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This semester we want to study groups of homotopy spheres. Let θn be the group of
closed n-manifolds homotopy equivalent to the n-sphere up to h-cobordism. It follows
from the h-cobordism theorem that this equals the group of differentiable structures
on Sn if n ≥ 5. The subgroup generated by those homotopy n-spheres which bound
parallelizable manifolds will be denoted by bPn+1. Let Jn : πn(SO) → πstn be the sta-
ble J-homomorphism, Ωn

f the group of stably framed closed n-manifolds up to framed
cobordism and Σn

f the subgroup generated by stably framed homotopy spheres. The
goal is to construct for n ≥ 5 the following exact sequence

0 // bPn+1 // θn // cokerJn // Ωn
f/Σ

n
f

// 0.(1)

We will see that we can say a lot about the groups bPn and Ωn
f/Σ

n
f (n ≥ 5, n 6= 6, 14).

For the first group, the question is when the interior of a parallelizable manifold bound-
ing a homotopy sphere can be manipulated in a way such that it becomes contractible
while leaving its boundary unchanged. If one can accomplish this, the homotopy sphere
one started with is diffeomorphic to the standard sphere by the h-cobordism theorem.
Concerning the second group, the question is whether a given stably framed mani-
fold is framed cobordant to a homotopy sphere. It turns out that in either case there
are no obstructions in the odd-dimensional case, hence bP 2k+1 = Ω2k+1

f /Σ2k+1
f = {1}

(k > 1). The obstructions in dimensions 4k (k > 1) are given by the signature. It
follows that bP 4k is isomorphic to the subgroup of the integers given by the signatures
of parallelizable manifolds which bound homotopy spheres modulo the subgroup gen-
erated by the signatures of those parallelizable manifolds with boundary diffeomorphic
to the (4k − 1)-sphere. This number can be calculated in terms of the order of the
image of the J-homomorphism in degree 4k − 1 and the kth Bernoulli number. The
signature of a stably framed manifold vanishes by the Hirzebruch signature theorem,
hence Ω4k

f /Σ
4k
f = {1}. The obstructions in dimensions 4k + 2 (k 6= 1, 3) are given by

the Kervaire invariant, which implies bP 4k+2 ∼= Z/2 and Ω4k+2
f /Σ4k+2

f
∼= Z/2 if there

is a closed stably parallelizable (4k + 2)-manifold with Kervaire invariant one and both
groups vanish otherwise.

The image of the J-homomorphism is known due to work of Adams, which leads to
computations such as θ7 ∼= Z/28. Further calculations of θn depend on the knowledge

Date: September 27, 2013.

1



2 DOMINIK OSTERMAYR

of the stable homotopy groups of spheres and the solution of the Kervaire invariant one
problem.

The main reference will be [2, Chapters VI - X], but it might be helpful to consult
the original paper [1] and Levine’s lectures [3] as well. A modern treatment using the
surgery exact sequence can be found in [4, Chapter 6]. The seminar will be divided into
5 parts.

The first part starts with basic constructions with manifolds, such as attaching handles.
We will also discuss plumbing. In the second part we will prove the Handle Presentation
Theorem, which asserts that every manifold can be constructed by successive attachment
of handles. Based on this theorem we will then prove the h-cobordism theorem in the
third part. An immediate consequence is that the group θn can be identified with the
group of differential structures on Sn if n ≥ 5. The fourth part will consist of a survey
of framed bordism. Finally, in the last part we will discuss surgery, construct the exact
sequence (1) and discuss some computations.

TALKS

Talk 1. [17.10.−Dominik Ostermayr] Operations on Manifolds I (p. 89 - 102)
The main goal of this talk is to explain how certain constructions on manifolds can be
carried out smoothly. The first example you should discuss is the connected sum of
two manifolds (Theorem 1.1). An important consequence of Propositions 1.2 and 1.3 is
Corollary 1.4. Together with the h-cobordism theorem it says that homotopy spheres
are invertible in the monoid of n-manifolds under connected sum. Time depending, Sec-
tion 2 may be skipped. More importantly, you should introduce the other constructions
such as the boundary connected sum (Section 3), joining two manifolds along submani-
folds (Section 4) and joining manifolds along submanifolds along the boundary (Section
5). Proposition 5.3 will be of techichal importance in the course of the proof of the
cancellation lemma in Talk 2.

Talk 2. [17.10.− ? ?] Operations on Manifolds II (p. 103 - 110)
A special case of the construction from the first talk is attaching handles, i.e. joining
a manifold and a disk along a sphere. This is covered in Section 6. The second part
of the talk should be devoted to the proof of the cancellation lemma (Theorem 7.4),
which states that sometimes different sequences of attaching handles yield the same
result.

Talk 3. [31.10.−Malte Pieper] Operations on Manifolds III (p. 110 - 114)
In the first part you should explain the combinatorial attachment of handles (Section
8), which yields an easier description of the homeomorphism type of a manifold with
a handle attached. Then introduce the notion of surgery. Attaching a handle along
a sphere to M × {1} ⊂ M × I yields the trace of the surgery, the upper boundary of
which is called the effect of “surgery” (Section 9). Finally, present the results about the
homology and the intersection numbers of submanifolds of the trace of a surgery 10.1
-10.5.
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Talk 4. [31.10.−Markus Hausmann] Operations on Manifolds IV (p. 115 - 124)
The main subject of this talk is to discuss a certain class of examples of manifolds called
(m, k)-handlebodies (of genus g). Those are manifolds which are obtained by attaching
g k-handles to the disk Dm. It turns out that if m > 2k, those are always the boundary
connected sum of (m − k)-disc bundles over Sk (Section 11, Proposition 11.2). This
leads to a complete classification of (m, 1)-handlebodies if m > 2 (Corollary 11.4). Time
depending, Proposition 11.5 and 11.6 can be skipped. The situation m = 2k is different
and is discussed in Section 12. The boundary of a (2k, k)-handlebody B turns out to
be a homotopy sphere if the intersection matrix is unimodular and important homotopy
spheres like the Kervaire spheres arise this way. The construction of those is usually
referred to as plumbing.

Talk 5. [14.11.−Alexander Koerschgen] Handle Presentation Theorem I (p. 127 - 130)
The subject of the first talk is to prove Proposition 2.2, which states that given two
regular values a < b of a smooth function f : M → R on a compact manifold, then
the cobordism (f−1(a), f−1[a, b], f−1(b)) is diffeomorphic to an elementary cobordism,
i.e. the trace of a surgery, provided f has exactly one critical point in f−1[a, b] and
f−1[a, b] ∩ ∂M = ∅.

Talk 6. [14.11.− Christian Wimmer] Handle Presentation Theorem II (p. 126-127, p.
131 - 134)
Start by proving the Handle Presentation Theorem, which says that any cobordism can
be obtained by successivley attaching handles (Theorem 1.1 and Corollary 1.2). This
results in a presentation of the cobordism. By construction one can also obtain the dual
presentation which geometrically means “turning the cobordism upside down”t. This
will be used to prove a Poincaré duality theorem for cobordisms in Talk 7. Construct
the chain complex from a presentation of a cobordism which calculates its homology
(Theorem 3.4) and make the relation of the chain complex of a presentation with the
chain complex of the dual presentation precise (Proposition 3.5).

Talk 7. [28.11.− ? ?] Handle Presentation Theorem III (p. 135 - 138)
In this talk some applications of the Handle Presentation Theorem will be presented.
The first one is a theorem of Morse (Theorem 4.1). It says that given a Morse function
f on a compact, closed manifold M , we have for any n

bn − bn−1 + bn−2 − · · · ≤ cn − cn−1 + cn−2 − · · · ,

where bi are the Betti numbers and ci is the number of critical points of index i. This
implies immediately that χ(M) =

∑
i(−1)ici. Another one is the Poincaré duality

theorem for cobordisms (Theorem 5.1), i.e. given a cobordism (V0,W, V1) such that W
is orientable, then Hi(W,V1) ∼= Hm−i(W,V0), where m = dimW . Section 6 contains a
technical theorem which ensures that one can always find a presentation with either one
or no 0-handle (Theorem 6.1). This has several corollaries for the homotopy groups of
a cobordism (6.2 - 6.3) and will be important later, e.g. in the proof of VIII Theorem
1.6.
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Talk 8. [28.11.− ? ?] The h-Cobordism Theorem I (p. 143 - 150)
Given a presentation of a cobordism, the differentials are given by matrices with integer
coefficients. The main theorem of Section 1 is that under mild assumptions these matri-
ces can be assumed to be lower triangular (Theorem 1.6). Section 2 is concerned with
another simplicfication, namely removing a row and column which intersect in ±1 and
have zero entries elsewhere. It turns out that this is possible for m-handles where m ≥ 4
and for 3-handles under a simply connectivity assumption (Theorem 2.3).

Talk 9. [12.12.−Alexander Koerschgen] The h-Cobordism Theorem II (p. 151 - 155)
The problem with cancelling 1- and 2-handles that occured in the previous talk are dealt
with in Proposition 3.1. Namely, it is not always possible to cancel such handles, however
one can replace them by 3-handles. Now, we will be able to prove the main theorem
of this section Theorem 4.1, which asserts that for any cobordism (V0,W, V1) such that
H∗(W,Vi) are free, there is a presentation such that the number of i-handles equals
the ith Betti number bi(W,V0). An immediate Corollary is the h-cobordism theorem
(Theorem 4.3). This has a couple of Corollaries such as the uniqueness of the smooth
structure on the disc Dm (m ≥ 6) and the Poincaré conjecture for smooth manifolds of
dimension larger than 4 (Corollaries 4.5, 4.6). If time permits, you may present 4.7, 4.8
or 4.9.

Talk 10. [12.12.− Ruth Joachimi] The h-Cobordism Theorem III (p. 156 - 160)
Using the h-cobordism theorem, start by showing that m-manifolds modulo h-cobordism
form a commutative monoid under the operation of connected sum. The identity is rep-
resented by manifolds bounding a contractible manifold and the group of invertible
elements is given by the group of homotopy spheres θm (Theorem 5.5). Another conse-
quence of the h-cobordism theorem is that for m ≥ 5, the group of homotopy spheres θm

is isomorphic to to the group of diffeomorphisms Sm−1 modulo those which extend over
Dm and to the group of invertible differentiable structures on a topological m-sphere.
If time permits, you can prove Theorem 6.2. It is a generalization of the Heegaard
decomposition of 3-manifolds.

Talk 11. [09.01.− Christian Wimmer] Framed Manifolds I (p. 167 - 182)
The goal of this talk is to give the first part of a survey on framed manifolds. Following
Sections 1 - 5, start with a review about framings of vector bundles, stable triviality and
parallelizability (Section 1). Then recall briefly the notions of framed submanifolds of
a manifold, framed cobordism and some properties (Section 2). Afterwards, introduce
the bordism groups Ωk

f (M) and compute Ω0
f (M) if time permits. Proceed by discussing

the Pontriagin construction (Section 5). If time permits you can compute [M,Sn] for
n-manifolds M .

Talk 12. [09.01.−Markus Land] Framed Manifolds II (p. 183 - 191)
This talk is the second part of the survey on framed manifolds. To begin with discuss
the geometric suspension and state Freudenthal’s theorem for the homotopy groups of
spheres (6.2). Go on by defining the J-homomorphism, explain how it gives rise to
the stable J-homomorphism, give the description of the image of J (6.3.1) as well as



GROUPS OF HOMOTOPY SPHERES GRADUATE STUDENT SEMINAR WINTER TERM 2013 5

the kernel of the J-homomorphism (6.3.4). Then you should discuss some properties
of stable parallelizability (Theorem 7.2). As a consequence of Proposition 7.4, you
should show that the Kervaire manifolds are parallelizable (7.5). In the final part you
should first introduce almost parallelizable manifolds. Show that this is equivalent to
stable parallelizability in dimensions not divisible by 4 whereas in dimensions divisible
by 4 stable parallelizability is equivalent to the signature to vanish (Theorem 8.5). A
corollary is that homotopy spheres are stably parallelizable (Corollary 8.6). At the end
you should compute the subgroup of the integers generated by the signatures of almost
parallelizable closed 4k-manifolds (Theorem 8.7).

Talk 13. [23.01.−Malte Pieper] Surgery I (p. 195 - 202)
The aim of the next three talks is to compute the groups bPn+1 in the last talk. Given
a manifold bounding a homotopy sphere, the aim is to simplify the interior without
affecting the boundary. This is done by the method of surgery. In this talk you should
first discuss the effect of surgery on homology (Section 1). The main result of Section
2 is that framed surgery below the middle dimension is always possible, i.e. any stably
framed manifold of dimension m ≥ 2k > 4 is framed cobordant to a (k − 1)-connected
manifold.

Talk 14. [23.01.−Markus Hausmann] Surgery II (p. 202 - 209)
This talk is concerened with surgery in the middle dimension of even dimensional mani-
folds. The question is when a stably framed 2k-manifold, closed or bounded by a homo-
topy sphere, is framed cobordant to a k-connected stably framed manifold. If dimM = 4n
(n > 1), the only obstruction is the signature (Theorem 3.4). If dimM = 4n+2 (n > 1),
the only obstruction is the Kervaire invariant (Theorem 4.6).

Talk 15. [06.02.−Dominik Ostermayr] Surgery III (p. 210 - 215)
The topic of this talk is surgery on odd-dimensional manifolds. The main result is that
any closed stably framed manifold is framed cobordant to a homotopy sphere and if
a homotopy sphere Σ is the boundary of a stably framed manifold, then Σ bounds a
contractible manifold and is thus diffeomorphic to the sphere by the h-cobordism theorem
(Corollaries 5.2, 5.3).

Talk 16. [06.02.−Markus Land] Surgery IV (p. 215 - 219)
In this talk all the pieces are put together to compute bPn+1 (Proposition 6.2). By
definition it is a subgroup of θn and non-triviality implies for instance the existence
of exotic smooth structures on spheres. After that explain the sequence 6.1 and how
it yields (1). Then you should prove Theorem 6.7 and explain the connection to the
Kervaire invariant one problem. Finally, using Adams’ calculation of the image of the
J-homomorphism, you should calculate θn for some values of n.
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