maps fundamental classes to fundamental classes".

But what does that mean in the Čech context?

Denise Krempasky

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold

10.0

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

▲ 同 ▶ ▲ 三 ▶

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2k}((B, \partial B)^{\mathbf{s}})$

▲ (四) ▶ (▲ 三) ▶

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2k}((B, \partial B)^{\mathbf{s}})$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.

▲ (型) ▶ (▲ 三) ▶

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2k}((B, \partial B)^{\mathbf{s}})$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.

For every neighbourhood U of the diagonal in $B \times B$,

< (日) > (日 >)

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2k}((B, \partial B)^{\mathbf{s}})$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.

For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$\sigma_{\mathbf{f}}^{U} \in \mathcal{H}_{2k}\left(\left(\left(B \times B\right) \setminus \left(\partial \left(B \times B\right) \cup U\right)\right) / \tau, \partial(-), \mathbb{Z}_{2}\right)\right)$$

▲ 同 ▶ ▲ 三 ▶

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2k}((B, \partial B)^{\mathbf{s}})$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.

For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$\sigma_{\mathbf{f}}^{U} \in H_{2k}\left(\left(\left(B \times B\right) \setminus \left(\partial \left(B \times B\right) \cup U\right)\right) / \tau, \partial(-), \mathbb{Z}_{2}\right)\right)$$

which can be mapped by inclusion to

$$H_{2k}(i)(\sigma_{\mathbf{f}}^U) \in H_{2k}\left(B^{\mathbf{s}}, \overline{pr(\partial(B \times B) \cup U)}, \mathbb{Z}_2\right).$$

▲ 同 ▶ ▲ 三 ▶

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2k}((B, \partial B)^{\mathbf{s}})$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.

For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$\sigma_{\mathbf{f}}^{U} \in \mathcal{H}_{2k}\left(\left(\left(B \times B\right) \setminus \left(\partial \left(B \times B\right) \cup U\right)\right) / \tau, \partial(-), \mathbb{Z}_{2}\right)\right)$$

which can be mapped by inclusion to

$$H_{2k}(i)(\sigma_{\mathbf{f}}^U) \in H_{2k}\left(B^{\mathbf{s}}, \overline{pr(\partial(B \times B) \cup U)}, \mathbb{Z}_2\right).$$

And it is true that $p(\sigma_{\mathbf{f}}^{\mathbf{s}}) = H_{2k}(i)(\sigma_{\mathbf{f}}^{U})$,

< (回) × < 三 > <

Let $(B, \partial B)$ be a k-dimensional compact smooth oriented manifold and let

 $\sigma_{\mathbf{f}} \in H_k(B, \partial B, \mathbb{Z}_2)$ be its fundamental class.

Then $\sigma_{\mathbf{f}}^{\mathbf{s}} \in \check{H}_{2k}((B, \partial B)^{\mathbf{s}})$ is the fundamental class of $(B, \partial B)^{\mathbf{s}}$ in the following sense.

For every neighbourhood U of the diagonal in $B \times B$, there is a fundamental class

$$\sigma_{\mathbf{f}}^{U} \in \mathcal{H}_{2k}\left(\left(\left(B \times B\right) \setminus \left(\partial \left(B \times B\right) \cup U\right)\right) / \tau, \partial(-), \mathbb{Z}_{2}\right)\right)$$

which can be mapped by inclusion to

$$H_{2k}(i)(\sigma_{\mathbf{f}}^U) \in H_{2k}\left(B^{\mathbf{s}}, \overline{pr(\partial(B \times B) \cup U)}, \mathbb{Z}_2\right).$$

And it is true that $p(\sigma_{\mathbf{f}}^{\mathbf{s}}) = H_{2k}(i)(\sigma_{\mathbf{f}}^{U})$, where *p* denotes the projection onto the factor of *U* in the inverse limit group $\check{H}_{2k}((B,\partial B)^{\mathbf{s}})$.

The aim of the talk

Theorem

Let (X, A) be a topological pair. Then the diagram

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

Definition

A passage from bordism to homology can be defined in the following way:

▶ ∢ ⊒

э

Definition

A passage from bordism to homology can be defined in the following way:

$$\mu \colon \mathcal{N}_k(X, A) \to H_k(X, A, \mathbb{Z}_2)$$
$$[M, \partial M; f] \mapsto \mu(M, \partial M, f) := H_k(f)(\sigma_{\mathbf{f}}),$$

э

Definition

A passage from bordism to homology can be defined in the following way:

$$\mu \colon \mathcal{N}_k(X, A) \to H_k(X, A, \mathbb{Z}_2)$$
$$[M, \partial M; f] \mapsto \mu(M, \partial M, f) := H_k(f)(\sigma_{\mathbf{f}}),$$

where

э

▲ 同 ▶ → 三 ▶

Definition

A passage from bordism to homology can be defined in the following way:

$$\mu \colon \mathcal{N}_k(X, A) \to H_k(X, A, \mathbb{Z}_2)$$
$$[M, \partial M; f] \mapsto \mu(M, \partial M, f) := H_k(f)(\sigma_{\mathbf{f}}).$$

where

• $\sigma_{\mathbf{f}} \in H_k(M, \partial M, \mathbb{Z}_2)$ is the fundamental class and

Definition

A passage from bordism to homology can be defined in the following way:

$$\mu \colon \mathcal{N}_k(X, A) \to H_k(X, A, \mathbb{Z}_2)$$

 $[M, \partial M; f] \mapsto \mu(M, \partial M, f) := H_k(f)(\sigma_f),$

where

- $\sigma_{\mathbf{f}} \in H_k(M, \partial M, \mathbb{Z}_2)$ is the fundamental class and
- $H_k(f)$ is the map which is induced by $f: (M, \partial M) \to (X, A)$ in homology.

通 ト イ ヨ ト イ ヨ ト

Definition

A passage from bordism to homology can be defined in the following way:

$$\mu \colon \mathcal{N}_k(X, A) \to H_k(X, A, \mathbb{Z}_2)$$

 $[M, \partial M; f] \mapsto \mu(M, \partial M, f) := H_k(f)(\sigma_{\mathbf{f}}),$

where

- $\sigma_{\mathbf{f}} \in H_k(M, \partial M, \mathbb{Z}_2)$ is the fundamental class and
- $H_k(f)$ is the map which is induced by $f: (M, \partial M) \to (X, A)$ in homology.

This induces a map $\check{\mu}$ between the Čech versions of bordism and homology

Definition

A passage from bordism to homology can be defined in the following way:

$$\mu \colon \mathcal{N}_k(X, A) \to H_k(X, A, \mathbb{Z}_2)$$
$$[M, \partial M; f] \mapsto \mu(M, \partial M, f) := H_k(f)(\sigma_f),$$

where

- $\sigma_{\mathbf{f}} \in H_k(M, \partial M, \mathbb{Z}_2)$ is the fundamental class and
- $H_k(f)$ is the map which is induced by $f: (M, \partial M) \to (X, A)$ in homology.

This induces a map $\check{\mu}$ between the Čech versions of bordism and homology

$$\check{\mu}\colon \check{\mathcal{N}}_{2k}((X,A)^{\mathbf{s}})\to \check{H}_{2k}((X,A)^{\mathbf{s}},\mathbb{Z}_2)$$

The aim of the talk

Theorem

Let (X, A) be a topological pair. Then the diagram

is commutative.

- The vertical arrows are the "symmetric squaring" maps in unoriented bordism and in homology.
- The horizontal arrows represent the canonical map between bordism and homology.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proof.

Proof.

 $(\mu([B,\partial B,f]))^{s} =$

イロト イ部ト イヨト イヨト 二日

Denise Krempasky

Proof.

 $(\mu([B,\partial B,f]))^{s} = (H_{k}(f)(\sigma_{f}))^{s}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $(\mu([B,\partial B,f]))^{s} = (H_{k}(f)(\sigma_{f}))^{s}$, with fundamental class σ_{f} of $(B,\partial B)$

イロト 不得 トイヨト イヨト 二日

$(\mu([B,\partial B,f]))^{\mathbf{s}} = (H_k(f)(\sigma_{\mathbf{f}}))^{\mathbf{s}}, \text{ with fundamental class } \sigma_{\mathbf{f}} \text{ of } (B,\partial B)$ $= (H_k(f)\sum_i \sigma_i)^{\mathbf{s}}$

イロト イポト イヨト イヨト 二日

$(\mu([B,\partial B, f]))^{\mathbf{s}} = (H_k(f)(\sigma_{\mathbf{f}}))^{\mathbf{s}}, \text{ with fundamental class } \sigma_{\mathbf{f}} \text{ of } (B,\partial B)$ $= (H_k(f)\sum_i \sigma_i)^{\mathbf{s}}$ $= (\sum_i C_k(f)\sigma_i)^{\mathbf{s}}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $(\mu([B, \partial B, f]))^{\mathbf{s}} = (H_k(f)(\sigma_{\mathbf{f}}))^{\mathbf{s}}, \text{ with fundamental class } \sigma_{\mathbf{f}} \text{ of } (B, \partial B)$ $= (H_k(f) \sum_i \sigma_i)^{\mathbf{s}}$ $= (\sum_i C_k(f)\sigma_i)^{\mathbf{s}}$ $= \sum_{i < j} pr(C_k(f)\sigma_i \times C_k(f)\sigma_j)$

$(\mu([B, \partial B, f]))^{\mathbf{s}} = (H_k(f)(\sigma_{\mathbf{f}}))^{\mathbf{s}}, \text{ with fundamental class } \sigma_{\mathbf{f}} \text{ of } (B, \partial B)$ $= (H_k(f) \sum_i \sigma_i)^{\mathbf{s}}$ $= (\sum_i C_k(f)\sigma_i)^{\mathbf{s}}$ $= \sum_{i < j} pr(C_k(f)\sigma_i \times C_k(f)\sigma_j)$ $= \sum_{i < j} pr(C_k(f \times f)(\sigma_i \times \sigma_j))$

 $(\mu([B,\partial B,f]))^{s} = (H_{k}(f)(\sigma_{f}))^{s}$, with fundamental class σ_{f} of $(B,\partial B)$ $= (H_k(f)\sum_i \sigma_i)^{\mathbf{s}}$ $= (\sum_{i} C_k(f)\sigma_i)^{\mathbf{s}}$ $=\sum_{i< j} pr\left(C_k(f)\sigma_i \times C_k(f)\sigma_j\right)$ $=\sum_{i< j} \operatorname{pr}\left(C_k(f\times f)(\sigma_i\times \sigma_j)\right)$ $= H_k(f^{\mathbf{s}})((\sigma_{\mathbf{f}})^{\mathbf{s}})$

 $(\mu([B,\partial B,f]))^{s} = (H_{k}(f)(\sigma_{f}))^{s}$, with fundamental class σ_{f} of $(B,\partial B)$ $=(H_k(f)\sum_i\sigma_i)^{\mathbf{s}}$ $=(\sum_{i}C_{k}(f)\sigma_{i})^{\mathbf{s}}$ $=\sum_{i< j} pr\left(C_k(f)\sigma_i \times C_k(f)\sigma_j\right)$ $= \sum_{i < i} \operatorname{pr} \left(C_k(f \times f)(\sigma_i \times \sigma_j) \right)$ $= H_k(f^{\mathbf{s}})((\sigma_{\mathbf{f}})^{\mathbf{s}})$ $= \check{\mu} [B \times B \setminus (\ldots) / \tau, \partial(-), f^{s}]$

$$(\mu([B, \partial B, f]))^{\mathbf{s}} = (H_k(f)(\sigma_{\mathbf{f}}))^{\mathbf{s}}, \text{ with fundamental class } \sigma_{\mathbf{f}} \text{ of } (B, \partial B)$$
$$= (H_k(f) \sum_i \sigma_i)^{\mathbf{s}}$$
$$= (\sum_i C_k(f)\sigma_i)^{\mathbf{s}}$$
$$= \sum_i pr(C_k(f)\sigma_i \times C_k(f)\sigma_j)$$
$$= \sum_{i < j} pr(C_k(f \times f)(\sigma_i \times \sigma_j))$$
$$= H_k(f^{\mathbf{s}})((\sigma_{\mathbf{f}})^{\mathbf{s}})$$
$$= \check{\mu}[B \times B \setminus (\ldots)/\tau, \partial(-), f^{\mathbf{s}}], \text{ because } (\sigma_{\mathbf{f}})^{\mathbf{s}} \text{ is the fundamental class of } (B \times B \setminus (\ldots)/\tau, \partial(-)/\tau))$$

 $(\mu([B,\partial B,f]))^{s} = (H_{k}(f)(\sigma_{f}))^{s}$, with fundamental class σ_{f} of $(B,\partial B)$ $=(H_k(f)\sum_i\sigma_i)^{\mathbf{s}}$ $= (\sum_{i} C_k(f)\sigma_i)^{\mathbf{s}}$ $=\sum_{i< j} pr\left(C_k(f)\sigma_i \times C_k(f)\sigma_j\right)$ $=\sum_{i < i} pr\left(C_k(f \times f)(\sigma_i \times \sigma_j)\right)$ $= H_k(f^{\mathbf{s}})((\sigma_{\mathbf{f}})^{\mathbf{s}})$ $= \check{\mu} [B \times B \setminus (\ldots) / \tau, \partial(-), f^{s}]$, because $(\sigma_{f})^{s}$ is the fundamental class of $(B \times B \setminus (...)/\tau, \partial(-)/\tau)$ $= \check{u}([B, \partial B, f]^{s})$

The coordinate flipping involution $\boldsymbol{\tau}$

э

The coordinate flipping involution $\boldsymbol{\tau}$

• preserves orientations for even dimensions k,

The coordinate flipping involution $\boldsymbol{\tau}$

- preserves orientations for even dimensions k,
- inverts orientations for odd dimensions k.

The coordinate flipping involution $\boldsymbol{\tau}$

- preserves orientations for even dimensions k,
- inverts orientations for odd dimensions k.

Theorem

Let k be even and (X, A) a topological pair.

The coordinate flipping involution $\boldsymbol{\tau}$

- preserves orientations for even dimensions k,
- inverts orientations for odd dimensions k.

Theorem

Let k be even and (X, A) a topological pair. Then the following diagram commutes.

$$\begin{array}{c|c} \Omega_k(X,A) & \xrightarrow{\mu} & H_k(X,A,\mathbb{Z}) \\ \hline & & & & & \\ (\cdot)^{\mathfrak{s}} & & & & \\ & & & & & \\ \check{\Omega}_{2k}((X,A)^{\mathfrak{s}}) & \xrightarrow{\mu} & \check{H}_{2k}((X,A)^{\mathfrak{s}},\mathbb{Z}), \end{array}$$

Thank you for your attention!

References:

- **P. E. Conner, E. E. Floyd**, *Differentiable periodic maps*, Bull. Amer. Math. Soc. **68**, (1962), 76–86.
- A. Dold, Lectures on algebraic topology., Second Edition, Springer-Verlag, Berlin, 200, Grundlehren der Mathematischen Wissenschaften, (1980), xi+377.
- **D. Nakiboğlu**, *Die Dachabbildung in ganzzahliger Čech-Homologie*, diploma thesis, http://arxiv.org/pdf/1002.1449.
- **T. Schick, R. Simon, S. Spiez, H. Torunczyk**, *A parametrized version of the Borsuk Ulam theorem*, preprint, http://arxiv.org/pdf/0709.1774v4.
 - **R. Thom**, *Quelques propriétés globales des variétés différentiables.*, Comment. Math. Helv. **28**, (1954), 17–86.

3

- 4 回 ト 4 ヨ ト 4 ヨ ト