Morita theory in enriched context

Kruna Segrt

Laboratoire Jean – Alexandre Dieudonné Université de Nice – Sophia Antipolis

26 June 2010

・ロト ・回ト ・ヨト ・ヨト

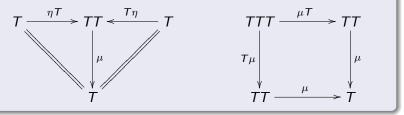
3 Morita theory in enriched context

Category of T-algebras

Monad

Let C be a category. A monad (T, μ, η) in a category C consists in giving:

- **1** A functor $T : \mathcal{C} \longrightarrow \mathcal{C}$;
- **2** Natural transformations $\eta : Id_{\mathcal{C}} \longrightarrow T$ and $\mu : TT \longrightarrow T$;
- Axioms given by the commutativity of the following diagrams:

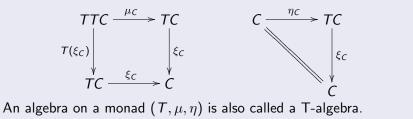


Category of T-algebras

T-algebra

Let C be a category and (T, μ, η) a monad on C. An algebra on a monad (T, μ, η) , written (C, ξ_C) , consists in giving:

- For every object C of C, a functor $\xi_C : TC \longrightarrow C$;
- **2** Axioms given by the commutativity of the following diagrams:

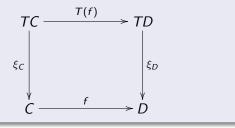


・ロン ・部 と ・ ヨ と ・ ヨ と …

Category of T-algebras

Morphism of T-algebras

Let C be a category and (T, μ, η) a monad on C. Given two T-algebras (C, ξ_C) and (D, ξ_D) on C, a morphism $f : (C, \xi_C) \longrightarrow (D, \xi_D)$ of T-algebras is a morphism $f : C \longrightarrow D$ in C such that the following diagram commutes:



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Category of T-algebras

Proposition

Let C be a category and (T, μ, η) a monad on C. A category of T-algebras, written **Alg**_T is such that:

- A class of objects are *T*-algebras
- **2** A set of morphisms are the morphisms of T-algebras

The category $\boldsymbol{Alg}_{\mathcal{T}}$ is also called the Eilenberg-Moore category of the monad.

イロン 不同 とくほう イロン

Category of T-algebras

Proposition

Let (T, μ, η) be a monad on a category C. Consider the forgetful functor U_T

 $U_T : Alg_T \longrightarrow C$ $(C, \xi_C) \longrightarrow C$

$$\left(\left(C, \xi_C \right) \xrightarrow{f} \left(D, \xi_D \right) \right) \longrightarrow \left(C \xrightarrow{f} D \right)$$

Then

U_T is faithful;

- 2 U_T reflects isomorphisms;
- U_T has a left adjoint F_T given by:

イロト イボト イヨト イヨト

Category of T-algebras

$$F_{T}: \mathcal{C} \longrightarrow Alg_{T}$$

$$C \longrightarrow (TC, \mu_{C})$$

$$\left(C \xrightarrow{f} C'\right) \longrightarrow \left((TC, \mu_{C}) \xrightarrow{T(f)} (TC', \mu_{C'})\right)$$

Kruna Segrt Morita theory in enriched context

▲ロト ▲圖ト ▲注ト ▲注ト

Model category

A model category ${\mathcal C}$ consists in giving:

- ${\small \bullet} \ \ A \ \ category \ \ {\cal C}$
- Three distinguished classes of maps: weak equivalences, fibrations and cofibrations

A map which is both a fibration (respectively cofibration) and a weak equivalence is called an acyclic fibration (respectively cofibration).

The following axioms

MC1 Finite limits and colimits exist in C;

MC2 (2 out of 3) Given maps f and g in C such that fg is defined and if 2 out of 3 maps f, g, and gf are weak equivalences faibles, then so is the third.

-

Model category

- MC3 (Retracts) Given maps f and g in C such that fg is a retract of g and g is a fibration, a cofibration or a weak equivalence, then so is f.
- MC4 (Lifting) Acyclic cofibrations have a left lifting property with respect to fibrations and cofibrations have a right lifting property with respect to acyclic fibrations.
- MC5 (Factorization) Any map f in C can be factored in two ways:
 - (i) f = pi, where i is a cofibration and p is an acyclic fibration
 - (*ii*) f = pi, where *i* is an acyclic cofibration and *p* is a fibration

イロン 不同 とくほう イロン

Monoidal model category

A monoidal model category ${\mathcal C}$ is a category which is at once:

- A closed symmetric monoidal category
- 2 A closed model category
- Such that the pushout-product axiom of Hovey is satisfied i.e. for any pair of cofibrations f : X → Y and g : X' → Y', the induced map

$$ig(X\otimes Y')\sqcup_{X\otimes X'}ig(Y\otimes X') o Y\otimes Y'$$

is a cofibration.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quillen functor

Let C and D be two model categories and $F : C \rightleftharpoons D : G$ an adjoint pair, with F the left adjoint and G the right adjoint. We say that

- A functor F : C → D is a left Quillen functor if F preserves cofibrations and acyclic cofibrations.
- **2** A functor $G : \mathcal{D} \to \mathcal{C}$ is a right Quillen functor if G preserves fibrations and acyclic fibrations.

Quillen adjunction

Let C and D be two model categories and $F : C \rightleftharpoons D : G$ an adjoint pair, with F the left adjoint and G the right adjoint. We say that (F, G) is a Quillen adjunction if F is a left Quillen functor.

Quillen equivalence

```
Let C and D be two model categories and F : C \rightleftharpoons D : G an adjoint pair that defines a Quillen adjunction, with F the left adjoint and G the right adjoint.
```

We say that F is a Quillen equivalence if for all cofibrant objects X in C and all fibrant objects Y in D, a morphism $X \to GY$ is a weak equivalence in C if and only if the adjoint morphism $FX \to Y$ is a weak equivalence in D.

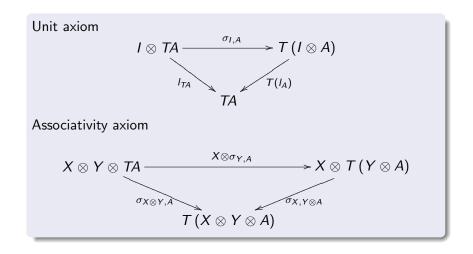
-

Strong functor

Let \mathcal{E} be a symmetric monoidal closed category. Let \mathcal{A} and \mathcal{B} be two \mathcal{E} -categories tensored over \mathcal{E} . A strong functor (\mathcal{T}, σ) consists in giving:

- A functor $T : \mathcal{A} \longrightarrow \mathcal{B}$;
- **2** A tensorial strength $\sigma_{X,A} : X \otimes TA \longrightarrow T(X \otimes A);$
- Axioms given by the commutativity of the following diagrams:

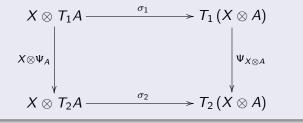
イロト 不得 とうせん きょうしゅ



< ロ > < 同 > < 回 > < 回 >

Strong natural transformation

Let \mathcal{E} be a symmetric monoidal closed category. Let \mathcal{A} and \mathcal{B} be two \mathcal{E} -categories tensored over \mathcal{E} and let $(T_1, \sigma_1), (T_2, \sigma_2)$ be two strong functors such that $T_1, T_2 : \mathcal{A} \longrightarrow \mathcal{B}$. A strong natural transformation $\Psi : T_1 \longrightarrow T_2$ is given by the following commutatif diagram:



Lemma

Strong functors and strong natural transformations constitute the 1-cells and 2-cells of a 2-category of \mathcal{E} -tensored categories, written **CatStrong**.

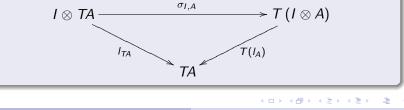
-

Strong monad

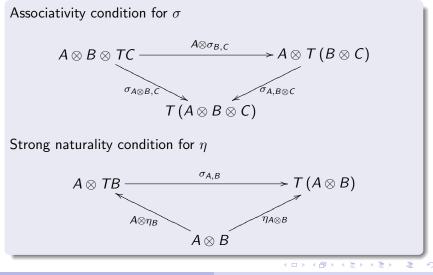
Let $\mathcal E$ be a monoidal category. A strong monad (T, μ, η, σ) in a category $\mathcal E$ consists in giving:

- A monad (T, μ, η) in a category \mathcal{E} ;
- **2** A tensorial strength $\sigma_{A,B} : A \otimes TB \longrightarrow T(A \otimes B);$

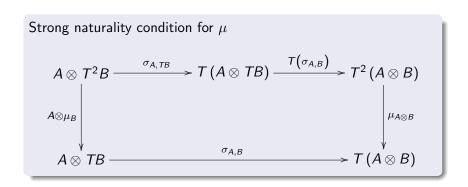
 $\textcircled{\sc opt}$ Axioms given by the commutativity of the following diagrams: Unit condition for σ



Strong monads



Kruna Segrt Morita theory in enriched context



Theorem

A 2-category of strong functors and strong natural transformations of tensored \mathcal{E} -categories, called **CatStrong** is 2-isomorphic to a 2-category of \mathcal{E} -functors and \mathcal{E} -natural transformations of tensored \mathcal{E} -categories, called \mathcal{E} -**Cat**.

(a)

Corollary

Let C be a monoidal category. Given a monad (T, μ, η) in a category C, the following conditions are equivalent:

- **(** A monad (T, μ, η) extends to a strong monad (T, μ, η, σ)
- **2** A monad (T, μ, η) extends to a \mathcal{E} -monad (T, μ, η, φ)

Morita theory in enriched context

Theorem

Let \mathcal{E} be a monoidal model category that is cofibrantly generated and with a cofibrant unit. Given a strong monad $(\mathcal{T}, \mu, \eta, \sigma)$ on \mathcal{E} , let $\mathcal{A}lg_{\mathcal{T}}$ be a category of T-algebras that admits a model structure.

Consider that (T, μ, η, σ) is such that

- The tensorial strength $\sigma_{X,Y} : X \otimes TY \to T(X \otimes Y)$ is a weak equivalence for X,Y cofibrant in \mathcal{E}
- 2 The unit $\eta: I \to TI$ is a cofibration in $\mathcal E$

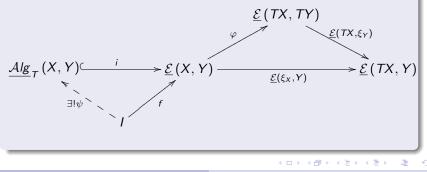
Then the monad morphism $\omega : - \otimes T(I) \to T$ induces a Quillen equivalence $\omega ! : Alg_T \rightleftharpoons Mod_{T(I)} : \omega^*$.

ヘロン ヘロン ヘビン ヘビン

Morita theory in enriched context

Proposition

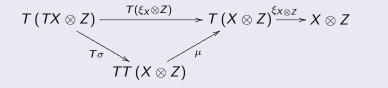
Let \mathcal{E} be a symmetric monoidal closed category with equalizers and $(\mathcal{T}, \mu, \eta, \varphi)$ an enriched monad over \mathcal{E} . Then the category $\operatorname{Alg}_{\mathcal{T}}$ of T-algebras is canonically enriched over \mathcal{E} . Moreover the \mathcal{E} -object $\operatorname{Alg}_{\mathcal{T}}(X, Y)$ is given by the equalizer:



Morita theory in enriched context

Proposition

Let \mathcal{E} be a symmetric monoidal closed category with equalizers and $(\mathcal{T}, \mu, \eta, \sigma)$ a strong monad on \mathcal{E} . Let $\mathbf{Alg}_{\mathcal{T}}$ be a category of T-algebras with coequalizers. Then $\mathbf{Alg}_{\mathcal{T}}$ is tensored over \mathcal{E} and the tensor is given by the coequalizer:



Morita theory in enriched context

Proposition

Let (T, μ, η, σ) be a strong monad. Then the object T(I) has a structure of a monoid, namely it may be identified with $\mathcal{A}lg_{T}(T(I), T(I))$.

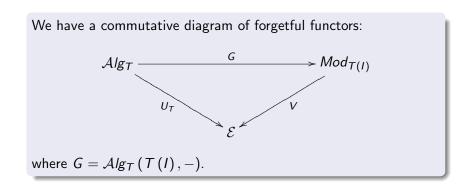
In fact, we have $T(I) \cong \mathcal{E}(I, T(I)) \cong Alg_T(T(I), T(I))$

Monoid axiom

Let \mathcal{E} be a symmetric monoidal closed category and M_T a well pointed monoid on \mathcal{E} . Then a category Mod_{M_T} of modules over a monoid M_T admits a model structure.

Since the unit of a monad $\eta: I \to T(I)$ is a cofibration, a monoid T(I) is well pointed. Therefore, the category $Mod_{T(I)}$ admits a model structure.

Morita theory in enriched context



・ロト ・回ト ・ヨト ・ヨト

Morita theory in enriched context

Fibrations and weak equivalences in $Mod_{T(I)} \iff$ fibrations and weak equivalences in \mathcal{E} . Fibrations and weak equivalences in $\mathcal{A}lg_T \iff$ fibrations and weak equivalences in \mathcal{E} . The functor G preserves and even reflects fibrations and weak equivalences. Therefore, G is a right Quillen functor.

イロン 不同 とくほう イロン

Morita theory in enriched context

Lemma

For each monoid M the endofunctor $- \otimes M$ has a canonical structure of a strong monad.

Proposition

For each strong monad (T, μ, η, σ) there is a canonical map of strong monads $- \otimes T(I) \rightarrow T$. This map is an isomorphism if and only if the monad T is induced by a monoid.

Morita theory in enriched context

Since $Mod_{T(I)} = \mathcal{A}lg_{-\otimes T(I)}$, By the adjoint lifting theorem, the monad morphism $\omega : - \otimes T(I) \to T$ induces the adjunction

$$\omega!: \mathcal{A} lg_{\mathcal{T}} \rightleftarrows \mathcal{A} lg_{-\otimes \mathcal{T}(I)}: \omega^*$$

Since the functor $\omega! = G$ preserves and reflects fibrations and weak equivalences, $(\omega^*, \omega!)$ is a Quillen equivalence if and only if for every cofibrant module M the unit of the adjunction is a weak equivalence.

Morita theory in enriched context

Let $X \otimes T(I)$ be a free module. Then the unit of the adjunction

$$\eta_{adj}: X \otimes T(I) \rightarrow TX$$

is a weak equivalence for X cofibrant object. Using the patching lemma, we extend this to all modules.

(日)

Morita theory in enriched context

Exemple

Suppose that \mathcal{E} is a category of pointed simplicial sets. Then a simplicial (reduced) Γ -ring gives rise to strong monad on pointed simplicial sets. If the underlying simplicial Γ -set is cofibrant in Bousfield-Friedlander sense, then the strong monad satisfies the axiom of our theorem and we recover a result of Stefan Schwede.

Bibliography

- **Kock, Anders**, *Strong functors and monoidal monads*, Arch. Math. (Basel), **23**, (1972), 113–120.
- Kock, Anders, Monads on symmetric monoidal closed categories,
 Arch. Math. (Basel), 21, (1970), 1–10.
- Schwede, Stefan, Stable homotopy of algebraic theories, Topology, **40**, (2001),1, 1–41.

 Lack, Stephen and Street, Ross, The formal theory of monads. II,
 J. Pure Appl. Algebra, 175, (2002),1-3, 243–265.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >