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Category of T-algebras

Monad

Let C be a category. A monad (T , µ, η) in a category C consists in
giving:

1 A functor T : C −→ C;
2 Natural transformations η : IdC −→ T and µ : TT −→ T ;

3 Axioms given by the commutativity of the following diagrams:
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Category of T-algebras

T-algebra

Let C be a category and (T , µ, η) a monad on C. An algebra on a
monad (T , µ, η), written (C , ξC ), consists in giving:

1 For every object C of C, a functor ξC : TC −→ C ;

2 Axioms given by the commutativity of the following diagrams:

TTC
µC //

T (ξC )

��

TC

ξC

��
TC

ξC // C

C
ηC //

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

TC

ξC

��
C

An algebra on a monad (T , µ, η) is also called a T-algebra.
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Category of T-algebras

Morphism of T-algebras

Let C be a category and (T , µ, η) a monad on C. Given two
T-algebras (C , ξC ) and (D, ξD) on C, a morphism
f : (C , ξC ) −→ (D, ξD) of T-algebras is a morphism f : C −→ D in
C such that the following diagram commutes:

TC
T (f ) //

ξC

��

TD

ξD

��
C

f // D
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Category of T-algebras

Proposition

Let C be a category and (T , µ, η) a monad on C. A category of
T -algebras, written AlgT is such that:

1 A class of objects are T -algebras

2 A set of morphisms are the morphisms of T -algebras

The category AlgT is also called the Eilenberg-Moore category of
the monad.
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Category of T-algebras

Proposition

Let (T , µ, η) be a monad on a category C. Consider the forgetful
functor UT

UT : AlgT −→ C

(C , ξC ) −→ C(
(C , ξC )

f−→ (D, ξD)
)
−→

(
C

f−→ D
)

Then

1 UT is faithful;

2 UT reflects isomorphisms;

3 UT has a left adjoint FT given by:
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Category of T-algebras

FT : C −→ AlgT

C −→ (TC , µC )(
C

f−→ C ′
)
−→

(
(TC , µC )

T (f )−−−→
(
TC ′, µC ′

))
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Model categories

Model category

A model category C consists in giving:

1 A category C
2 Three distinguished classes of maps: weak equivalences,

fibrations and cofibrations
A map which is both a fibration (respectively cofibration) and
a weak equivalence is called an acyclic fibration (respectively
cofibration).

3 The following axioms

MC1 Finite limits and colimits exist in C;
MC2 (2 out of 3) Given maps f and g in C such that fg is defined

and if 2 out of 3 maps f , g , andgf are weak equivalences
faibles, then so is the third.
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Model categories

Model category

MC3 (Retracts) Given maps f and g in C such that fg is a retract
of g and g is a fibration, a cofibration or a weak equivalence,
then so is f .

MC4 (Lifting) Acyclic cofibrations have a left lifting property with
respect to fibrations and cofibrations have a right lifting
property with respect to acyclic fibrations.

MC5 (Factorization) Any map f in C can be factored in two ways:

(i) f = pi , where i is a cofibration and p is an acyclic fibration
(ii) f = pi , where i is an acyclic cofibration and p is a fibration
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Model categories

Monoidal model category

A monoidal model category C is a category which is at once:

1 A closed symmetric monoidal category

2 A closed model category

3 Such that the pushout-product axiom of Hovey is satisfied i.e.
for any pair of cofibrations f : X → Y and g : X ′ → Y ′, the
induced map(

X ⊗ Y ′) tX⊗X ′
(
Y ⊗ X ′) → Y ⊗ Y ′

is a cofibration.
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Model categories

Quillen functor

Let C and D be two model categories and F : C � D : G an
adjoint pair, with F the left adjoint and G the right adjoint. We
say that

1 A functor F : C → D is a left Quillen functor if F preserves
cofibrations and acyclic cofibrations.

2 A functor G : D → C is a right Quillen functor if G preserves
fibrations and acyclic fibrations.
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Model categories

Quillen adjunction

Let C and D be two model categories and F : C � D : G an
adjoint pair, with F the left adjoint and G the right adjoint. We
say that (F ,G ) is a Quillen adjunction if F is a left Quillen functor.

Quillen equivalence

Let C and D be two model categories and F : C � D : G an
adjoint pair that defines a Quillen adjunction, with F the left
adjoint and G the right adjoint.
We say that F is a Quillen equivalence if for all cofibrant objects X
in C and all fibrant objects Y in D, a morphism X → GY is a weak
equivalence in C if and only if the adjoint morphism FX → Y is a
weak equivalence in D.
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Tensorial strength

Strong functor

Let E be a symmetric monoidal closed category. Let A and B be
two E-categories tensored over E . A strong functor (T , σ) consists
in giving:

1 A functor T : A −→ B;

2 A tensorial strength σX ,A : X ⊗ TA −→ T (X ⊗ A);

3 Axioms given by the commutativity of the following diagrams:
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Tensorial strength

Unit axiom

I ⊗ TA
σI ,A //

lTA ##GG
GG

GG
GG

G T (I ⊗ A)

T (lA)zzttttttttt

TA

Associativity axiom

X ⊗ Y ⊗ TA
X⊗σY ,A //

σX⊗Y ,A ((QQQQQQQQQQQQQ X ⊗ T (Y ⊗ A)

σX ,Y⊗Auulllllllllllll

T (X ⊗ Y ⊗ A)
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Tensorial strength

Strong natural transformation

Let E be a symmetric monoidal closed category. Let A and B be
two E-categories tensored over E and let (T1, σ1),(T2, σ2) be two
strong functors such that T1,T2 : A −→ B.
A strong natural transformation Ψ : T1 −→ T2 is given by the
following commutatif diagram:

X ⊗ T1A
σ1 //

X⊗ΨA

��

T1 (X ⊗ A)

ΨX⊗A

��
X ⊗ T2A

σ2 // T2 (X ⊗ A)
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Tensorial strength

Lemma

Strong functors and strong natural transformations constitute the
1-cells and 2-cells of a 2-category of E-tensored categories, written
CatStrong.
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Strong monads

Strong monad

Let E be a monoidal category. A strong monad (T , µ, η, σ) in a
category E consists in giving:

1 A monad (T , µ, η) in a category E ;

2 A tensorial strength σA,B : A⊗ TB −→ T (A⊗ B);

3 Axioms given by the commutativity of the following diagrams:

Unit condition for σ

I ⊗ TA
σI ,A //

lTA
''OOOOOOOOOOOOOO T (I ⊗ A)

T (lA)
wwoooooooooooooo

TA
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Strong monads

Associativity condition for σ

A⊗ B ⊗ TC
A⊗σB,C //

σA⊗B,C ''OOOOOOOOOOOOO A⊗ T (B ⊗ C )

σA,B⊗Cwwoooooooooooo

T (A⊗ B ⊗ C )

Strong naturality condition for η

A⊗ TB
σA,B // T (A⊗ B)

A⊗ B

A⊗ηB

ggOOOOOOOOOOOOO
ηA⊗B

77ooooooooooooo
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Strong monads

Strong naturality condition for µ

A⊗ T 2B
σA,TB //

A⊗µB

��

T (A⊗ TB)
T(σA,B)

// T 2 (A⊗ B)

µA⊗B

��
A⊗ TB

σA,B // T (A⊗ B)
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Strong monads

Theorem

A 2-category of strong functors and strong natural transformations
of tensored E-categories, called CatStrong is 2-isomorphic to a
2-category of E-functors and E-natural transformations of tensored
E-categories, called E-Cat.
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Strong monads

Corollary

Let C be a monoidal category. Given a monad (T , µ, η) in a
category C, the following conditions are equivalent:

1 A monad (T , µ, η) extends to a strong monad (T , µ, η, σ)

2 A monad (T , µ, η) extends to a E-monad (T , µ, η, ϕ)
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Theorem

Let E be a monoidal model category that is cofibrantly generated
and with a cofibrant unit. Given a strong monad (T , µ, η, σ) on E ,
let AlgT be a category of T-algebras that admits a model
structure.
Consider that (T , µ, η, σ) is such that

1 The tensorial strength σX ,Y : X ⊗ TY → T (X ⊗ Y ) is a
weak equivalence for X,Y cofibrant in E

2 The unit η : I → TI is a cofibration in E
Then the monad morphism ω : −⊗ T (I ) → T induces a Quillen
equivalence ω! : AlgT � ModT (I ) : ω∗.
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Proposition

Let E be a symmetric monoidal closed category with equalizers and
(T , µ, η, ϕ) an enriched monad over E . Then the category AlgT of
T-algebras is canonically enriched over E . Moreover the E-object
Alg

T
(X ,Y ) is given by the equalizer:

E (TX ,TY )

E(TX ,ξY )

&&NNNNNNNNNNN

Alg
T

(X ,Y ) � � i // E (X ,Y )

ϕ
88qqqqqqqqqqq

E(ξX ,Y )
// E (TX ,Y )

I

∃!ψ

ddJ
J

J
J

J
f

<<xxxxxxxxx
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Proposition

Let E be a symmetric monoidal closed category with equalizers and
(T , µ, η, σ) a strong monad on E . Let AlgT be a category of
T-algebras with coequalizers. Then AlgT is tensored over E and
the tensor is given by the coequalizer:

T (TX ⊗ Z )
T (ξX⊗Z) //

Tσ &&LLLLLLLLLL
T (X ⊗ Z )

ξX⊗Z // X ⊗ Z

TT (X ⊗ Z )

µ

88rrrrrrrrrr
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Proposition

Let (T , µ, η, σ) be a strong monad. Then the object T (I ) has a
structure of a monoid, namely it may be identified with
AlgT (T (I ) ,T (I )).

In fact, we have T (I ) ∼= E (I ,T (I )) ∼= AlgT (T (I ) ,T (I ))

Monoid axiom

Let E be a symmetric monoidal closed category and MT a well
pointed monoid on E . Then a category ModMT

of modules over a
monoid MT admits a model structure.

Since the unit of a monad η : I → T (I ) is a cofibration, a monoid
T (I ) is well pointed. Therefore, the category ModT (I ) admits a
model structure.
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We have a commutative diagram of forgetful functors:

AlgT
G //

UT

%%LLLLLLLLLLLLLLLL
ModT (I )

V

yyrrrrrrrrrrrrrrr

E

where G = AlgT (T (I ) ,−).
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Fibrations and weak equivalences in ModT (I ) ⇐⇒ fibrations and
weak equivalences in E .
Fibrations and weak equivalences in AlgT ⇐⇒ fibrations and weak
equivalences in E .
The functor G preserves and even reflects fibrations and weak
equivalences. Therefore, G is a right Quillen functor.
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Lemma

For each monoid M the endofunctor −⊗M has a canonical
structure of a strong monad.

Proposition

For each strong monad (T , µ, η, σ) there is a canonical map of
strong monads −⊗ T (I ) → T .
This map is an isomorphism if and only if the monad T is induced
by a monoid.
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Since ModT (I ) = Alg−⊗T (I ),
By the adjoint lifting theorem, the monad morphism
ω : −⊗ T (I ) → T induces the adjunction

ω! : AlgT � Alg−⊗T (I ) : ω∗

Since the functor ω! = G preserves and reflects fibrations and weak
equivalences, (ω∗, ω!) is a Quillen equivalence if and only if for
every cofibrant module M the unit of the adjunction is a weak
equivalence.
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Let X ⊗ T (I ) be a free module.
Then the unit of the adjunction

ηadj : X ⊗ T (I ) → TX

is a weak equivalence for X cofibrant object.
Using the patching lemma, we extend this to all modules.
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Exemple

Suppose that E is a category of pointed simplicial sets.
Then a simplicial (reduced) Γ-ring gives rise to strong monad on
pointed simplicial sets. If the underlying simplicial Γ-set is cofibrant
in Bousfield-Friedlander sense, then the strong monad satisfies the
axiom of our theorem and we recover a result of Stefan Schwede.
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