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Abstract

We describe a simplification in the construction of Khovanov-Rozansky’s categorification
of quantum sl(n) link homology using the theory of maximal Cohen-Macaulay modules over
hypersurface singularities and the combinatorics of Soergel bimodules. More precisely, we
show that the matrix factorizations associated to basic MOY-graphs equal Cohen-Macaulay
approximations of certain Soergel bimodules, and prove that taking Cohen-Macaulay approx-
imation commutes with tensor products as long as the MOY-graph under consideration does
not possess oriented cycles. It follows that the matrix factorization associated to a MOY-
braid equals the Cohen-Macaulay approximation of the Soergel bimodule corresponding to
the endofunctor on BGG-category O associated to the braid by Mazorchuk and Stroppel.
This reduces certain computations in the category of matrix factorizations to known combi-
natorics of the Hecke-algebra. Finally, we describe braid closure as some kind of Hochschild
cohomology and prove that the indecomposable Soergel bimodules corresponding to Young
tableaux with more than n rows have trivial Cohen-Macaulay approximation, in analogy to
the fact that the corresponding projective functors on category O vanish on restriction to
parabolics with at most n parts.
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Introduction

In [KR08], Khovanov and Rozansky constructed a categorification of quantum sl(n) poly-
nomial knot invariants for all n > 0. More precisely, their construction categorifies the
Reshetikhin-Turaev link invariant (see [RT90] and [Kas95, Part III]) for links whose compo-
nents are labeled by the vector representation of Uq(sl(n)). This construction was recently
extended by Wu and Yonezawa in their articles [Wu09] and [Yon09], where they provided
a categorification for links with components labeled with arbitrary exterior powers of the
vector representation. For now it is not important how these knot invariants are constructed
in detail; we only care about what objects they associate to a tangle, namely matrix factor-
izations. Next we recall what this means.

Let S be a commutative ring and w ∈ S be arbitrary. A matrix factorization (originally

due to Eisenbud, see [Eis80]) of type (S,w) is a pair of maps M α−→ N , N
β−→ M between

free S-modules M , N such that αβ = βα = w · id. Therefore, one might think of a matrix
factorization of type (S,w) as some 2-periodic complex of free S-modules where the usual
condition δ2 = 0 for the differential is weakened to δ2 = w · id. In this description, morphisms
of matrix factorizations are morphisms of 2-periodic complexes, and they can be written as
the 0-cocycles in some 2-periodic complex (in the usual sense) of morphisms, defined as in
the case of ordinary complexes over some additive category, yielding a differential-graded
category MFdg(S,w). It turns out that this dg-category is pretriangulated, i.e. there is a
reasonable notion of shift and cones, so that we have a canonical triangulated structure on
its homotopy category. It is this homotopy category of matrix factorizations HMF(S,w)
where Khovanov-Rozansky’s link homology theory takes its values.

In case S is a regular local ring and w ∈ m \ {0}, it is known that the homotopy category
of matrix factorizations is triangle equivalent to what is called the singularity category of
the ring S/(w). The singularity category can be defined for any local Noetherian ring R

and has several equivalent definitions (see [Orl09]), the usual one being the Verdier quotient
Db(R-mod)/Perf of the bounded derived category of finitely generated R-modules by the sub-
category of perfect complexes, i.e. those which are quasi-isomorphic to bounded complexes of
projectives. In view of Serre’s Theorem stating that a Noetherian local ring is regular if and
only if every module has a finite projective resolution, this is a quite intuitive measure for the
failure of R to be regular. However, for us the description as the stable category MCM(R) of
the category MCM(R) of maximal Cohen-Macaulay modules over S/(w) (originally due to
[Buc86] and [Hap88]) is of interest, which we now recall. A finitely generated module over a lo-
cal ring R is called Cohen-Macaulay if its depth (i.e. the maximal length of a regular sequence
in M) equals its dimension (the dimension of the topological space Supp(M) ⊂ Spec(R)); it is
called maximal Cohen-Macaulay if depth(M) = dim(M) = dim(R). A ring is called Cohen-
Macaulay if it is Cohen-Macaulay considered as a module over itself. Denote the category of
maximal Cohen-Macaulay modules over R by MCM(R). Being maximal Cohen-Macaulay is
a stable property in the following sense: given a finitely-generated module M over a Cohen-
Macaulay ring R, its depth increases as one takes syzygies of M , as long as the depth does
not get bigger than depth(R) = dim(R). In particular, the k-th syzygy of M is maximal
Cohen-Macaulay for k ≥ depth(R) − depth(M), and this is why one can think of maximal
Cohen-Macaulayness as a stable property. Now, in case where R is not only Cohen-Macaulay
but even Gorenstein, a small miracle occurs: once a module belongs, after sufficiently many
projective resolving steps to the left, to the “stable” range of maximal Cohen-Macaulay
modules, it can even be projectively resolved to the right with all syzygies again maximal
Cohen-Macaulay. In precise terms, this is known as the fact that the category of maximal
Cohen-Macaulay modules is a Frobenius category, i.e. an exact category with enough projec-
tives and injectives where in addition the classes of projective and injective objects coincide.
Annihilating all morphisms which factor through a projective object in such a category yields

3



a canonically triangulated category (see [Kel06, Section 3.3] and references therein), and so
in particular we get the stable category of maximal Cohen-Macaulay modules endowed with
a canonical triangulated structure. If we work over some hypersurface R = S/w, i.e. S is
regular and w ∈ m \ {0}, then this stable category of maximal Cohen-Macaulay modules
is both triangle equivalent to the singularity category of R and the homotopy category of
matrix factorizations.

MCM(R)

Db(R-mod)/Perf HMF(S,w)

∼= ∼=

To sum up, we have the following situation: the Khovanov-Rozansky link invariant takes
values in homotopy categories of matrix factorizations, and those are equivalent to stable
categories of maximal Cohen-Macaulay modules over the corresponding quotient singulari-
ties. This naturally leads to the following question, which we want to study in this article:

Main Question: How can we construct (and simplify?) KR-homology using the stable
category of maximal Cohen-Macaulay modules instead of the homotopy category of matrix
factorizations?

To be able to describe our attempt to answer this question, we first sketch Khovanov and
Rozansky’s original construction.

Given a link L we first replace any crossing of L either by the uncrossing or the wide
edge, as depicted in Figure 1. A graph with is composed of subgraphs as in Figure 1 is

2

Figure 1: Resolving a crossing

called a MOY-graph (see [MOY98]). The MOY-graph obtained from L by some choice of
replacement for each crossing is called a smoothing of L. The main part in the construction
of the Khovanov-Rozansky link homology of L is to associate to each smoothing of all n
crossings of L a matrix factorization. Having done this, all these 2n matrix factorizations
are finally patched together to a complex of matrix factorizations, whose homotopy type
is the value of L under Khovanov-Rozansky homology. We will not consider this patching
construction, for which we refer the reader to the original article [KR08] for details. Instead,
let us look at the steps through which Khovanov-Rozansky construct the matrix factorization
KR(Γ) associated to a smoothing Γ of the link:

(1) First decompose Γ into basic MOY-graphs Γ1
1 and Γmm as depicted in Figure 2, and to

each of these building blocks associate certain explicit matrix factorizations.

(2) Glue them together by tensoring. The result is KR(Γ).
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Figure 2: Building blocks

According to our main question, this yields the following two steps in our desired construction
of Khovanov-Rozansky homology through matrix factorizations:

(1) Describe the maximal Cohen-Macaulay modules corresponding to the matrix factor-
izations associated to building blocks Γm1,...,mk

n1,...,nl
and Γmm.

(2) Try to understand what the tensor product on the homotopy category of matrix fac-
torizations looks like in the stable category of maximal Cohen-Macaulay modules.

The answer to (1) is as follows. Consider again a hypersurface R = S/(w), so S is regular and
w ∈ m\{0}. Further, denote R-mod and MCM(R) the stable categories of all resp. maximal
Cohen-Macaulay modules over R, i.e. the categories obtained from R-mod and MCM(R) by
annihilating morphisms factoring through a projective; this annihilation is necessary for the
syzygy ΩM of an R-module M to be well-defined up to isomorphism and to be functorial in
M . Now, the embedding MCM(R) ↪→ R-mod has a right adjoint M : R-mod→MCM(R),
given by M(M) := lim

n�0
Ω2nM . Here the right hand side means that one has to choose n� 0

such that Ω2nM is maximal Cohen-Macaulay and set M(M) := Ω2nM ; the particular choice
of n does not matter, because Ω2 ∼= id on MCM(R). This yields the following stabilization
functor (see [Kra05]), which is fundamental in the present paper:

(−){w} := R-mod −→ R-mod λ−−−→MCM(R)
∼=−−−→ HMF(S,w).

Now we can formulate our first theorem:

Theorem 1 (see 3.1.3) There is a homotopy equivalence

KR
(

Γ1,1
1,1

)
= C

(
2

)
'

(
C[x1, x2] ⊗

Sym
C[y1, y2]〈1〉

){xn+1
1 +xn+1

2 −yn+1
1 −yn+2

2 }

Here ⊗Sym means that the symmetric polynomials in x1, x2 and y1, y2 are identified, and the
base ring for the stabilization is the (regular local graded) polynomial ring C[x1, x2, y1, y2].

More generally, for the basic building block Γm1,...,mk
n1,...,nl

in Figure 2, we have the following
homotopy equivalence (for the notation, see Section 3.1), where r :=

∑
1≤i<j≤k

mimj :

KR
(
Γm1,...,mk
n1,...,nl

)
= KR


m1

X1

m2

X2

mk−1

Xk−1

mk

Xk

Y1

n1

Y2

n2

Yl−1

nl−1

Yl

nl

· · ·

· · ·


'
(

Sym(X1|...|Xn) ⊗
Sym

Sym(Y1|...|Ym)〈r〉
){ΣXn+1−ΣYn+1}

.
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Given the statement of Theorem 1 it is natural to ask to what extend the stabilization
functor commutes with tensor products. Informally, our result can be stated as follows:

Theorem 2 (see 3.2.4 and 3.2.6) As long as there are no oriented cycles in the graph,
the stabilization functor commutes with tensor products.

As a special case, we obtain the description of the matrix factorizations associated to MOY-
braids through Soergel bimodules. Here by a MOY-braid we mean a concatenation of MOY-
graphs as in Figure 3. For i1, ..., il ∈ {1, 2, ...,m− 1} we write si1si2 · · · sil for the concatena-
tion from top to bottom of si1 , si2 , ..., sil . For example, in this notation we have Γ0 = s1s2s1,
where Γ0 is the MOY-graph depicted in Figure 4.

1 2 i− 1 i i+ 1

2

i+ 2 m− 1 m

· · · · · ·

Figure 3: Basic MOY-braid σi

Corollary 3 (see Corollary 3.3.12) The matrix factorization associated to a MOY-braid
si1si2 · · · sil is canonically homotopy equivalent to the stabilization of the Soergel bimodule
Bi1 ⊗Bi2 ⊗ ...⊗Bil associated to the braid.

Later in Section 3 we will give the definition of the Bi and the category of Soergel bi-
modules; for now it is not necessary to know them. The important thing to realize is that
the corollary implies a bunch of relations up to homotopy between the matrix factorizations
associated to MOY-braids, namely those which are already true on the level of the corre-
sponding Soergel bimodules. The combinatorics of these modules is quite well understood
in terms of the Hecke algebra Hm(q) of the symmetric group: sending the Kazhdan-Lusztig
basis element Hi to the class of the Soergel bimodule Bi induces an isomorphism of rings be-
tween the (generic) Hecke-algebra and the split Grothendieck ring of the category of Soergel
bimodules. Relations in the Hecke algebra therefore correspond to relations between Soergel
bimodules, and when applying the stabilization functor these yield relations between matrix
factorizations appearing in the construction of Khovanov and Rozansky.

For example, it follows directly from Theorem 2 and the known equality

HsHtHs −Hs = HtHsHt −Ht = Hsts (1)

for the Hecke-algebra of S3 = 〈s, t | s2 = t2 = e, sts = tst〉 that there is a homotopy
equivalence

KR(Γ0)⊕KR(Γ1) ' KR(Γ2)⊕KR(Γ3),

where Γi, i = 0, 1, 2, 3 are depicted in Figure 4. Note that though the relation is elementary
in the Hecke algebra, it requires a substantial amount of direct calculations to verify it in
HMF.

Theorem 2 reveals the following parallel between the constructions of Khovanov-Rozansky
homology and the knot invariant of Mazorchuk-Stroppel (see [MS09]): In the construction
of Mazorchuk and Stroppel they associate to a MOY-braid a projective functor on some
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Figure 4: Basic MOY-relation

graded version of the Bernstein-Gelfand-Gelfand category O, and this projective functor
corresponds to the associated Soergel bimodule under Soergels combinatorial functor V (see
[Soe92]). Hence, both constructions begin by associating to a MOY-braid something which
is equivalent to the Soergel bimodule associated to the braid. Next, the construction of
Khovanov-Rozansky proceeds by stabilizing the given Soergel bimodule, while Mazorchuk-
Stroppel restrict the projective functor under consideration to some parabolic subcategories
Op. We will come back to the meaning of these second steps in the construction of Khovanov-
Rozansky and Mazorchuk-Stroppel soon.

The Hecke algebra relations we get from Theorem 2 are not enough to category the
Reshetikhin-Turaev link invariant for Uq(sl(n)). To understand this, recall the description
of the endomorphism algebra of the m-th tensor power of the vector representation V of the
quantum group Uq(sl(n)) for generic q. We have a surjective map

Hm(q) EndUq(sl(n))(V ⊗m)
τk

sending the Kazhdan-Lusztig element Hi to the intertwiner

V ⊗m
id⊗

„
2
«
⊗id

−−−−−−−−−→ V ⊗(i−1) ⊗ (V ∧ V )⊗ V ⊗(m−i−1)
id⊗

„
2

«
⊗id

−−−−−−−−−→ V ⊗m

Thus, the special intertwiners

2· · · · · · = τm(Hi)

satisfy the Hecke algebra relations, and so should their categorifications. Theorem 2 shows
that this is indeed true for Khovanov-Rozansky’s construction. However, since τm is not
injective in general, there are more relations in EndUq(sl(n))(V ⊗m), namely those coming from
elements of ker(τm); these should be fulfilled in the categorification, too. We call the relations
coming from Hm(q)/ker(τm) MOY-relations for short. On the level of Soergel bimodules,
the MOY-relations are not satisfied, because the combinatorics of Soergel bimodules, i.e.
the Grothendieck ring of the category of Soergel bimodules, is given by Hm(q). If we want
all MOY-relations to be fulfilled in Khovanov-Rozansky homology, we therefore have to
show that by stabilizing Soergel bimodules we obtain the missing relations from ker(τm).
Concretely, the kernel of τm is generated by those Kazhdan-Lusztig basis elements Hw for
permutations w ∈ mm whose Robinson-Schensted tableau has more than n rows; we therefore
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have to show that the stabilizations of the Soergel bimodules corresponding to these elements
vanish, and this is the content of the following theorem:

Theorem 4 (see Theorem 3.4.1) Fix n ≥ 2 and let w ∈ Sm be such that the Robinson-
Schensted tableau of w has more than n rows. Then the indecomposable Soergel bimodule
Bw is of finite projective dimension considered as a module over the ring

C[x1, ..., xm, y1, ..., ym]/

(
m∑
i=1

xn+1
i − yn+1

i

)
,

and hence

B


mP
i=1

xn+1
i −yn+1

i

ff
w ' 0.

In particular, the stabilizations of Soergel bimodules satisfy the MOY-relations.

As an example, take n = 2 and m = 3. In this case, (1) yields HsHtHs = Hsts + Hs

in the Hecke algebra of S3. The Robinson-Schensted tableau of sts has 3 rows, so we get
C(Γ0) ' C(Γ3) and C(Γ1) ' C(Γ2) (see Figure 4).

For the invariant of Mazorchuk and Stroppel the situation is similar: the projective
functors associated to MOY-braids satisfy the Hecke-algebra relations, but not the extra
relations coming from ker(τm). To obtain the missing relations, the functors have to be
restricted to certain parabolic subcategories Op of O.

Theorems 1-3 provide the first steps for a connection between Khovanov-Rozansky- and
Stroppel-Mazorchuk homology. However, we cannot state a precise comparison theorem. On
the Hecke algebra level of Soergel bimodules/projective functors on O, the connection is
clear. However, it is not clear to the author in which way restriction from O0 to parabolic
subcategories Op corresponds to the stabilization of the corresponding Soergel bimodule with
respect to Σxn+1

i − Σyn+1
i , even though the effect of both operations is the same.

We can informally summarize the results of this work in the commutative diagram 5.

{ Functors O0 → O0 }

{
Functors

⊕
|p|≤n

Op
0 →

⊕
|p|≤n

Op
0

}

{ Soergel bimodules }

{ MOY-Graphs }

{ Maximal Cohen-Macaulay modules }

Translation
functors

Khovanov-RozanskyM
az

or
ch

uk
-S

tro
pp

el

R
estriction

?

Stabilization
functor

Soergel’s functor V

Hm(q)/ker(τm)

Hm(q)

Figure 5: Overview over the results of this work.

Structure: The paper is organized as follows. In Section 1 we recall some basics about
local graded commutative rings, focusing on how to relate it to the better known case of
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ungraded local commutative rings. In Section 2 we introduce the notion of graded maxi-
mal Cohen-Macaulay modules over Gorenstein rings and recall the well-known connection
between graded maximal Cohen-Macaulay modules over a hypersurface and graded matrix
factorizations. We then introduce the stabilization functor and study the compatibility of
stabilization with tensor products of matrix factorizations. In Section 3 we use the techniques
developed so far to simplify the construction of Khovanov-Rozansky using the stabilization
functor, proving Theorems 1 and 2. In Section 4 we study the compatibility of the stabiliza-
tion functor with the duality for matrix factorizations, and apply the results we get in Section
5 to describe braid closure as some kind of stabilized Hochschild-cohomology (see [Web07]).
In all these sections we focus on motivation, examples and explicit calculations, while not
trying to give all results in the greatest possible generality. In contrast to that, there is an
appendix where we reprove almost all statements in a much more general situation using the
language of derived categories. This appendix can be read almost independently of the rest
of the paper; however, its bigger generality and abstraction might prevent the reader from
getting the motivation for what is done, and this is why we didn’t work in this more abstract
setting right from the beginning.

Acknowledgements: I want to thank all people who helped and supported me during
the process of writing this thesis. My special thanks go to my advisor Prof. Dr. Catha-
rina Stroppel for the countless helpful and interesting discussions about the subject.
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1 Basics on local graded commutative algebra

In this section, we will give a short introduction to local graded commutative algebra. All
of the results we recall here are well-known at least in the ungraded case, so we concentrate
on explaining how they can rigorously be upgraded to the graded case.

1.1 Notation

In the following, we always denote by R� =
⊕

n∈ZRn a Noetherian graded commutative ring
which is local in the sense that there is precisely one graded maximal ideal m, and we let
k� := R�/m be its residue class ring. Note that any ungraded local ring can be considered as
a local graded ring concentrated in degree zero, so the ungraded situation is a special case
of the graded situation. Next, let R be the ungraded ring underlying R�, and let R�-Mod
denote the abelian category of all graded R�-modules with grading preserving morphisms
of R-modules. The set of morphisms between graded R�-modules M� and N� is denoted
by HomR�(M�, N�). The subcategory of finitely generated graded R�-modules is denoted by
R�-mod. Next, let 〈d〉 : R�-Mod→ R�-Mod be the automorphism given by grading shift, i.e.
M〈d〉k := Mk+d. If M� is a graded R�-module, we denote by M the underlying R-module.
An R�-module M� is called free (of finite rank) if it is isomorphic to a (finite) direct sum of
modules of the form R〈d〉� for some d ∈ Z.

For R�-modules M�, N� there is a graded homomorphism space HomR(M�, N�)� defined
by HomR(M�, N�)k := HomR�(M�, N�〈k〉). An element f ∈ HomR(M�, N�)k is called a
homomorphism of degree k; this is just a homomorphism of the underlying R-modules
raising the degree of each element precisely by k. There is a natural action of R� on
HomR(M�, N�)� making it into a graded R�-module. Note that by our convention we have
HomR�(M�, N�) = HomR(M�, N�)0, but HomR(M�, N�) =

⊕
k∈Z HomR�(M�, N�〈k〉). Note also

that there is a natural homomorphism HomR(M�, N�) ↪→ HomR(M,N) whose image consists
of all homomorphisms of R-modules M → N that can be written as a finite sum of homo-
morphisms of graded R�-modules M� → N�〈k〉. In general, there might be homomorphisms of
R-modules M → N which cannot be written in this way, but if M� is finitely generated over
R�, the above map is an isomorphism. Homomorphisms of graded modules M ′� → M� and
N� → N ′� induce a homomorphism of graded modules HomR(M�, N�)� → HomR(M ′� , N

′
� )�,

and in this way HomR(−,−)� becomes a biadditive functor R�-Modop ×R�-Mod→ R�-Mod.
Let Ext∗R(−,−)� denote the family of derived functors. Since the functor M� → M0 from
R�-Mod to Z-Mod is exact, we have that Ext∗R(−,−)0 is the family of derived functors of
HomR(−,−)0 = HomR�(−,−), so for any two R�-modules M�, N� there is a natural iden-
tification Ext∗R(M�, N�)0 = Ext∗R�

(M�, N�). As above, for finitely generated M� we have
Ext∗R(M�, N�) ∼= Ext∗R(M,N), but in general these two R�-modules may differ.

For graded R�-modules M�, N� define the tensor product M� ⊗R� N� by (M� ⊗R� N�)k :=( ⊕
p+q=k

Mp ⊗Z Nq

)
/∼, where ∼ is generated by x.m ⊗ n ∼ (−1)r(p−r)m ⊗ x.m for x ∈ Rr

and m ∈ Mp−r. This gives rise to an additive bifunctor R�-Mod × R�-Mod → R�-Mod, and
we denote by Tor∗R(−,−)� the family of derived functors of this functor.

1.2 Graded vs. Ungraded

Most of the theorems on ungraded local Noetherian rings are true for local graded Noetherian
rings. One reason for this is that for a finitely generated graded M� over a local Noetherian
graded ring (R�,m�) the map M� 7→ Mm takes many numerical invariants like the Betti-
numbers, the dimension, the depth or the projective dimension of the graded R�-module
M� into the ones for the ungraded Rm-module Mm. This makes it possible to carry over
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results from the ungraded case stating relations between these numerical invariants (the
Auslander-Buchsbaum formula, for example) to the graded case without having to copy the
proof verbatim. The material of this section is completely contained in [BH93], but for the
reader’s convenience we will reproduce it here and provide some details not contained in
loc.cit.

To get a feeling why the essential information carried by M� is already encoded in Mm,
we think about why the vanishing of Mm implies the vanishing of M�.

Fact 1.2.1 Let M� be a graded module over the graded ring R�, and let p be a (not nec-
essarily homogeneous) prime ideal in R. Then Mp = 0 if and only if M(p) = 0. Here Mp

denotes the localization of M with respect to R \ p (an ungraded module over the ungraded
ring Rp), and M(p) denotes the localization of M with respect to

⋃
k∈ZRk \ pk.

In particular, if (R�,m�) is a local graded ring, then M� = 0 if and only if Mm = 0.

Proof. Let S :=
⋃
k∈ZRk \ pk. We have S ⊂ R \ p, so MS = 0 implies Mp = MR\p = 0.

Now assume MR\p = 0. To show that MS = 0 it is sufficient to prove that any homogeneous
m ∈Mk vanishes in MS . As it vanishes in MR\p, there is some x ∈ R \ p such that x.m = 0.
By the homogeneity of m it follows that xr.m = 0 for any homogeneous component xr of x.
However, since x /∈ p, some homogeneous component xr ∈ Rr of x has to lie in R \ p, and
thus in Rr \ pr ⊂ S. Hence, m is killed by an element in S, and therefore vanishes in MS .�

Definition 1.2.2 Let (R�,m) be a local graded ring and let M� be a finitely generated graded
R�-module. The dimension of M�, denoted dimR�M�, is defined as the maximal k such that
there exists a chain of homogeneous prime ideals p0 ( p1 ( ... ( pk such that M(pi) 6= 0 for
all i = 0, ..., k.

Proposition 1.2.3 In the situation of Definition 1.2.2, we have dimR�M� = dimRmMm.

Proof. For a homogeneous prime ideal p ⊂ R� we have M(p) = 0 if and only if Mp = 0 (Fact
1.2.1), hence dimR�M� ≤ dimRmMm. It is therefore sufficient to show that for d := dimRmMm

there is a sequence p0 ( ... ( pd of homogeneous prime ideals such that Mpi 6= 0 for all
i = 0, ..., d, which is done in [BH93, Theorem 1.5.8]. �

Definition 1.2.4 Let (R�,m) be a local graded ring and let M� be a finitely generated
graded R�-module. The depth of M�, denoted depthR�

M�, is defined as the maximal length
of a M -regular sequence of homogeneous elements in m. If there is no chance of confusion,
we will shortly write depth(M�) for depthR�

(M�).

We have the following description of the depth in terms of the vanishing of Ext-groups:

Proposition 1.2.5 In the situation of Definition 1.2.4 we have

depthR�
M� = inf{i ∈ Z≥0 | ExtiR(k�,M�)� 6= {0}},

and any maximal M�-regular sequence in m has length depthR�
M�. In particular, we have

depthR�
M� <∞ and

depthR�
M� = depthRm

Mm.

Proof. Since R� is Noetherian, any M�-regular sequence must be finite. Thus, the second
statement indeed implies that depth(M�) <∞.

Let x1, ..., xn ∈ m be an arbitrary M�-regular sequence of homogeneous elements, and let
d1, ..., dn denote the degrees of the xi. By definition, x1 is not a zero divisor in M�, so we

11



have a short exact sequence 0→M〈−d1〉�
x1·−−→M� →M�/x1M� → 0. Applying Ext∗R(k�,−)�

gives

· · · x1·−→ ExtiR(k�,M�)� → ExtiR(k�,M�/x1M�)� → Exti+1
R (k�,M�)�〈−d1〉

·x1−→ · · · ,

and since k� is annihilated by x1, this sequence decomposes into short exact sequences

0→ ExtiR(k�,M�)� → ExtiR(k�,M�/x1M�)� → Exti+1
R (k�,M�)�〈−d1〉 → 0

for all i ∈ Z. For i = −1 and then for i = 0, we get Ext0
R(k�,M�)� = 0 and Ext1

R(k�,M�)�
∼=

Ext0
R(k�,M�/x1M�)〈d1〉�. Continuing in this way, we obtain ExtiR(k�,M�)� = 0 for all 0 ≤ i < n

and

ExtnR(k�,M�)�
∼= Ext0

R(k�,M�/(x1, ..., xn)M�)�〈d1 + ...+ dn〉, (1.2-1)

which shows that

depth(M�) ≤ min{k ∈ Z≥0 | ExtkR(k�,M�)� 6= {0}}.

Next, take x1, ..., xn maximal (as noted at the beginning of the proof, such a sequence
must exist). We will show that Ext0

R(k�,M�/(x1, ..., xn)M�)� 6= 0, and this will finish the
proof because of (1.2-1). As x1, ..., xn is maximal, any element of m is a zero-divisor of
M�/(x1, ..., xn)M�. Hence m is contained in the union of the associated primes ofM�/(x1, ..., xn)M�,
so m ∈ AssR�(M�/(x1, ..., xn)M�) by prime avoidance. Thus, there exists an embedding

k〈d〉� = R�/m〈d〉 ↪→M�/(x1, ..., xn)M�

for suitable d ∈ Z, and therefore HomR(k�,M�/(x1, ..., xn)M�)� 6= 0 as claimed.
The second statement can be seen as follows: First note that since k� is finitely generated,

we have a canonical isomorphism of R-modules Ext∗R(k�,M�) = Ext∗R(k,M). Hence, using
Fact 1.2.1 and the compatibility of Ext with localization, we get

depthR�
M� = inf{i ∈ Z≥0 | ExtiR(k�,M�)� 6= 0}

= inf{i ∈ Z≥0 | ExtiR(k,M)m 6= 0}
= inf{i ∈ Z≥0 | ExtiRm

(km,Mm) 6= 0}
= inf{i ∈ Z≥0 | ExtiRm

(Rm/mRm,Mm) 6= 0}
= depthRm

Mm

as claimed. �

Next we turn to injective dimensions.

Definition 1.2.6 Let (R�,m) be a local graded ring and M� a finitely generated R�-module.
Then the injective dimension of M�, denoted inj.dimR�

M�, is defined as the injective dimen-
sion of M� in the abelian category R�-mod.

Remark 1.2.7 For a finitely generated R�-module M� we have

inj.dimR�-mod(M�) = inj.dimR�-Mod(M�)

by Baer’s criterion (which works for every generator in a Grothendieck category). ♦

Fact 1.2.8 In the situation of Definition 1.2.6, we have

inj.dimR�
M� = sup{n ∈ Z≥0 | ex. p homogeneous prime s.t. ExtnR(R�/p,M�)� 6= 0}.
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Proof. This follows immediately from the fact the any finitely generated R�-module has a
finite filtration with filtration quotients of the form R�/p〈d〉 for homogeneous prime ideals p

and d ∈ Z. �

Proposition 1.2.9 (see [BH93, Proposition 3.1.13]) Let (R�,m) be a local graded ring,
p ( m a homogeneous prime and M� a finitely generated graded R�-module. Assuming
Extn+1

R (R�/q,M�)� = 0 for all q ) p, then ExtnR(R�/p,M�)� = 0.

Proof. Pick a homogeneous x ∈ m \ p of degree d. The exact sequence

0→ R�/p〈−d〉
x−−→ R�/p −−→ R�/(p, x)→ 0

induces an exact sequence

ExtnR(R�/p,M�)�
x−−→ ExtnR(R�/p,M�)�〈d〉 −−→ Extn+1

R (R�/(p, x),M�)�

Any homogeneous prime q in the support of R�/(p, x) satisfies p ( q, and by assumption
Extn+1

R (R�/q,M�)� = 0 for any such q. Hence Extn+1
R (R�/(p, x),M�)� = 0, which in turn

implies ExtnR(R�/p,M�)� = 0 by Nakayama (Lemma 1.2.14). �

Proposition 1.2.10 (see [BH93, Proposition 3.1.14]) Let (R�,m) be a local graded ring
and M� a finitely generated graded R�-module. Then

inj.dimR�
M� = sup{k ∈ Z≥0 | ExtkR(k�,M�)� 6= 0}.

In particular, we have inj.dimR�
M� = inj.dimRm

Mm.

Proof. The first statement follows from Fact 1.2.8 and Proposition 1.2.9. For the second
statement, Fact 1.2.1 and the compatibility of Ext with localization yields

inj.dimR�
M� = sup{n ∈ Z≥0 | ExtnR(k�, R�)� 6= 0}

= sup{n ∈ Z≥0 | ExtnR(k�,M�)m 6= 0}
= sup{n ∈ Z≥0 | ExtnRm

(Rm/mRm,Mm)m 6= 0}
= inj.dimRm

Mm. �

Next we show that the functor M� 7→ Mm preserves minimal free resolutions. We first
recall the definition of a minimal free resolution in the graded case.

Fact 1.2.11 Let f : F� → M� be an epimorphism of finitely generated graded R�-modules,
and let F� be free. Then the following are equivalent:

(1) Any homogeneous R�-basis of F� is mapped by f to a minimal generating system of M�.

(2) There exists a homogeneous R�-basis of F� which is mapped by f to a minimal gener-
ating system of M�.

(3) ker(f) ⊂ mF�.

Proof. (1)⇒(2) is trivial. Next assume that m1, ...,mn is a homogeneous basis of F� mapping
to a minimal generating system of M� under f , and let d1, ..., dn be the degrees of the mi.
Then, if x1m1 + ... + xnmn ∈ ker(f) for homogeneous xi ∈ R�, we must have xi ∈ m

for all i, since otherwise we had f(mi) = x−1
i

∑
j 6=i xjf(mj), contradicting the minimality

of {f(mj)}. This shows (2)⇒(3). It remains to prove (3)⇒(1), so assume ker(f) ⊂ mF�

and m1, ...,mn is a homogeneous R�-basis of F�. If {f(mi)} was not minimal, there would
be some i and homogeneous x1, ..., x̂i, ..., xn ∈ R� such that f(mi) =

∑
j 6=i xjf(mj), so

mi −
∑
j 6=i xjmj ∈ ker(f) \mF�, contrary to our assumption. �
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Definition 1.2.12 If f fulfills the equivalent conditions of Fact 1.2.11, then we call it a free
cover of M�. A free resolution

(F ∗, δ) : ...→ F−2
� → F−1

� → F 0
� →M� → 0

of M� is called minimal if Fn → im(δn) is a free cover for all n ∈ Z.

Fact 1.2.13 Let (R�,m) be a local graded ring and let f : F� → M� be a free cover. Then
the only submodule U� ⊂ F� such that f |U� : U� →M� is still surjective is F� itself.

Proof. If f |U� : U� → M� is surjective, then F� = U� + ker(f) ⊂ U� + mF�. Hence F�/U� =
m(F�/U�), and by the graded version of Nakayama’s Lemma 1.2.14 we get U� = F� as re-
quired. �

Lemma 1.2.14 (Nakayama) Let (R�,m) be a local graded ring. If M� is a finitely gener-
ated graded R�-module such that M� = mM�, then M� = 0.

Proof. Suppose on the contrary that M� 6= 0 and choose a minimal system of homogeneous
generators m1, ...,mn of M� of degrees di ∈ Z. As M� = mM� by assumption, we can find
homogeneous xi ∈ md1−di such that m1 = x1m1 + ...+ xnmn. However, 1− x1 ∈ R0 \m0 is
invertible, and so we get m1 = −(1−x1)−1(x2m2 + ...+xnmn), contradicting the minimality
of {mi}. �

Without proof we recall the following standard result.

Fact 1.2.15 Let R� be a local graded ring and let M� be a finitely generated graded R�-
module. Then a free cover/a minimal resolution of M� exists and is unique up to non-
canonical isomorphism.

Definition 1.2.16 Let R� be a local graded ring an M� be a finitely generated R�-module
with minimal free resolution F ∗� → M�. The Betti-numbers of M�, denoted βi(M�), are
defined as the ranks of the free R�-modules F−i� .

Exactness of localization implies the following:

Proposition 1.2.17 Let (R�,m) be a local graded ring and M� be a finitely generated
graded R�-module with minimal free resolution F ∗� →M�. Then F ∗m →Mm is a minimal free
resolution of the Rm-module Mm.

Summarizing, we get the following theorem which will allow us to carry over results from
the ungraded setting to the graded one.

Proposition 1.2.18 Let (R�,m) be a local graded ring and M� be a finitely generated graded
R�-module. Then the following hold:

(1) βiR�
(M�) = βiRm

(Mm) for all i ∈ Z≥0.

(2) M� = 0 if and only if Mm = 0.

(3) M� is projective in R�-mod if and only if M� is free.

(4) proj.dimR�
M� = proj.dimRm

Mm.

(5) dimR�M� = dimRmMm.

(6) inj.dimR�
M� = inj.dimRm

Mm.

(7) depthR�
M� = depthRm

Mm.
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Proof. (1) follows from Proposition 1.2.17. (2) follows from (1) and the fact that M� = 0
resp. Mm = 0 if and only if β0

R�
(M�) = 0 resp. β0

Rm
(Mm) = 0. (3) If M� is projective,

then β1
R�

(M�) = rkk�Tor1
R(k�,M�)� = 0, hence M� is free. (4) follows from proj.dimR�

M� =
max{k ∈ Z≥0 | βkR�

M� 6= 0} and the analogous equation for Mm. (5), (6) and (7) were
already shown in Propositions 1.2.3, 1.2.10 and 1.2.5, respectively. �

As an example of how to apply Proposition 1.2.18, we note the graded version of the
well-known formula of Auslander and Buchsbaum.

Theorem 1.2.19 [Auslander-Buchsbaum formula] Let R� be a local graded ring and M� be
a finitely generated R�-module of finite projective dimension. Then we have

proj.dimR�
M� = depthR�

R� − depthR�
M�.

Finally we recall the definition of a (maximal) Cohen-Macaulay module.

Definition 1.2.20 Let R� be a local graded ring and M� be a finitely generated R�-module.
Then M� is called Cohen-Macaulay if depthR�

M� = dimR�M�. It is called maximal Cohen-
Macaulay if depthR�

M� = dimR�M� = depthR�
R�. The ring R� is called Cohen-Macaulay if

it is Cohen-Macaulay as a graded module over itself, i.e. if depthR�
R� = dimR�R�.

From Proposition 1.2.18 we immediately get:

Fact 1.2.21 Let R� be a local graded ring and M� be a finitely generated graded R�-module.
Then M� is a (maximal) Cohen-Macaulay module over R� if and only if Mm is a (maximal)
Cohen-Macaulay module over Rm.

2 The stabilization functor and matrix factorizations

2.1 Semiorthogonal decomposition of the stable category of a Goren-

stein ring

In this section, we introduce a special class of Cohen-Macaulay rings, called Gorenstein rings,
and recall a semi-orthogonal decomposition of the category R�-mod of finitely generated
graded R�-modules into the subcategory MCM(R�) of maximal Cohen-Macaulay modules
and the subcategory fpd(R�) of modules of finite projective dimension.

Definition 2.1.1 A local graded ring R� is called Gorenstein if inj.dimR�
R� <∞.

It’s not obvious from this definition that any Gorenstein ring is Cohen-Macaulay, however
note the following proposition.

Proposition 2.1.2 Let R� be a local graded ring and M� be a finitely generated graded
R�-module such that inj.dimR�

M� <∞. Then we have

dimR�M� ≤ inj.dimR�
M� = depthR�

R�.

In particular, Gorenstein local graded rings are Cohen-Macaulay.

Proof. This follows from Proposition 1.2.18 and the corresponding ungraded version, see
[BH93, Theorem 3.1.17].

In a Gorenstein ring, we have the following very useful characterization of maximal Cohen-
Macaulay modules (note that part (b) is actually taken as the definition of maximal Cohen-
Macaulayness in [Buc86]). For the convenience of the reader we will sketch its proof.
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Proposition 2.1.3 Let R� be a Gorenstein local graded ring and M� be a finitely generated
graded R�-module. Then the following are equivalent:

(1) M� is maximal Cohen-Macaulay.

(2) Ext∗R(M�, R�)� = 0 for all k > 0.

(3) M� is an arbitrarily high syzygy, i.e. for all n > 0 there exists a finitely generated
graded R�-module N� such that M� is an n-th syzygy of N�.

(4) M� admits a projective coresolution to the right.

Proof. For (1)⇔(2) see [BH93, Theorem 3.3.10]. Further, we have (3) =⇒ (2) because of
inj.dimR�

R� <∞. As (4) =⇒ (3) is trivial, it remains to prove (1) =⇒ (4). For this, choose
a finitely generated projective resolution P ∗� →M�. The assumption that Ext∗R(M�, R�)� = 0
for ∗ > 0 implies that M?

� → (P ∗� )? is a projective coresolution of M?
� , where (−)? :=

HomR(−, R�)�. This implies that M?
� satisfies (4), hence (2), and so dualizing a finitely

generated projective resolution of M?
� yields a projective coresolution for M??

� . Condition (2)
for M� and M?

� implies that M??
�
∼= M� (the duality (−)? is exact on modules satisfying (2),

and the transformation id → (−)?? is an isomorphism on free, finitely generated modules),
hence M� satisfies (4) as claimed. �

Definition 2.1.4 Let R� be a Gorenstein local graded ring. A (not necessarily finitely
generated) graded R�-module M� is called Gorenstein projective if it admits a projective
coresolution. In view of Proposition 2.1.3, we denote the category of Gorenstein projectives
by MCM∞(R�).

Remark 2.1.5 For a detailed treatment of Gorenstein projective modules, see [Chr00,
Chapter 3]. There it is proved that over a Gorenstein ring every module becomes Gorenstein
projective when taking high enough syzygies; in fact, this property characterizes Gorenstein
rings. In other words, a local Noetherian ring R is Gorenstein if and only if every module M
has finite Gorenstein projective dimension g.dimRM , in beautiful analogy to Serre’s criterion
for regularity. In this case we have

g.dimRM = depthRR− depthRM

for every R-module M , generalizing the Auslander-Buchsbaum formula 1.2.19. ♦

Proposition 2.1.6 Let R� be a Gorenstein local graded ring. Then MCM∞(R�) (respec-
tively MCM(R�)), equipped with the class of short exact sequences in the usual sense, is
a Frobenius category (see [Kel06]), and the projective-injectives are precisely the (finitely
generated) projective R�-modules.

Proof. We only do the infinite case. The finitely generated case is treated analogously.
Denote by E∞ the class of short exact sequences in MCM∞(R�). We only check that

(MCM∞(R�),E∞) has enough projectives and injectives, that projectives and injectives
coincide and that the class of projective-injectives equals the class of projective R�-modules.

As inj.dimR�
R� < ∞ we have Ext>0

R (M�, R�) = 0 for all M∗ ∈ MCM∞(R�). Thus
every projective R�-module is projective-injective in (MCM∞(R�),E∞). Moreover, for M� ∈
MCM∞(R�) the existence of a projective coresolutions of M� shows that M� admits an
embedding into a projective R�-module. It follows that (MCM∞(R�),E∞) has enough
injectives, and that any injective object is a summand of a projective R�-module. Thus, the
injectives in (MCM∞(R�),E∞) are precisely the projective R�-modules, and hence coincide
with the projective-injectives in (MCM∞(R�),E∞). �
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Definition 2.1.7 We denote MCM∞(R�) the stable category of the Frobenius category
(MCM∞(R�),E∞) from Proposition 2.1.6. In plain terms, the objects of MCM∞(R�) are
the objects of MCM∞(R�), and for M�, N� ∈MCM∞(R�) we have

MCM∞(M�, N�) = HomR�(M�, N�)/P (M�, N�),

where P (M�, N�) consists of the morphisms factoring through a projective R�-module. This
is a full subcategory of the stable category R�-Mod, defined in the same way.

Similarly, we denote MCM(R�) the stable category of (MCM(R�),E ), which is a full
subcategory of the stable category R�-mod.

The following proposition is the main statement of this section. For convenience we
give a detailed proof, although everything apart from the explicit construction in part (e) is
contained in [Buc86].

Proposition 2.1.8 Let R� be a Gorenstein local graded ring.

(1) For M� ∈ R�-mod we have M� ∈ MCM(R�) if and only if ExtkR(M�, N�)� = 0 for all
k > 0 and all N� ∈ fpd(R�).

(2) For N� ∈ R�-mod we have N� ∈ fpd(R�) if and only if ExtkR(M�, N�)� = 0 for all k > 0
and all M� ∈MCM(R�).

(3) If M� ∈MCM(R�) and N� ∈ fpd(R�), then HomR�-mod(M�, N�) = 0.

(4) For any finitely generated graded R�-module M� there is an exact sequence

0→ P� → N� →M� → 0,

where N� ∈MCM(R�) and P� ∈ fpd(R�).

(5) The inclusion MCM(R�)→ R�-mod has a right adjoint M : R�-mod→MCM(R�).

Proof. Let M� ∈MCM(R�). Since ExtkR(M�, R�)� = 0 for all k > 0, we have ExtkR(M�, N�) ∼=
Extk+n

R (M�,ΩnN�)� for all n ≥ 0. Now, if N� ∈ fpd(R�), we have ΩnN� = 0 for n� 0. This
shows (1).

Next we do (2). By (1) we only have to show that any N� ∈ R�-mod with ExtkR(M�, N�)� =
0 for all k > 0 and M� ∈MCM(R�) has finite projective dimension. For this, take a graded
free resolution F ∗� → N� of N�, and note ΩnF∗� N� ∈MCM(R�) for all n� 0. Hence

HomR�-mod(ΩnN�,ΩnN�) = coker
(
HomR�-mod(ΩnN�, F

−n
� )→ HomR�-mod(ΩnN�,ΩnN�)

)
∼= Ext1

R�
(ΩnN�,Ωn−1N�) ∼= ... ∼= ExtnR�

(ΩnN�, N�)

= 0.

Here the first isomorphism follows from the fact that, since F−n� maps surjectively to ΩnN�,
a homomorphism ΩnM� → ΩnN� factors through some projective if and only if it factors
through F−n� .

Therefore ΩnF∗N� = 0 in R�-mod and ΩnN� is projective, hence free. Point (3) is similar:
as M� ∈ MCM(R�) there exists ΣM ∈ MCM(R�) such that M�

∼= ΩΣM�, and therefore
HomR�-mod(M�, N�) ∼= Ext1

R�
(ΣM�, N�) = 0 as claimed.

We now show (4). Let F ∗� → M� be a free resolution of M� and take n � 0 such
that ΩnF∗M� ∈ MCM(R�). Further, let ΩnF∗M� ↪→ P−n+1

� → P−n+2
� → ... → P 0

� be the
beginning of a free coresolution of ΩnF∗M� in MCM(R�). This exists because MCM(R�) is
a Frobenius category, see Proposition 2.1.6. A small diagram chase using the injectivity of
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R� in MCM(R�) gives the following commutative diagram:

ΩnF∗� M� P−n+1
� P−n+2

� · · · P 0
� ΣnP∗� ΩnF∗� M� 0

ΩnF∗� M� F−n+1
� F−n+2

� · · · F 0
� M� 0

(2.1-1)
With the leftmost terms ΩnF∗M� removed, the rows become complexes, where we put the
entries M� and ΣnP∗Ω

n
F∗M� in cohomological degree 1. Then, the vertical maps constitute a

morphism of complexes f : P ∗ → F ∗, inducing isomorphisms on cohomology in every degree.
Looking at the long exact cohomology sequence of the triangle P ∗ → F ∗ → Cone(f)→ F ∗[1]
we deduce that Cone(f)<0 is a finite free resolution of

ker(Cone(f)0
� → Cone(f)1

� ) = ker(ΣnP∗Ω
n
F∗M� ⊕ F 0

� � M�).

Since ΣnP∗Ω
n
F∗M� ⊕ F 0

� is maximal Cohen-Macaulay, the claim follows.
Finally, part (5) is a formal consequence (1)-(4): For each finitely generated graded

R�-module M� choose an exact sequence

0→M fpd
� →MMCM

� →M� → 0

as in (4), i.e. M fpd
� is of finite projective dimension and MMCM

� is maximal Cohen-Macaulay.
Further, given a homomorphism f : M� → N� it is easy to check that there is an extension
to a commutative diagram

0 M fpd
� MMCM

� M� 0

0 N fpd
� NMCM

� N� 0

ff̃

Here, the class of the extension f̃ in the stable category is uniquely determined by f , as
the difference of any two extensions factors through N fpd

� , and any homomorphism from a
maximal Cohen-Macaulay module to a module of finite projective dimension is stably trivial
by part (3). This defines a functor R-mod → MCM(R�) which we claim to be the right
adjoint to the inclusion functor MCM(R�)→ R-mod. Indeed, let M� be an arbitrary finitely
generated graded R�-module, N� a maximal Cohen-Macaulay module and f : N� → M� be
a homomorphism of graded modules. Then we have to see that, up to stable equivalence,
there is precisely one lifting f̃ : N� →MMCM

� such that

0 M fpd
� MMCM

� M� 0

N�

f
f̃

commutes. The uniqueness is clear, since the difference of any two such liftings factors
through M fpd

� , and HomR-mod(N�,M
fpd
� ) = 0 by (3). For the existence, note that the only

obstruction against the existence of f̃ lies in Ext1
R�-mod(N�,M

fpd
� ), and this group is trivial

by (1). �

The proof of Proposition 2.1.8 actually shows the following:

18



Corollary 2.1.9 Let R� be a Gorenstein local graded ring, and let n � 0 such that Ωn

maps R-mod to MCM(R-mod). Then the functor

Σn ◦ Ωn : R-mod Ωn−−−−→MCM(R-mod) Σn−−−−→ R-mod

together with the canonical map ΣnΩnM� → M� constructed in the proof of Proposition
2.1.8.(5) is right adjoint to the inclusion functor MCM(R�)→ R�-mod.

Remark 2.1.10 As every R�-module has finite Gorenstein-projective dimension (see Re-
mark 2.1.5), the proof of Proposition 2.1.8 applies to show that R�-Mod admits a semi-
orthogonal decomposition into the full subcategory MCM∞(R�) of Gorenstein projective
modules and the full subcategory fpd∞(R�) of modules of finite projective dimension. ♦

2.2 Maximal Cohen-Macaulay modules on a graded hypersurface

Now we specialize the results of the preceding section to the case where R� = S�/(w) for
a regular local graded ring S� and some w ∈ S� \ {0}. In this case it will turn out that
Ω2 ∼= 〈−d〉 for d := deg(w), which we then use to simplify the construction of the Cohen-
Macaulay approximation functor R-mod→MCM(R�) in the case of hypersurfaces.

Definition 2.2.1 A local graded ring S� is called regular if gl.dim(S�-Mod) <∞.

Proposition 2.2.2 Let (S�,m) be a local graded ring. Then the following are equivalent:

(1) S� is regular, i.e. gl.dim(S�-Mod) <∞.

(2) gl.dim(S�-mod) <∞.

(3) proj.dimS�
(k�) <∞.

In particular, if S� is regular and p is a homogeneous prime in S�, then S(p) is regular.

Proof. The implications (1)⇒(2)⇒(3) are clear, so we have to show gl.dim(S�-Mod) < ∞
if proj.dimS�

(k�) < ∞. By Proposition 1.2.10, we have inj.dimS�
(M�) ≤ proj.dimS�

(k�)
for each finitely generated graded S�-module M�, hence gl.dim(S�-mod) = proj.dimS�

(k�) <
∞. Finally, Baer’s criterion implies that inj.dimS�

lim−→
i∈I

Mi ≤ sup
i∈I

inj.dimS�
Mi for any di-

rected system {Mi}i∈I , and as any graded S�-module is a direct limit of finitely generated
graded S�-modules, it follows that inj.dimS�

(M�) <∞ for every graded S�-module M�, hence
gl.dim(S�-Mod) <∞.

The second statement follows from the first applied to S(p), noting that

proj.dimS(p)
(S(p)/pS(p)) = proj.dimS(p)

((S�/p)(p)) ≤ proj.dimS�
(S�/p) <∞.

This concludes the proof.

Proposition 2.2.3 Let (R�,m) be a local graded ring. Then R� regular ⇔ Rm regular.

Proof. This follows from Proposition 2.2.2 together with proj.dimRm
km = proj.dimR�

k�

(Proposition 1.2.18). �

Usually, a local ring (R,m) with residue class field k := R/m is called regular if dim(R) =
dimk(m/m2). By a famous Theorem of Serre, this is equivalent to R-Mod being of finite
global dimension. Note, however, that the following theorem becomes more difficult to prove
with our definition.
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Proposition 2.2.4 Let (S�,m) be a regular local graded ring and f ∈ m \m2 homogeneous.
Then S�/(f) is regular.

Proof. By Proposition 2.2.3 it suffices to prove the proposition in the ungraded case, and
this is done in [Avr10, Proposition 2.2.2]. For convenience of the reader, we recall the proof
in the Appendix, see Proposition B.16. �

In case w ∈ m2, the quotient ring S�/(w) is still a Gorenstein ring.

Proposition 2.2.5 Let (S�,m) be a regular local graded ring and w ∈ m be homogeneous.
Then S�/(w) is Gorenstein.

Proof. More generally, if (R�,m) is Gorenstein and w ∈ m is homogeneous and not a zero
divisor, then R�/m is Gorenstein. This follows from

Ext∗R�/(w)(M�, R�/(w))�
∼= Ext∗+1

R�
(M�, R�)�〈−d〉 (2.2-1)

for each finitely generated graded R�/(w)-module M�, where d is the degree of w. To prove
(2.2-1) it suffices to do the case ∗ = 0, i.e.

HomR�/(w)(M�, R�/(w)) = HomR�(M�, R�/(w)) ∼= Ext1
R�

(M�, R�)〈−d〉, (2.2-2)

because both sides of (2.2-1) are effaceable δ-functors on R�-mod. The isomorphism (2.2-2)
follows from applying Ext∗R�

(M�,−)� to the exact sequence

0→ R�〈−d〉
w−−→ R� −−→ R�/(w)→ 0.

It remains to show that any regular graded ring is a domain, which is done in Fact 2.2.6. �

Fact 2.2.6 Let (S�,m) be a regular local graded ring. Then S� is a domain.

Proof. We divide the proof into three steps:

(1) Show that any associated prime of S� is minimal.

(2) Show that there is precisely one minimal prime in S�.

(3) Conclude the proof.

(1): If p ∈ Ass(S�), then pS(p) ∈ Ass(S(p)). Replacing S� by S(p) (which is again regular by
Proposition 2.2.2), it is sufficient to show that for (S�,m) regular and m ∈ Ass(S�) we have
m = 0. Pick x ∈ S� \{0} homogeneous with m = AnnS�(x). Then xM� = 0 for each M� which
can be embedded into m⊕k for some k, and in particular no such M� 6= 0 can be projective.
Any syzygy in a minimal free resolution embeds into some m⊕k, so it follows that any non-
free finitely generated module has infinite projective dimension. As gl.dim(S�-mod) < ∞,
we conclude that any finitely generated module is free; in particular m is free, contradicting
the fact that x acts trivially on m.

(2): For any additive function on µ : K0(S�-mod) → Z on S�-mod and any M� we
have µ([M�]) = µ([S�]) · χ([M�]), where χ : K0(S�-mod) → Z is the Euler characteristic.
Hence HomZ(K0(S�-mod),Z) = Z〈χ〉. On the other hand, let p be a minimal homogeneous
prime in S�. Then the assignment M� 7→ lenS(p)(M(p)) defines an additive function multp :
K0(S�-mod) → Z satisfying multp([S�/p]) = lenS(p)(S(p)/pS(p)) = 1 but multp([S�/q]) = 0
for any prime q not containing p. This implies that there is precisely one minimal prime p

in S�, as claimed.
(3): If p denotes the unique associated prime in S�, then p coincides with the ideal of zero

divisors, and hence the localization map S� → S(p) is injective. As the proof of (1) shows
pS(p) = 0, it follows that p = 0, and hence S� is a domain. �
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Proposition 2.2.7 Let R� be a regular local graded ring. Then MCM(∞)(R�) = 0.

Proof. By Proposition 2.1.3 resp. Definition 2.1.4 any M� ∈ MCM(∞)(R�) can be written
as an arbitrarily high syzygy, i.e. for all n ∈ N there exists some N� ∈ R�-Mod such that
M�
∼= ΩnM�. By assumption, gl.dim(R�) <∞, and so taking n > gl.dim(R�) shows that M�

is projective and hence vanishes in MCM(∞)(R�). �

Now, we fix w ∈ m\{0} (possibly in m2) and consider maximal Cohen-Macaulay modules
over the quotient singularity R� := S�/(w) which is Gorenstein by Proposition 2.2.5. If
M� ∈MCM(R�), then consideringM� as a module over S� the Auslander-Buchsbaum formula
1.2.19 yields

proj.dimS�
(M�) = depthS�

(S�)− depthS�
(M�) = dim(S�)− depthR�

(M�) = 1.

Hence, there is an exact sequence of S�-modules 0 → P�
α−→ Q� → M� → 0, where P� and

Q� are projective, hence free. As w ·M� = {0}, we get w ·Q� ⊂ im(α), and therefore we can
choose β ∈ HomR�(Q�, P�)− deg(w) such that αβ = w · idP� . Applying β from the left yields
βαβ = wβ, so the injectivity of β yields βα = w · idP� . Hence, we end up with what is called
a matrix factorization of type (S�, w):

Definition 2.2.8 Let S� be a regular local graded ring and w ∈ m be homogeneous of degree
d > 0.

(1) A graded matrix factorization of type (S�, w) is a sequence M0
�

f−→M−1
�

g−→M0
� of the

following form:

(a) M0
� and M−1

� are free (not necessarily finitely generated) graded S�-modules.
(b) f is a homomorphism of graded S�-modules of degree d.
(c) g is a homomorphism of graded S�-modules of degree 0.
(d) gf = w · idM0

�
and fg = w · idM−1

�
.

The element w is called the potential of the matrix factorization.

(2) A morphism of graded matrix factorizations(
M0

�
f−→M−1

�
g−→M0

�

)
−→

(
N0

�
f ′−→ N−1

�
g′−→ N0

�

)
is a pair (α, β) of morphisms of graded R�-modules α : M0

� → N0
� and β : M−1

� → N−1
�

such that

M0
� M−1

� M0
�

N0
� N−1

� N0
�

f g

f ′ g′

α β α

commutes.
The category of graded matrix factorizations of type (S�, w) with morphisms of graded
matrix factorizations is denoted MF∞(S�, w). The full subcategory of graded matrix
factorizations M0

� → M−1
� → M0

� with M0
� ,M

−1
� finitely generated is denoted by

MF(S�, w).

(3) A morphism (α, β) as above is called nullhomotopic, if there are morphisms of graded
R�-modules D0 : M0

� → N−1
� and D−1 : M−1

� → N0
� of degree 0 and −d, respectively,

such that g′D0 +D−1f = α and f ′D−1 +D0g = β. Two morphisms of graded matrix
factorizations are called homotopic if their difference is nullhomotopic.
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The quotient of MF∞(S�, w) and MF(S�, w) with respect to the homotopy relation
is called homotopy category of matrix factorizations of type (S�, w) and is denoted
HMF∞(S�, w) and HMF(S�, w), respectively.

(4) If S�
ι−→ T� is a local homomorphism of regular local graded rings such that T� is

free over S�, any matrix factorization of type (T�, ι(w)) can be considered as a matrix
factorization of type (S�, w). This gives restriction functors MF(T�, ι(w))→MF(S�, w)
and HMF∞(T�, ι(w))→ HMF∞(S�, w) which we will denote by (−) ↓T�

S�
Note that in

our application T� will usually be of infinite rank over S�, so that HMF(T�, ι(w)) is not
mapped to HMF(S�, w) under the restriction functor.

Remark 2.2.9 The category of graded matrix factorizations has a natural pretriangulated
dg-enrichment, giving rise to the homotopy category just defined. We will describe this now;
the reader may skip this on first reading.

Given a matrix factorizations M0
�

f−→ M−1
�

g−→ M0
� , let us agree on writing M∗� for the

sequence

...→M0
� 〈−(k + 1)d〉 f−→M−1

� 〈−kd〉
g−→M0

� 〈−kd〉
f−→M−1

� 〈−(k − 1)d〉 → ...,

where the maps increase the cohomological grading and M0
� = M0

� 〈0〉 is placed in cohomo-
logical degree 0. Note that this is compatible with the previous meaning of M0

� and M−1
� .

Further, let us call the “differential” on M∗� simply by δ, so that δ2 = w · idM∗� . Now, given

another graded matrix factorization N0
�

f ′−→ N−1
�

g′−→ N0
� with corresponding complex N∗� ,

a morphism of matrix factorizations of degree k between M and N is a family {αn}n∈Z of
homomorphisms of graded modules αn : Mn

� → Nn+k
� such that αn+2 = αn〈d〉 under the

equalities Mn+2
� = Mn〈d〉� and Nn+k+2

� = Nn+k〈d〉�. Given such a morphism α of degree k,
we can define its differential dα by (dα)n := δNαn + (−1)k+1αn+1δM . This is a homomor-
phism of degree k+1. Note that this construction is completely analogous to the construction
of the complex of graded homomorphisms between two complexes. What is remarkable is
that even though we only have δ2 = w · id instead of δ2 = 0, taking twice the differential of
a graded morphism between matrix factorizations still gives the zero map:

(d2α)n = δN (dα)n + (−1)k+2(dα)n+1δM

= δN (δNαn + (−1)k+1αn+1δM ) + (−1)k(δNαn+1 + (−1)k+1αn+2δM )δM
= (−1)k

(
δ2
Nαn − αn+2δ

2
M

)
= 0.

Thus, the essential thing is that there is a degree d element of the center of R�-mod, namely
the multiplication by w, such that δ2 is equal to the action of this element.

Summing up, we have constructed for each pair of graded matrix factorizations a complex
of graded morphisms between them. The 0-cocycles in this complex are precisely the mor-
phisms of graded matrix factorizations as defined in Definition 2.2.8, and a morphism is a
0-boundary if and only if it is nullhomotopic. Therefore, we obtain a natural dg-enhancement
MF∞dg(S�, w) of MF∞(S�, w), such that the associated homotopy category Ho(MF∞dg(S�, w))
equals HMF∞(S�, w).

The dg-category MF∞dg(S�, w) is particularly nice in the sense that for each object X ∈
MF∞dg(S�, w) and each morphism f ∈ MF∞dg(S�, w)(X,Y )0 = MF∞(S�, w)(X,Y ) the func-
tors

MF∞dg(S�, w)(−, X)[k] and Cone
[
MF∞dg(S�, w)(−, f)

]
are representable by objects in MF∞dg(S�, w). This means that there are objects X[k] ∈
MF∞dg(S�, w) and Cone(f) ∈ MF∞dg(S�, w) such that for each Z ∈ MF∞dg(S�, w) there are

22



natural isomorphisms of complexes

MF∞dg(S�, w)(Z,X[k]) ∼= MF∞dg(S�, w)(Z,X)[k] (2.2-3)

and

MF∞dg(S�, w)(Z,Cone(f)) ∼= Cone
[
MF∞dg(S�, w)(Z,X)

f◦−−−−→MF∞dg(S�, w)(Z, Y )
]

(2.2-4)

A dg-category satisfying these two representability conditions is called pretriangulated, and
the homotopy category of a pretriangulated dg-category is canonically triangulated (see
[Sch09, Section 2]).

It remains to check that MF∞dg(S�, w) indeed satisfies the above representability con-
ditions. Both the shift and the cone can be constructed as for usual complexes, and the
verification of (2.2-3) and (2.2-4) is just a long and tedious computation. As we do not want
to dig too deep into these things, we content ourself by giving the definitions of shift and
cone. For the shift, we put(

M0
�

f−→M−1
�

g−→M0
�

)
[1] := M−1

� 〈d〉
−g−−→M0

�
−f−−→M−1

� 〈d〉,

and given a morphism

M� M0
� M−1

� M0
�

N� N0
� N−1

� N0
�

(α, β)

f

f ′

g

g′

α β α

of graded matrix factorizations, we define Cone(α, β) as the factorization

N0
� ⊕M−1

� 〈d〉 N−1
� ⊕M0

� N0
� ⊕M−1

� 〈d〉

(
f ′ β

0 −g

) (
g′ α

0 −f

)
(2.2-5)

Note that, in contrast to the situation in the ungraded case, neither the dg-category
MF∞dg(S�, w) nor the triangulated category HMF∞(S�, w) are 2-periodic! Instead, we have
[2] ∼= 〈d〉 on MF∞dg(S�, w) and HMF∞(S�, w). ♦

Our motivation for studying matrix factorizations was that for any maximal Cohen-
Macaulay module M� over R� := S�/(w) we constructed a graded matrix factorization M0

�
f−→

M−1
�

g−→M0
� of type (S�, w) such that M�

∼= coker(M−1
�

g−→M0
� ). Indeed, this construction

yields a very close relationship between matrix factorizations of type (S�, w) and maximal
Cohen-Macaulay over S�/(w), as we shall see now:

Theorem 2.2.10 Let S� be a regular local graded ring, w ∈ m \ {0} homogeneous of degree
d and R� := S�/(w). Then the functor

MF∞(S�, w) R�-Mod(
M0

�
f−→M−1

�
g−→M0

�

)
coker(g)

coker

induces a fully faithful functor coker : HMF∞(S�, w) → R�-Mod. The essential image of
HMF(∞)(S�, w) under coker equals MCM(∞)(R�), and we get an equivalence of triangulated
categories

coker : HMF(∞)(S�, w) ∼= MCM(∞)(R�).
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Proof. The proof that coker : HMF∞(S�, w)→ R-Mod is fully faithful is just some diagram
chasing, so we skip it. See for example [Orl09]. It remains to show that the essential image of
HMF(∞)(S�, w) is MCM∞(R�). We will do the finitely generated case only, but the proof
applies verbatim to the Gorenstein-projective case as well.

Let M0
�

f−→ M−1
�

g−→ M0
� be a graded matrix factorization of type (S�, w). Since

w ·M0 = im(gf) ⊂ im(g) the module K� := coker(g) is annihilated by w, and therefore can
be considered as a graded module over R� := S�/(w). Furthermore, the sequence

...→M0
� /wM

0
� 〈−d〉

f−−→M−1
� /wM−1

�
g−−→M0

� /wM
0
�

f−−→M−1
� /wM−1

� 〈d〉 → ...

is exact, and every second syzygy is isomorphic to K�, hence K� is maximal Cohen-Macaulay
(see Proposition 2.1.3). This shows that coker restricts to a fully faithful functor HMF(S�, w)→
MCM(R�). The proof of the essential surjectivity of this functor was already shown in the
beginning of this section; however, we will now describe a proof which doesn’t use the
Auslander-Buchsbaum formula 1.2.19 and applies to the Gorenstein-projective case as well.

We already know from the beginning of the section that we only have to show that any
M� ∈MCM(R�) satisfies proj.dimS�

M� ≤ 1. Choose a projective coresolution M� → P 0
� →

P 1
� → ... of M� and let Qn� be the n-th syzygy of P ∗� . Then, since proj.dimS�

R� = 1, we
have ExtkS(M�, N�)�

∼= Extk+n
S (Qn� , N�)� for all S�-modules N�, k > 1 and n > 0 by dimension

shifting. Choosing n� 0 such that k+n > inj.dimS�
N� we conclude that ExtkS(M�, N�)� = 0

for all k > 1 and all N�, hence proj.dimS�
M� ≤ 1 as claimed. �

Now we can define the stabilization functor, which will be our main tool for studying
Khovanov-Rozansky homology.

Definition 2.2.11 Let S� be a regular local graded ring, w ∈ m \ {0} homogeneous and
R� := S�/(w). The stabilization functor (−){w} : R�-mod → HMF(S�, w) is defined as the
composition

R�-mod can−−−−→ R�-mod M−−−−→MCM(R�)
coker−1

−−−−−−−→ HMF(S�, w) ↪→ HMF∞(S�, w).

Remark 2.2.12 One can extend the stabilization functor to a functor

(−){w} : R�-Mod −→ HMF∞(S�, w)

using the adjoint R�-Mod → MCM∞(R�) constructed through the non finitely generated
analogue of Proposition 2.1.8.

Next we want to make the stabilization functor explicit. First, note the following fact
which follows immediately from Proposition 2.1.8 and Ω2 ∼= 〈−d〉 on MCM(R�).

Fact 2.2.13 For any finitely generated R�-module M� we have

M(M�) ∼= Σ2nΩ2nM�
∼= Ω2nM�〈nd〉,

where n� 0 is chosen in such a way that Ω2nM� is maximal Cohen-Macaulay.

Remark 2.2.14 It is not clear (at least to the author) what the counit map

Ω2nM�〈nd〉 ∼= M(M�)→M�

should look like. Later we will construct for each M� a special R�-free resolution with respect
to which the map Ω2nM�〈nd〉 →M� can be made explicit. See Remark 2.3.8. ♦

The following proposition explains the name ’stabilization functor’:
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Proposition 2.2.15 Let M� be a finitely generated graded R�-module and F ∗� →M� a free
resolution of M� (not necessarily of finite rank) with the following properties:

(1) F ∗� is eventually 2-periodic: there exists n � 0 such that for each k ≤ −2n there is a
commutative diagram

F k� 〈−d〉 F k+1
� 〈−d〉 F k+2

� 〈−d〉

F k−2
� F k−1

� F k�

∂k ∂k+1

∂k−2 ∂k−1

∼= ∼= ∼=

where the vertical maps are isomorphisms.

(2) The 2-periodic part F−2n
� 〈−d〉 → F−2n−1

� → F−2n
� of F ∗� can be lifted to a matrix

factorization M0
�

f−→M−1
�

g−→M0
� , i.e. there is a commutative diagram

F−2n
� 〈−d〉 F−2n−1

� F−2n
�

M0
� 〈−d〉 ⊗S� R� M−1

� ⊗S� R� M0
� ⊗S� R�

∼= ∼= ∼=

f ⊗ id g ⊗ id

where the vertical maps are isomorphisms.

Then there is an isomorphism in HMF

M
{w}
�

∼=
(
M0

�
f−→M−1

�
g−→M0

�

)
〈nd〉.

Proof. We have the following diagram which commutes up to canonical natural isomorphisms

R�-mod R�-mod MCM(R�) HMF(S�, w)

MCM∞(R�) HMF∞(S�, w)

Ω2n coker
∼=

coker
∼=

coker
∼=

coker
∼=

Ω2n

where the composition R�-mod→ HMF∞(S�, w) is isomorphic to (−){w}〈nd〉.
Now, the image of M0

�
f−→ M−1

�
g−→ M0

� under HMF∞(S�, w) → MCM∞(R�) is by
definition the 2n-th syzygy of M�, computed using the resolution F ∗� , and therefore it is
isomorphic to the image of M� under the composition R�-mod → R-mod → MCM(R�) →
MCM∞(R�). The claim follows. �

Remark 2.2.16 Using the stabilization functor R�-Mod → HMF∞(S�, w) one can gener-
alize Proposition 2.2.15 to non finitely generated modules M�. The somewhat unnatural
version of Proposition 2.2.15 (involving a mixture of both finitely generated and non finitely
generated modules) then follows from the commutative diagram

R�-mod R�-mod MCM(R�) HMF(S�, w)

R�-Mod R�-Mod MCM∞(R�) HMF∞(S�, w)

Ω2n coker
∼=

coker
∼=

Ω2n coker
∼=

coker
∼= ♦
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We will see later that any finitely generated R�-module M� possesses a free resolution
satisfying the assumptions of Proposition 2.2.15.

Stabilization commutes with restriction in case of free ring extensions in the following
sense:

Corollary 2.2.17 Let S�
ι−→ T� be a local homomorphism of regular local graded rings,

such that T� is free over S� with respect to ι. Further, let w ∈ m \ {0} and M� be a finitely
generated T�/(ι(w))-module, which is also finitely generated over S�. Then there is a natural
isomorphism in HMF∞(T�, ι(w))

M
{ι(w)}
� ↓T�

S�
∼= (M� ↓T�

S�
){w}.

2.3 A method for computing the stabilization of a graded module

Proposition 2.2.15 gives us a way to compute the stabilization of a graded module M�,
provided we can find an eventually 2-periodic R�-free resolution of M� together with a lifting
of its 2-periodic part to a matrix factorization of type (S�, w). In [Eis80], Eisenbud showed
how such an R�-free resolution can be constructed starting from a finite S�-free resolution of
M�. We will recall his results now. See also [Avr10].

Lemma 2.3.1 Let M� be a finitely generated graded module over R� = S�/(w) and F ∗� →M�

a free resolution of M� as a module over S�. Then there exists a family of endomorphisms
sn : F ∗� → F

∗−(2n−1)
� of respective internal degrees nd, such that the following holds:

(1) s0 : F ∗� → F ∗+1
� equals the differential of F ∗� .

(2) s1 : F ∗� → F ∗−1
� is a nullhomotopy for the multiplication by w.

(3) For all n ≥ 2 we have
∑

p+q=n
spsq = 0.

Proof. The following proof is the same as the one in [Eis80], with the obvious modifications
for the graded case. We construct the sn inductively. First, we define s0 as the differential
of F ∗� and s1 as an arbitrary nullhomotopy for the multiplication by w. Such a map exists,
as F ∗�

·w−→ F ∗� lifts the multiplication map M�
·w−→ M〈d〉� which is zero since M� is an

S�/(w)-module.
Next, let n ≥ 2 and assume we already constructed maps s1, ..., sn−1 satisfying (1)-(3).

We then consider
t :=

∑
p+q=n
p,q>0

spsq : F ∗� → F ∗−(2n−2)〈nd〉�.

A computation shows that s0t = ts0. Further, the map

M� = coker(F−1
� → F 0

� )→ coker(F−(2n−1)
� → F

−(2n−2)
� ) ⊂ F−(2n−3)

�

induced by t is the zero map, because M� is annihilated by w and w is not a zero divisor
in F

−(2n−3)
� (see Fact 2.2.6). Consequently, t : F ∗� → F ∗−(2n−2)〈nd〉� is nullhomotopic, i.e.

there is some sn : F ∗� → F ∗−(2n−1)〈nd〉 such that sns0 + s0sn = −t. Then s0, ..., sn satisfy
(a)-(c) as well and the induction step is complete. �

We fix a family of morphism sn : F ∗� → F ∗−(2n−1)〈nd〉 with the properties (a)-(c) from
Lemma 2.3.1. Further, we define a Z-graded family D∗� of graded S�-modules as follows. Put
D−2n

� := S�〈−nd〉 for n ≥ 0 and Dk
� := 0 otherwise. Further, for n ≥ 0 let tn ∈ D−2n

nd denote
the unit element in D−2n = S�〈−nd〉, and denote by tn∗ : D∗� → D∗+2n〈−nd〉� the canonical
map. In other words, D∗� is a polynomial ring over S�, where the indeterminate t lives in
cohomological degree −2 and internal degree d, and the map tn∗ is just the division by tn,
where we set tk/tn := 0 for k < n.
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Proposition 2.3.2 Assume the setup of Lemma 2.3.1. Then the reduction ofD∗� ⊗S� F
∗
� ,
∑
n≥0

tn∗ ⊗ sn


modulo w is an R�-free resolution of M�.

Proof. See [Eis80], Theorem 7.2. There the statement is formulated and proved in the
ungraded case, but that’s ok, as the grading does not matter if we want to show acyclicity
of a given complex of graded R�-modules. In case sn = 0 for all n ≥ 2 we will give a proof
based on the Bar resolution in the Appendix. See Remark F.3. �

Now let us assume in addition that F ∗� is bounded. Then the complexD∗� ⊗S� F
∗
� ,
∑
n≥0

tn∗ ⊗ sn


is, up to internal grading, eventually 2-periodic, because

(D∗� ⊗S� F
∗
� )−2N ∼=

⊕
n≥0

F−2n
� 〈−d(N − n)〉,

t
2N+|x|

2 ⊗ x ←− [ x (2.3-1)

and

(D∗� ⊗S� F
∗
� )−(2N+1) ∼=

⊕
n≥0

F
−(2n+1)
� 〈−d(N − n)〉

t
2N+1+|x|

2 ⊗ x ←− [ x (2.3-2)

for all N � 0 such that F ∗� vanishes in degrees below −2N . In particular, we get induced
maps (⊕

n≥0

F−2n
� 〈−d(N − n)〉

)
〈−d〉 (D∗� ⊗S� F

∗
� )−(2N+2)

⊕
n≥0

F
−(2n+1)
� 〈−d(N − n)〉 (D∗� ⊗S� F

∗
� )−(2N+1)

∂

∼=

∼=

and ⊕
n≥0

F
−(2n+1)
� 〈−d(N − n)〉 (D∗ ⊗S� F

∗
� )−(2N+1)

⊕
n≥0

F−2n
� 〈−d(N − n)〉 (D∗ ⊗S� F

∗
� )−2N

∂

∼=

∼=

which, by the explicit definition of the isomorphisms (2.3-1), (2.3-2) and the differentials
involved, are equal to

∑
n≥0 sn. Thus, applying Propositions 2.3.2 and 2.2.15, we get the

following useful method to calculate the stabilization of a module:

Proposition 2.3.3 Let M� be a finitely generated graded R�-module and F ∗� → M� a
bounded, free resolution of M� as a module over S�. Further, let sn be as in Lemma 2.3.1.
Then there is an isomorphism in HMF

M
{w}
�

∼=

⊕
n≥0

F−2n
� 〈dn〉,

⊕
n≥0

F
−(2n+1)
� 〈dn〉,

∑
n≥0

sn

 .
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As an example, we use Proposition 2.2.15 to calculate the stabilization ofM� := S�/(x1, ..., xl),
where x1, ..., xl is a regular sequence of homogeneous elements, and w ∈ (x1, ..., xl). Accord-
ing to 2.2.15, we have to go through the following steps:

(1) Construct a bounded S�-free resolution of S�/(x1, ..., xl).

(2) Explicitly construct homotopies sn as in Lemma 2.3.1.

(3) Put together (1) and (2) to get the stabilization as described in 2.3.3.

Step 1: As x1, ..., xl is regular, its Koszul-complex

K(x1, ..., xl)∗� :=
∧∗ l⊕

i=1

S�〈−deg(xi)〉ei with differential e.i := xi,

is an S�-free resolution of S�/(x1, ..., xl). Note that the Koszul complex carries a natural
structure of a dg-algebra, which we will use in the next step.
Step 2: As w ∈ (x1, ..., xl) we can choose homogeneous y1, ..., yl such that w = x1y1 +
...+ xlyl. Define s1 as the multiplication mult(y1e1 + ...+ ylel) (in the Koszul-complex) by
y1e1 + ...+ ylel. The Leibniz rule for differentiation shows that s1 is indeed a nullhomotopy
for the multiplication by w. Further, we have s2

1 = 0, so we can put sn := 0 for n ≥ 2 and
(a)-(c) from Lemma 2.3.1 are satisfied.
Step 3: As sn = 0 for all n ≥ 2, we get the following concrete description of S�/(x1, ..., xl){w}:

Corollary 2.3.4 Let x1, ..., xl be an S�-regular sequence of homogeneous elements and w ∈
(x1, ..., xl). Choose elements y1, ..., yl satisfying w = x1y1 + ... + xlyl. Then there is a
canonical isomorphism in HMF(S�, w)

(S�/(x1, ..., xl))
{w} ∼=

(
K(x1, ..., xl)even

� , K(x1, ..., xl)odd
� , +. mult(e1y1 + ...+ elyl)

)
,

where

K(x1, ..., xl)even =
⊕
n≥0

[∧2n
l⊕
i=1

S�〈− deg(xi)〉ei

]
〈dn〉

and

K(x1, ..., xl)odd =
⊕
n≥0

[∧2n+1
l⊕
i=1

S�〈− deg(xi)〉ei

]
〈dn〉

Remark 2.3.5 In the next section we identify the matrix factorization from Corollary 2.3.4
as the tensor product of the elementary Koszul factorizations

S�
yi−→ S�〈− deg(xi)〉

xi−→ S�.

Remark 2.3.6 Note that the the example of a complete intersection S�/(x1, ..., xl) was so
easy to compute because we could choose a nullhomotopy s1 for the multiplication by w

which satisfied s2
1 = 0. In general, such a homotopy need not exist. More precisely, one

has the following: there are modules M� whose minimal free resolutions do not possess a
nullhomotopy s1 satisfying s2

1 = 0, but one can always choose some (non-minimal) resolution
where it does exist. For details, see [Avr10]. ♦

For later use in Section 3 (see Example 3.3.14) we will now study how stabilizations of
morphisms between complete intersections can be computed explicitly in terms of Koszul
factorizations. To keep things simple, we restrict to the case of two variables.
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Example 2.3.7 Let x1, x2 and x̃1, x̃2 be homogeneous regular sequences in S� such that
w ∈ (x1, x2) ∩ (x̃1, x̃2). Fix homogeneous y1, y2 and ỹ1, ỹ2 such that w = x1y1 + x2y2 and
w = x̃1ỹ1 + x̃2ỹ2. Finally, let ϕ : S�/(x1, x2) → S�/(x̃1, x̃2) be some nonzero morphism of
S�-modules. We want to describe explicitly a map {x,y} → {x̃, ỹ} making the following
square commutative in HMF(S�, w):

{x,y} (S�/(x1, x2)){w}

{x̃, ỹ} (S�/(x̃1, x̃2)){w}

∼=

∼=

ϕ{w}

First, note that ϕ is given by some element α ∈ S� \ {0} such that α(x1, x2) ⊂ (x̃1, x̃2). Fix
elements λij ∈ S� such that xi =

∑
j λij x̃j . Then we have

∑
j

(αỹj)x̃j = αw =
∑
i

yi(αxi) =
∑
j

(∑
i

λijyi

)
x̃j ,

which means that (αỹj −
∑
i λijyi)j is a 1-cycle in K(x̃1, x̃2)∗� . As x̃ is regular, it follows

that there exists some µ such that
∑
i λi,1yi = αỹ1 − µx̃2 and

∑
i λi,2yi = αỹ2 + µx̃1.

By definition of (−){w}, in order to compute ϕ{w} we have to extend ϕ to an eventually
2-periodic morphism between eventually 2-periodic S�/(w)-free resolutions of S�/(x1, x2) and
S�/(x̃1, x̃2). In our situation, we use the resolutions constructed in Proposition 2.2.15 from
the Koszul resolutions K(x1, x2)∗� → S�/(x1, x2) and K(x̃1, x̃2)∗� → S�/(x̃1, x̃2) together with
their square zero nullhomotopies mult(y1e1 + y2e2) and mult(ỹ1ẽ1 + ỹ2ẽ2) for the multipli-
cation by w. Patience and some calculation shows that such an extension is explicitly given
by

... S�(e1)⊕ S�(e2) S� ⊕ S�(e1e2) S�(e1)⊕ S�(e2) S�

... S�(ẽ1)⊕ S�(ẽ2) S� ⊕ S�(ẽ1ẽ2) S�(ẽ1)⊕ S�(ẽ2) S�

(
x1 x2

−y2 y1

) (
y1 −x2

y2 x1

) (
x1 x2

)

(
x̃1 x̃2

−ỹ2 ỹ1

) (
ỹ1 −x̃2

ỹ2 x̃1

) (
x̃1 x̃2

)
(
λ11 λ21

λ12 λ22

) (
α 0
µ λ11λ22−λ12λ21

α

) (
λ11 λ21

λ12 λ22

)
α

provided λ11λ22−λ12λ21
α exists, which will be clear in our applications (see Example 3.3.14).

Thus, a concrete realization of a map {x,y} → {x̃, ỹ} making (3.3-6) commute is given by

{x,y} S�(e1)⊕ S�(e2) S� ⊕ S�(e1e2)

{x̃, ỹ} S�(ẽ1)⊕ S�(ẽ2) S� ⊕ S�(ẽ1ẽ2)

(
x1 x2

−y2 y1

)
(
y1 −x2

y2 x1

)

(
x̃1 x̃2

−ỹ2 ỹ1

)
(
ỹ1 −x̃2

ỹ2 x̃1

)

(
λ11 λ21

λ12 λ22

) (
α 0
µ λ11λ22−λ12λ21

α

)

Remark 2.3.8 Let us return to Remark 2.2.14 where we asked how the counit map

Ω2nM�〈nd〉 −→M�

looks like explicitly. In this remark, we answer this question in the case where Ω is computed
using a resolution constructed through 2.3.2.
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Thus, fix an S�-free resolution F ∗� of M� together with a family of homotopies sn as in
lemma 2.3.1, and choose N � 0 such that Fn� = 0 for all n < −2N . Then the diagram
(2.1-1) can be realized concretely as:

N⊕
n=0

F
−(2n+1)
� 〈d(n−N)〉

N⊕
n=0

F−2n
� 〈d(n−N)〉

N⊕
n=0

F
−(2n+1)
� 〈d(n−N + 1)〉 · · ·

N⊕
n=0

F
−(2n+1)
� 〈d(n−N)〉

N⊕
n=0

F−2n
� 〈d(n−N)〉

N−1⊕
n=0

F
−(2n+1)
� 〈d(n−N + 1)〉 · · ·

· · ·
N⊕
n=0

F
−(2n+1)
� 〈d(n− 1)〉

N⊕
n=0

F−2n
� 〈d(n− 1)〉

N⊕
n=0

F
−(2n+1)
� 〈dn〉

N⊕
n=0

F−2n
� 〈dn〉 coker().

· · · F−3
� ⊕ F−1

� 〈−d〉 F−2
� ⊕ F 0

� 〈−d〉 F−1
� F 0

� M�

where the vertical maps are the projection maps. ♦

2.4 Tensor products of graded matrix factorizations

In this section we define internal and external tensor products of graded matrix factorizations
and study the crucial question in which situations taking tensor products commutes with
stabilization.

Definition 2.4.1 Let S� be a regular local graded ring, w0, w1 ∈ S� be homogeneous and

M := M0
�

f−→ M−1
�

g−→ M0
� , N := N0

�
f ′−→ N−1

�
g′−→ N0

� be graded matrix factorizations of
type (S�, w0) and (S�, w1), respectively. The (internal) tensor product M ⊗S� N is defined as
the graded matrix factorization of type (S�, w0 + w1)

M0
� ⊗S� N

−1
� ⊕ M−1

� ⊗S� N
0
� M0

� ⊗S� N
0
� ⊕ M−1

� ⊗S� N
−1
� 〈d〉

(
id⊗ g′ g ⊗ id
f ⊗ id −id⊗ f ′

)
(

id⊗ f ′ g ⊗ id
f ⊗ id −id⊗ g′

)

In order to be able to compute tensor products with more than two factors, we note the
following equivalent definition: Given M , consider it as a Z-graded family M∗∗ of S�-modules,
concentrated in degrees 1 and 0, and similar for N . Then take the tensor product of M∗� and
N∗� as Z-graded families of graded S�-modules, i.e. (M∗� ⊗S� N

∗
� )n :=

⊕
p+q=nM

p
� ⊗S� N

q
� ,

and equip M∗� ⊗S� N
∗
� with the two differentials, one raising and the other lowering the

cohomological degree by 1, induced by the structure maps of M and N ; obey the Koszul
sign rule. Then collapse the cohomological Z-grading on M∗� ⊗S� N

∗
� to a Z/2Z-grading, but

whenever a cohomological degree shift by −2 occurs, we shift up the internal degree by d.
The resulting Z/2Z-graded family of S�-modules is now equipped with a degree 0 differential
from cohomological degree 1 to 0 and a degree d differential from homological degree 0 to
1. This description is valid also for more than two tensor factors, and we will make use of it
shortly.

Next we discuss the most basic matrix factorizations, the Koszul factorizations.

Definition 2.4.2 Let S� be a regular local graded ring and let x, y ∈ S� be homogeneous.
The Koszul factorization of x, y, denoted by {x, y}, is defined as the graded matrix factor-
ization

{x, y} :=
(
S�

y−−→ S�〈−deg(x)〉 x−−→ S�

)
30



of type (S�, xy). More generally, if x := (x1, ..., xl) and y := (y1, .., yl) are sequences of
homogeneous elements in S�, we define the Koszul factorization {x,y} of x and y as the

matrix factorization of type
(
S�,

l∑
i=1

xiyi

)

{x,y} :=
l⊗
i=1

{xi, yi} =
l⊗
i=1

(
S�

yi−−→ S�〈−deg(xi)〉
xi−−→ S�

)
.

Koszul-factorizations play a very prominent role, because the matrix factorization occurring
in Corollary 2.3.4 is just the Koszul-factorization of (x1, ..., xl) and (y1, ..., yl):

Proposition 2.4.3 Let x = (x1, ..., xn) and y = (y1, ..., yn) be sequences of homogeneous
elements in S�, and assume that x is regular. Further, set w := x1y1 + ...+xnyn. Then there
is an isomorphism in HMF(S�, w)

(S�/(x1, ..., xn)){w} ∼= {x,y}.

Remark 2.4.4 Proposition 2.4.3 has an interesting consequence. The left hand side in 2.4.3
does only depend on x1, ..., xn and w, but not on the particular choice of the yi. Thus, any
two choices of y1, .., yn satisfying w = x1y1 + ... + xnyn give homotopy equivalent Koszul
factorizations. Our proof is rather indirect; for a direct proof, see [Wu09, Lemma 2].

2.5 Compatibility of taking tensor product and stabilization

In the application to Khovanov-Rozansky homology we will identify the matrix factorizations
associated to basic MOY-graphs as stabilizations of certain Soergel bimodules. As these
matrix factorizations are glued together by tensoring afterwards, we are naturally led to
study the question whether taking tensor products commutes with taking stabilizations.
The following gives a first criterion:

Corollary 2.5.1 Let I�, J� ⊂ S� be homogeneous ideals in S� such that there is a regular
sequence (x1, ..., xn) of homogeneous elements S� and some k, 1 ≤ k ≤ n, such that I� =
(x1, ..., xk) and J� = (xk+1, ..., xn). Further, let w = w0 + w1 for some w0 ∈ I� and w1 ∈ J�.
Then there is an isomorphism in HMF(S�, w)

(S�/I�){w0} ⊗S� (S�/J�){w1} ∼= (S�/(I� + J�)){w}.

Proof. Choose homogeneous elements y1, ..., yn in S� such that w0 = x1y1 + ... + xkyk and
w1 = xk+1yk+1 + ...+ ynxn. Applying Proposition 2.4.3 three times then gives

(S�/I�){w0} ⊗S� (S�/J�){w1} ∼= {(x1, ..., xk), (y1, ..., yk)} ⊗S� {(xk+1, ..., xn), (yk+1, ..., yn)}

=
n⊗
i=1

{xi, yi} = {(x1, ..., xn), (y1, ..., yn)}

∼= (S�/(I� + J�)){w}. �

Corollary 2.5.1 looks somewhat unnatural as it leaves the following questions open:

(1) Given two finitely generated graded modules M� and N� over R� := S�/(w) and R′� :=

S�/(w′), respectively, is there always a canonical morphism between M
{w}
� ⊗S� N

{w′}
�

and (M� ⊗S� N�){w+w′}?
(2) Are there criteria like 2.5.1 which can be applied to noncyclic S�-modules M� and N�

to check if there is an isomorphism M
{w}
� ⊗S� N

{w′}
�

∼= (M� ⊗S� N�){w+w′}?
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Question (1) will be answered in Theorem H.7: there is a canonical morphism

M
{w}
� ⊗S� N

{w′}
� → (M� ⊗S� N�){w+w′}

which is even natural in M� and N�. Concerning question (2), again the full answer is
contained in Theorem H.7, but for now, the following generalization of Corollary 2.5.1 is
sufficient:

Proposition 2.5.2 Let M� and N� be finitely generated modules over R� := S�/(w) and
R′� := S�/(w′), respectively, such that TorS�

k (M�, N�)� = 0 for all k > 0. Then there is an
isomorphism in HMF(S�, w + w′)

M
{w}
� ⊗S� N

{w′}
�

∼= (M� ⊗S� N�){w+w′}

Proof. We want to apply Proposition 2.3.3 to M� ⊗S� N�. Let P ∗� → M� and Q∗� → N� be
free resolutions of M� and N� over S�, and let s′n : P ∗� → P

∗−(2n−1)
� and s′′n : Q∗� → Q

∗−(2n−1)
�

be as in Lemma 2.3.1. From this data we will now construct explicitly a free resolution
F ∗� →M�⊗S�N� together with a family of higher homotopies for F ∗� needed for the application
of Lemma 2.3.1 to M� ⊗S� N�.

As TorS�
k (M�, N�)� = 0 for k > 0, the complex F ∗� := P ∗� ⊗S� Q

∗
� is an S�-free resolution of

M� ⊗S� N�. We now define sn : F ∗� → F
∗−(2n−1)
� as

sn(x⊗ y) := s′n(x)⊗ y + (−1)deg(x)x⊗ s′′n(x).

It’s clear that s0 is just the differential of F ∗� , and since

(dF∗� s1 + s1dF∗� )(x⊗ y) = dF∗� (s′1(x)⊗ y + (−1)|x|x⊗ s′′1(y))

+ s1(dP∗� (x)⊗ y + (−1)|x|x⊗ dQ∗� (y))

= (dP∗� s
′
1 + s′1dP∗� )(x)⊗ y + x⊗ (dQ∗� s

′′
1 + s′′1dQ∗� )(y)

+ (−1)|x|+1s′1(x)⊗ dQ∗� (y) + (−1)|x|dP∗� x⊗ s
′′
1(y)

+ (−1)|x|+1dP∗� (x)⊗ s′′1(y) + (−1)|x|s′1(x)⊗ dQ∗� (y)

= wx⊗ y + x⊗ w′y = (w + w′)x⊗ y

we see that s1 is a nullhomotopy for the multiplication by w+w′. Finally, we have to check
that

∑
p+q=n

spsq = 0 für n ≥ 2, which follows by direct calculation:

∑
p+q=n

spsq =
∑

p+q=n

(s′p ⊗ id + (−1)|x|id⊗ s′′p)(s′q ⊗ id + (−1)|x|id⊗ s′′q )

=
∑

p+q=n

s′ps
′
q ⊗ id + id⊗ s′′ps′′q + (−1)|x|s′p ⊗ s′′q + (−1)|x|+1s′q ⊗ s′′p

= 0;

where we used that s′′q changes the parity of the degree, and therefore

((−1)|x|id⊗ s′′p) ◦ (s′q ⊗ id) = (−1)|x|+1s′q ⊗ s′′p .

Thus the sn satisfy the conditions of Lemma 2.3.1 and therefore can be used to calculate
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(M� ⊗S� N�){w+w′}. By Proposition 2.3.3, we get

(M� ⊗S� N�){w+w′}

∼=

⊕
n≥0

F 2n
� 〈nd〉,

⊕
n≥0

F 2n+1
� 〈nd〉,

∑
n≥0

s′n ⊗ id + (−1)|x|id⊗ s′′n


=

⊕
n≥0

P 2n
� 〈nd〉,

⊕
n≥0

P 2n+1
� 〈nd〉,

∑
n≥0

s′n

⊗
S�

⊕
n≥0

Q2n
� 〈nd〉,

⊕
n≥0

Q2n+1
� 〈nd〉,

∑
n≥0

s′′n


= M

{w}
� ⊗S� N

{w′}
� . �

2.6 Scalar extension and external tensor products

Next we define scalar extensions and external tensor products of graded matrix factorizations
and study their compatibility with the stabilization functor.

Definition 2.6.1 Let ϕ : T� → S� be a local homomorphism of regular local graded rings.
We consider S� as a graded T�-module via ϕ. If M∗� := (M0

�
f−→ M−1

�
g−→ M0

� ) is a graded
matrix factorization of type (T�, w), we denote by M∗� ⊗T� S� or M∗� ↑

S�
T�

the scalar extension
of M∗� along T� → S�, defined by

M0
� ⊗T� S�

f⊗id−−−→M−1
� ⊗T� S�

g⊗id−−−→M0
� ⊗T� S�.

This is a graded matrix factorization of type (S�, ϕ(w)).

Fact 2.6.2 Let T�
ϕ−→ S� and w ∈ mT� \{0} be as in definition 2.6.1, and assume furthermore

that S� is free as a graded T�-module. Then, given a finitely generated graded T�/(w)-module
M�, we have an isomorphism in HMF(S�, ϕ(w))

M
{w}
� ↑S�

T�
∼= (M� ⊗T� S�)

{ϕ(w)}
.

Proof. As S�/(w) is free and in particular flat as a module over T�/(ϕ(w)), the scalar exten-
sion of a graded free resolution of some graded T�/(w)-module M� along ϕ is a graded free
resolution of M� ⊗T� S� over S�/(w). The same holds for a lifting of the 2-periodic part of
such a resolution to T�. The claim follows from Proposition 2.2.15. �

Definition 2.6.3 Let T�, S� and S′� be regular local graded rings, and let T� ↪→ S� and
T� ↪→ S′� be homomorphisms of local graded rings. If M := (M0

� → M−1
� → M0

� ) and
N := (N0

� → N−1
� → N0

� ) are graded matrix factorizations of type (S�, w) and (S′� , w
′),

respectively, we define

M ⊗T� N := M ↑S�⊗T�S
′
�

S�
⊗S�⊗T�S

′
�
N ↑S�⊗T�S

′
�

S′�
.

This is a graded matrix factorization of type (S� ⊗T� S
′
� , w ⊗ 1 + 1⊗ w′).

Proposition 2.6.4 Let S�, S′� , T� and w ∈ mS� \{0}, w′ ∈ mS′� \{0} be as in definition 2.6.3.
Assume S� ⊗T� S

′
� is again regular local, and w ⊗ 1 + 1 ⊗ w′ 6= 0 in S� ⊗T� S

′
� . Further, let

M� and N� be finitely generated graded modules over S�/(w) and S′�/(w
′), respectively, such

that TorT�
k (M�, N�) = 0 for all k > 0. Then there is an isomorphism in HMF(S� ⊗T� S

′
� , w ⊗

1 + 1⊗ w′)
M
{w}
� ⊗T� N

{w′}
�

∼= (N� ⊗T� M
′
� ){w+w′}
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Proof. As S� and S′� are free and in particular flat over T�, we have canonical isomorphisms

TorS�⊗T�S
′
�

k (M� ↑
S�⊗T�S

′
�

S�
, N� ↑

S�⊗T�S
′
�

S′�
) = TorS�⊗T�S

′
�

k (M� ⊗T� S
′
� , N� ⊗T� S�) ∼= TorT�

k (M�, N�)

for all n ≥ 0. Now the claim follows from Fact 2.6.2 and Proposition 2.5.2. �

In particular, we get the following:

Corollary 2.6.5 Let S�, S′� , T� and w ∈ mS� \ {0}, w′ ∈ mS′� \ {0} be as in Definition 2.6.3.
Assume S� ⊗T� S

′
� is again regular local, and w ⊗ 1 + 1 ⊗ w′ 6= 0 in S� ⊗T� S

′
� . Further, let

I� ⊂ S� and J� ⊂ S′� be homogeneous ideals and assume that there exist regular sequences
x1, ..., xn ∈ S� and y1, ..., ym of homogeneous elements in S� and S′� , respectively, such that
I� = (x1, ..., xn), J� = (y1, ..., ym) and x1⊗1, ..., xn⊗1,1⊗y1, ..., 1⊗ym is regular in S�⊗T� S

′
� .

Then there is an isomorphism in HMF(S� ⊗T� S
′
� , w ⊗ 1 + 1⊗ w′)

(S�/I�){w} ⊗T� (S′�/J�){w
′} ∼= (S� ⊗T� S

′
�/I� ⊗ 1 + 1⊗ J�){w⊗1+1⊗w′}.

Proof. This is a special case of Proposition 2.6.4. Alternatively, it can be deduced from Fact
2.6.2 and Corollary 2.5.1. �

3 Khovanov-Rozansky homology via maximal Cohen-

Macaulay modules

In this section we apply the algebraic methods established in the previous section to give
an alternative description of Khovanov-Rozansky homology. For the sake of completeness,
we first recall the construction of the generalized Khovanov-Rozansky homology described
in [Wu09] and [Yon09]. We observe that the matrix factorizations associated to basic MOY-
graphs can be written as stabilizations of certain Soergel bimodules and prove that the
tensor products occurring when glueing these matrix factorizations together commute with
the stabilization functor as long as the MOY-graph under consideration is acyclic, i.e. does
not possess any oriented cycles, in accordance with Webster’s description of the Khovanov-
Rozansky complex of some acyclic MOY-graph, see [Web07, Section 2.4].

3.1 The construction of generalized KR-homology

First, we recall the definition of a (marked) MOY-graph.

Definition 3.1.1 A MOY-graph is a directed graph Γ := (V,E, s, t) (with vertices V , edges
D and source-target functions s, t : E → V ) together with a weight function on its edges
ν : E → {0, 1, 2, ..., n}, such that the following properties hold:

(1) For all v ∈ V we have η(v) := |{α ∈ E | v ∈ {s(α), t(α)}}| ≥ 1.

(2) For all v ∈ V such that η(v) ≥ 2, we have∑
α∈E
t(α)=v

ν(α) =
∑
α∈E
s(α)=v

ν(α).

If (Γ, ν) is a MOY-graph, a vertex v ∈ V satisfying η(v) = 1 is called an outer point of Γ.
Otherwise v is called an inner point.

Definition 3.1.2 A marking on a MOY-graph (Γ, ν) consists of the following data:

(1) A subset P ⊂ |Γ|, whose elements we will call marked points, with the following prop-
erties:
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(a) Every edge of Γ contains at least one marked point.
(b) Every outer point of Γ is marked.
(c) No inner point of Γ is marked.

(2) For every marked point p ∈ P a set of variables Xp with the following properties:

(a) For p 6= q ∈ P the sets Xp and Xq are disjoint.
(b) If p lies in the interior of the edge e of Γ, we have |Xp| = ν(e).
(c) If p is an outer point of Γ and e ∈ E is the unique edge of Γ such that p ∈
{s(e), t(e)}, we have |Xp| = ν(e).

If p ∈ P is a marked point, we call |Xp| the value of p.

If one cuts the edges of a marked MOY-graph Γ along their marked points, the graph
decomposes into MOY-graphs of the form Γm1,...,mk

n1,...,nl
or Γn depicted in Figure 6. We will call

these elementary MOY-graphs building blocks.

m1

X1

m2

X2

mk−1

Xk−1

mk

Xk

Y1

n1

Y2

n2

Yl−1

nl−1

Yl

nl

· · ·

· · ·

Γm1,...,mk
n1,...,nl

Γmm

Y

m

X

Figure 6: Building blocks

Notation: Given sets of variables Xi = {xi,1, ..., xi,mi} we denote by S (X1|...|Xn) the
subring of C[xi,j |1 ≤ i ≤ n, 1 ≤ j ≤ mi] consisting of those polynomials which are sym-
metric in the variables xi,1, ..., xi,mi from Xi for each i = 1, ..., n. We have S (X1|...|Xn) ∼=
S (X1)⊗C ...⊗CS (Xn), so that S (X1|...|Xn) is a polynomial ring in the elementary symmet-
ric polynomials of the Xi. In particular, it is a regular local graded ring. Given an arbitrary
set of variables X we denote by Xl ∈ S (X) the l-th elementary symmetric polynomial in
the variables contained in X. Given a variable set like Xi which itself carries in index, we
denote the l-th elementary symmetric polynomial of the variables contained in Xi by Xi,l.
If the set of variables under consideration is not denoted by a single letter, but for example
is of the form X ∪ Y, then we denote the l-th elementary symmetric polynomial of X ∪ Y
by (X ∪ Y)l etc. For sets of variables X1, ...,Xn we denote by X the union

⋃
Xi, but we set

S (X) := S (X1|...|Xn), overloading the previous definition of S (X). If we want to talk about
the ring of completely symmetric polynomials in the variables of X =

⋃
Xi, we will write

S (X∪) for this instead. Finally we set ΣXn+1 :=
∑
x∈X

xn+1 ∈ S (X) for an arbitrary set of

variables X.
Given a marked MOY-graph Γ we associate to it a matrix factorization KR(Γ) along the

following steps, which we will look at more closely below:

(1) Cut Γ along its marked points to get the basic MOY-subgraphs Γ1, ...,Γr of Γ.

(2) To each of the Γi with ingoing variables Y1, ...,Yl and outgoing variables X1, ...,Xk
associate a graded matrix factorization KR(Γi) of type (S (X|Y),ΣXn+1 − ΣYn+1).

(3) Glue together the matrix factorizations associated to the basic MOY-subgraphs of Γ

along their common variables: KR(Γ) :=
r⊗
i=1

KR(Γr).
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We first explain step (2) in detail, beginning with the matrix factorization associated to the

basic MOY-graph Γm1,...,mk
n1,...,nl

(see Figure 6). Put m :=
k∑
i=1

|Xi| =
l∑

j=1

|Yj |. We define

KR(Γm1,...,mk
n1,...,nl

) :=
m⊗
i=1

{∗i, Xi − Yi}

〈 ∑
1≤i<j≤k

mimj

〉
,

considered as a matrix factorization of type (S (X|Y),ΣXn+1 − ΣYn+1). Here the ∗i are

homogeneous elements chosen in such a way that
m∑
i=1

∗i(Xi − Yi) = ΣXn+1 − ΣYn+1. As the

sequence (Xi−Yi)1≤i≤m is regular in S (X|Y), the particular choice of the ∗i is irrelevant by
Proposition 2.4.3. The case of the basic MOY-graph Γmm (see 6) is similar; we set

KR(Γmm) :=
m⊗
i=1

{∗i, Xi − Yi},

considered as a graded matrix factorization of type (S (X|Y),ΣXn+1 − ΣYn+1). Again, the

∗i are homogeneous elements chosen in such a way that
m∑
i=1

∗i(Xi − Yi) = ΣXn+1 − ΣYn+1.

Summing up, we have shown the following:

Theorem 3.1.3 There is a canonical isomorphism in HMF(S (X|Y),ΣXn+1 − ΣYn+1):

KR
(
Γm1,...,mk
n1,...,nl

)
= KR


m1

X1

m2

X2

mk−1

Xk−1

mk

Xk

Y1

n1

Y2

n2

Yl−1

nl−1

Yl

nl

· · ·

· · ·

 ' (S (X|Y)/(Xi − Yi)〈r〉){ΣX
n+1−ΣYn+1} ,

where r :=
∑

1≤i<j≤k
mimj .

Remark 3.1.4 Note that according to our definitions Γmm denotes two different basic MOY-
graphs. However, this causes no trouble, as the two factorizations associated to them are
the same.

m1

X1

m2

X2

mk−1

Xk−1

mk

Xk

Y1

n1

Y2

n2

Yl−1

nl−1

Yl

nl

· · ·

· · ·

Γm1,...,mk
n1,...,nl

Γm1+...+mk
n1,...,nl

m1 + ...+mk

X
∪

Y1

n1

Y2

n2

Yl−1

nl−1

Yl

nl

· · ·

Figure 7: Comparison of two basic MOY-graphs

Remark 3.1.5 The matrix factorizations associated to Γm1,...,mk
n1,...,nl

and Γm1+...+mk
n1,...,nl

in Figure
7 only differ with respect to the choice of the base ring, but not in the choice of potential or
the module which is stabilized: in the first case, the base ring is S (X|Y), while in the second
case it’s the subring S (X∪|Y) ⊂ S (X|Y).
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In general, the base ring associated to a family of edges with a high value is a subring
of the base ring associated to the configuration of edges where some edges have been split
into several edges with smaller value. In this way we are naturally led to consider the
graded ranks of rings of symmetric polynomials considered as graded modules over smaller
rings of symmetric polynomials, and these admit interpretations as Poincaré-polynomials of
certain flag-varieties: for example, the graded rank of S (X) over S (X∪) equals the Poincaré
polynomial of the algebra S (X)/〈S (X∪)+〉, which is isomorphic to the complex cohomology
ring of the flag variety Fl(|X1|, ..., |Xn|) of flags in C|X| with dimension differences |Xi|. Thus,
these graded ranks carry interesting information, and it is therefore very important to be
aware of which ring we are working with. See also Example 3.2.12

Finally, we consider step (3), the glueing of all matrix factorizations associated to basic
MOY-graphs according to their common endpoints in more detail. Let Γ0, ...,Γn be the
basic MOY-graphs of Γ and let KR(Γi) the matrix factorizations associated to them. Then,
we first consider the exterior tensor product K̃R(Γ) := KR(Γ0)⊗C ...⊗C KR(Γn) of these
factorizations, graphically corresponding to the disjoint union of the Γi. Now, KR(Γ) is a
certain quotient of C̃(Γ), intuitively identifying common endpoints of the Γi. That is, given
i 6= j such that Γi and Γj share the sets of variables Z, we let action of elements of S (Z)
pass from KR(Γi) to KR(Γj) and vice versa; thus, if we were only looking at Γi and Γj , the
resulting quotient of KR(Γi)⊗C KR(Γj) would just be KR(Γi)⊗S (Z) KR(Γj).

For a detailed example of how to calculate the value of the unknot, see Section 5.2.

3.2 The matrix factorization associated to an acyclic MOY-graph

In the previous section we saw that the matrix factorization associated to a basic MOY-
graph can be written as the stabilization of a ’singular’ Soergel bimodule (see [Wil10] and
[Str04]), and we also know that these matrix factorizations are tensored together in order
to get the matrix factorization associated to more complicated MOY-graphs. Further, in
Proposition 2.6.4 we gave a sufficient condition for tensor products of matrix factorizations
and stabilizations to commute. In this section, we will see that the conditions for Proposition
2.6.4 are satisfied as long as the MOY-graph under consideration is acyclic, i.e. does not
possess any oriented cycles. In particular, we see that the matrix factorization associated to
a MOY-braid is isomorphic to the stabilization of the corresponding Soergel bimodule.

Example 3.2.1 We begin by discussing in full detail a very simple example, namely we
determine the matrix factorization associated to the MOY-graph Γ0 in Figure 8. We have
the following isomorphisms in HMF(C[X,Z], Xn+1−Zn+1) (explanations are given below):

KR(Γ0) def= C[X,Y ]/(X − Y ){X
n+1−Y n+1} ↑C[X,Y,Z]

C[X,Y ]

⊗
C[X,Y,Z]

C[Y,Z]/(Y − Z){Y
n+1−Zn+1} ↑C[X,Y,Z]

C[Y,Z]

yC[X,Y,Z]

C[X,Z]

2.6.2∼= C[X,Y, Z]/(X − Y ){X
n+1−Y n+1}

⊗
C[X,Y,Z]

C[X,Y, Z]/(Y − Z){Y
n+1−Zn+1}

yC[X,Y,Z]

C[X,Z]

2.6.5∼= C[X,Y, Z]/(X − Y, Y − Z){X
n+1−Zn+1}

yC[X,Y,Z]

C[X,Z]

∼= C[X,Z]/(X − Z){X
n+1−Zn+1}

yC[X,Y,Z]

C[X,Z]

2.2.17∼= C[X,Z]/(X − Z){X
n+1−Zn+1}
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Here, Fact 2.6.2 is applicable because C[X,Y, Z] is free over C[X,Y ] and C[Y,Z], and Propo-
sition 2.6.5 can be applied because X − Y , Y − Z is regular in C[X,Y, Z]. In the last step,
we may apply Corollary 2.2.17 because C[X,Y, Z] is a free C[X,Z]-module.

The last example shows quite quell how the machinery established to far can be used
to make graphically intuitive relations between matrix factorizations rigorous, without forc-
ing us to actually write down explicit homotopy equivalences between them. In the above
example, we had to ’compute’ only one thing, namely

C[X,Y, Z]/(X − Y ) ⊗
C[X,Y,Z]

C[X,Y, Z]/(Y − Z) ∼= C[X,Y, Z]/(X − Y, Y − Z)

∼= C[X,Z]/(X − Z).

In much the same way we can handle more complicated glueings of MOY-graphs; only
the application of Proposition 2.6.5 becomes more difficult. We consider another example.

1

1

Γ0

Γ1
1

Γ1
1

s1

W1

sq

Wq
· · ·

· · ·
m1

X1

mk

Xk

n1

Y1

nl

Yl

Z1

r1

Z2

r2

Zp−1

rp−1

Zp

rp

· · ·

· · ·
Γ1

Γm1,...,mk,n1,...,nl
r1,...,rp

Γs1,...,sq
n1,...,nl

Figure 8: Gluing two basic MOY graphs

Example 3.2.2 We compute the matrix factorization associated to Γ1 in Figure 8. Put
u := r1 + ...+ rp and v := s1 + ...+ sq. To ease the notation, we will omit the internal degree
shifts in our calculation. As above we first get

KR(Γ1) def= S (X|Y|Z)/((X ∪ Y)i − Zi){ΣX
n+1+ΣYn+1−ΣZn+1} ↑S (X|Y|Z|W)

S (X|Y|Z)

⊗
S [X|Y|Z|W]

S (W|Y)/(Wi − Yi){ΣW
n+1−ΣYn+1} ↑S (X|Y|Z|W)

S (W|Y)

yS (X|Y|Z|W)

S (X|Z|W)

2.6.2∼= S (X|Y|Z|W)/((X ∪ Y)i − Zi){ΣX
n+1+ΣYn+1−ΣZn+1}

⊗
S (X|Y|Z|W)

S (X|Y|Z|W)/(Wi − Yi){ΣW
n+1−ΣYn+1}

yS (X|Y|Z|W)

S (X|Z|W)

In the next step we want to apply Proposition 2.6.5 to exchange tensoring and the stabiliza-
tion functor. For this, we have to see that the concatenation of the sequences (X∪Y)i−Zi, 1 ≤
i ≤ u and Wj − Yj , 1 ≤ j ≤ v is regular in S (X|Y|Z|W). Intuitively this is plausible, as at-
taching Γs1,...,sqn1,...,nl to Γm1,...,mk,n1,...,nk

r1,...,rp introduces new variables from W, and the attached
sequence Wj − Yj , 1 ≤ j ≤ n becomes regular under the map S (W|Y)→ S (W).

We can make this intuition rigorous as follows: The sequences (Xi,j) and (Yi,j) of ele-
mentary symmetric polynomials in the variables of Xi and Yi are regular in S (X) and S (Y),
respectively, and hence their concatenation is regular in S (X|Y) ∼= S (X) ⊗C S (Y) span-
ning the ideal S (X|Y)+. Further Z1, ..., Zm is regular in S (Z), and we have 〈Z1, ..., Zm〉 =
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〈S (Z∪)+〉 ⊂ S (Z). Since S (X|Y|Z)/〈S (X|Y)+〉 ∼= S (Z) we therefore see thatXi,j , Yi,j , Zk−
(X∪Y)k is regular in S (X|Y|Z) spanning the ideal S (X|Y)+⊗CS (Z)+S (X|Y)⊗C〈S (Z∪)+〉 ⊂
S (X|Y|Z). Hence

S (X|Y|Z|W)/(Xi,j , Yi,j , Zk − (X ∪ Y)k) ∼= S (W)⊗C S (Z)/〈S (Z∪)+〉

and so Xi,j , Yi,j , Zk − (X|Y)k,Wk − Yk is regular in S (X|Y|Z|W). As the regularity of a se-
quence in a local graded ring is independent of its ordering, we deduce that Zk−(X|Y)k,Wk−
Yk is regular as claimed. We are therefore allowed to apply Proposition 2.6.5 and get

KR(Γ1) ∼= S (X|Y|Z|W)/((X ∪ Y)i − Zi,Wi − Yi){ΣW
n+1+ΣXn+1−ΣZn+1}

yS (X|Y|W|Z)

S (X|Z|W)

which is what we expected. Note that, in contrast to the first example, the identification of
Yi and Wi does not imply that S (X|Y|Z|W)/((X∪Y)i−Zi,Wi−Yi) equals S (X|Z|W)/((X∪
W)i − Zi), just because the ideal spanned by the Yi in S (Y) equals 〈S (Y∪)+〉, and this is
strictly contained in S (Y)+ if there was more than one Yi. Note however that since S (Y)
is free of finite rank over S (Y∪), S (X|Y|Z|W)/((X ∪ Y)i − Zi,Wi − Yi) is finitely generated
over S (X|Z|W).

In this example it was already a bit tricky to apply Proposition 2.6.5, because we to convince
ourself first that the sequence occurring was indeed regular. However, the real problem arises
if we now want to glue our matrix factorization with another one; namely, if we consider
S (X|Y|Z|W)/((X∪Y)i−Zi,Wi−Yi) only as a module over the ’free’ variables in X,Z,W we
loose the nice presentation of the module as a complete intersection, and Proposition 2.6.5 is
no longer available. One could solve this problem by not forgetting the internal variables, but
this seems unnatural. Instead it is more natural to replace Proposition 2.6.5 by Proposition
2.6.4 and to argue through the freeness of the modules at the glueing points.

Definition 3.2.3 Let X1, ...,Xn be sets of variables and M� be a graded module over S (X).
We say that M� is free over Xi if M� is free as a graded module over S (Xi) ⊂ S (X).

Theorem 3.2.4 Let X1, ...,Xn,Y,Z1, ...,Zn be sets of variables (the case Y = ∅ is explicitly
allowed), w ∈ S (X), w′ ∈ S (Z) and w0 ∈ S (Y). Further, let M�, N� be graded modules
over S (X|Y) and S (Y|Z), respectively, such that the following hold:

(1) M� is finitely generated over S (X), and N� is finitely generated over S (Z)

(2) (w + w0)M� = {0} and (w′ − w0)N� = {0}.

(3) At least one of the modules M� and N� is free over Y.

Then the following hold:

(1) M� ⊗S (Y) N� is finitely generated over S (X|Z)/(w + w′) and there is an isomorphism

M
{w+w0}
� ⊗S (Y) N

{w′−w0}
�

∼= (M� ⊗S (Y) N�){w+w′}.

(2) If M� is free over Y, then the graded S (X|Z)-module M� ⊗S (Y) N� is free over any
subset of Z over which M� is free.

(3) If N� is free over Y, then M�⊗S (Y)N� is free over any subset of X over which M� is free.

Proof. Since M� is finitely generated over S (X) and N� is finitely generated over S (Z),
M� ⊗S (Y) N� is finitely generated over S (X|Z). Further, M� ⊗S (Y) N� is annihilated by the
ideal (w+w0, w

′−w0) an in particular by the element w+w′ = (w+w0)+(w′−w0). Therefore,
the expression (M�⊗S (Y)N�){w+w′} makes sense. Further, TorS (Y)

k (M�, N�) = 0 for all k > 0,
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since by assumption either M� or N� is free S (Y). Thus we can apply Proposition 2.6.4 and
Corollary 2.2.17 to get

M
{w+w0}
� ⊗S (Y) N

{w′−w0}
�

yS (X|Y|Z)

S (X|Z)

2.6.4∼= (M� ⊗S (Y) N�){w+w′}
yS (X|Y|Z)

S (X|Z)

2.2.17∼= (M� ⊗S (Y) N�){w+w′}

as claimed. This shows statement (1), and statements (2) and (3) are obvious. �

Example 3.2.5 In the following examples, we again omit internal degree shifts.
(1) First we consider the basic MOY-graph Γm1+...+mk

n1,...,nl
in Figure 7. The matrix factor-

ization associated to it is the stabilization if the S (X∪|Y)-module S (X∪|Y)/(Xi − Yi) with
respect to ΣXn+1 − ΣYn+1. Since S (X∪)+ = 〈Xi〉 we have S (X∪|Y)/(Xi − Yi) ∼= S (Y) as
S (X|Y)-modules, where Xi ∈ S (X∪) acts on S (Y) through multiplication by Xi. Therefore
S (X∪|Y)/(Xi − Yi) is free of rank 1 over Y and free of rank rankS (Y∪)S (Y) over X∪.

(2) Next we look at the matrix factorization associated to an arbitrary basic MOY-
graph Γm1,...,mk

n1,...,nl
. We claim that this is just the glueing/the tensor product of the matrix

factorizations associated to the graphs Γn1+...+nk
n1,...,nl

and Γm1,...,mk
n1+...+nk

along their common end
Z; see Figure 9. Indeed: example (1) shows that the assumptions of Proposition 3.2.4 are
satisfied, and so we get

S (X|Z)/(Xi − Zi){ΣX
n+1−ΣZn+1} ⊗S (Z) S (Y|Z)/(Zi − Yi){ΣZ

n+1−ΣYn+1}

∼= S (X|Y)/(Xi − Yi){ΣX
n+1−ΣYn+1}.

S (X|Y)/(Xi − Yi) is free of rank rankS (Y∪)S (Y) over X and free of rank rankS (X∪)S (X)
over Y.

(3) Examples (1) and (2) show that we can apply Theorem 3.2.4 to the examples which
led us to Theorem 3.2.4. Thus we also get the isomorphisms established there without the
somewhat cumbersome use of regular sequences.
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Xk−1

mk

Xk

Y1

n1

Y2

n2

Yl−1

nl−1

Yl

nl

· · ·

· · ·

m1

X1

m2

X2

mk−1

Xk−1

mk

Xk

n1 + ...+ nl

Z

n1 + ...+ nl

· · ·

Y1

n1

Y2

n2

Yl−1

nl−1

Yl

nl

· · ·

Figure 9: Decomposition of Γm1,...,mk
n1,...,nl into Γn1+...+nl

n1,...,nl
and Γm1,...,mk

n1+...+nl
.

These examples together with Theorem 3.2.4 show the following theorem:

Theorem 3.2.6 In the construction of the matrix factorization associated to an acyclic
MOY-graph the stabilization functor commutes with tensor products.
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In the next section we will see how Theorem 3.2.6 connects KR-homology to Soergel
bimodules and how we can get lots of relations on KR-homology from this, but first we look
at a simpler example of how to apply Theorem 3.2.6.

Definition 3.2.7 For a finite-dimensional, graded C-algebra A� the Poincaré polynomial of
A�, denoted P(A�), is defined as

P(A�) :=
∑
i∈Z≥0

dimC(Ai)qi ∈ Z[q].

If X is a complex manifold, we put

P(X) := P(H∗(X;C)).

Definition 3.2.8 Let (A, 〈−〉) be an additive Z-graded category. Then, given some object
X ∈ A and a Laurent polynomial p =

∑
i∈Z

piq
i ∈ Z[q±1] we put

X〈p〉 :=
∑
i∈Z

X〈i〉⊕pi .

Fact 3.2.9 Let R� be a positively graded ring and M� a finitely generated free R�-module.
Then there exists a unique sequence of natural numbers {ni}i∈Z, almost all of which are
zero, such that M�

∼=
⊕
i∈Z

R�〈i〉ni .

Proof. By definition of freeness of a module, we only have to show the uniqueness of the ni.
We have

M�/R+M�
∼=
⊕
i∈Z

R0〈i〉ni ,

and so ni is uniquely determined as the (ungraded) rank of (M�/R+M�)−i over the commu-
tative base ring R0. �

Definition 3.2.10 In the situation of Definition 3.2.9, define the rank ofM� overR�, denoted
rankR�M�, as

rankR�M� :=
∑
i∈Z

niq
i ∈ Z[q±1].

Fact 3.2.11 Let R� ⊂ S� be positively graded rings, and assume that S� is free of finite rank
as a module over R�. Then there is an isomorphism of R�-R�-bimodules

S�
∼= R�〈rankR�S�〉.

Example 3.2.12 We want to prove the fancy looking relation

KR(Γ)

〈
−

∑
1≤i<j≤k

mimj

〉
∼= KR(Γmm)

〈
rankS (m)S (m1|...|mk)

〉
(3.2-1)

= KR(Γmm) 〈P(Fl(m1|...|mk))〉 . (3.2-2)

where Γ is as in Figure 10, m := m1 + ... + mk and where Fl(m1|...|mk) is the complex
manifold of flags {0} = V0 ⊂ V1 ⊂ ... ⊂ Vk = Cm in Cm with dimC(Vi+1) − dimC(Vi) = mi

for all i = 0, 1, ..., k − 1. By definition, we have

KR(Γ)〈−
∑

1≤i<j≤k

mimj〉 = KR(Γ0)⊗S (Y) KR(Γ1)

= S (X|Y)/(Xi − Yi){ΣX
n+1−ΣYn+1}

⊗
S (Y)

S (Y|Z)/(Yi − Zi){ΣY
n+1−ΣZn+1}.
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· · ·

m1 + ...+mk

X

Z

m1 + ...+mk

m1 m2 mk−1 mk

Y1

m1

Y2

m2

Yk−1

mk−1

Yk

mk

Γ0

Γ1

Figure 10: Γ

Since S (X) = C[X1, ..., Xm] we have S (X|Y)/(Xi − Yi) ∼= S (Y) as S (X)-S (Y)-bimodules,
where Xi acts by multiplication with Yi. Similarly, S (Y|Z)/(Yi − Zi) ∼= S (Y) as S (Y)-
S (Z)-bimodules, with Zi acting on S (Y) by multiplication with Yi. Hence

S (X|Y)/(Xi − Yi) ⊗
S (Y)

S (Y|Z)/(Yi − Zi) ∼= S (Y) ∼= S (X|Z)/(Xi − Zi)
〈
rankS (Y∪)S (Y)

〉
as S (X|Z)-modules, where we applied Fact 3.2.11 in the last step. Applying Theorem 3.2.6,
we get

KR(Γ)〈−
∑

1≤i<j≤k

mimj〉 ∼=
(
S (Y|Z)/(Xi − Zi)〈rankS (Y∪)S (Y)〉

){ΣXn+1−ΣZn+1}

= KR(Γmm)〈rankS (Y∪)S (Y)〉,

yielding (3.2-1). For (3.2-2), note that since S (Y) is free as a module over S (Y∪), we have
rankS (Y∪)S (Y) = P(S (Y)/〈S (Y∪)+〉), so the claim follows from the algebra isomorphism
(see [Ful97])

H∗(Fl(m1|...|mk);C) ∼= S (m1|...|mn)/〈S (m)+〉.

To get a feeling of what (3.2-1) looks like explicitly, take k = 2 and m1 = m2 = 1. We have
Fl(1|1) = P1

C
, hence P(Fl(1|1)) = 1 + q2, and so (3.2-1) yields

KR


2

1 1

1 1

2

 ∼= KR

 2

 〈−1〉 ⊕KR

 2

 〈1〉

3.3 Connecting KR-homology to Soergel bimodules

In this section we describe how Theorem 3.2.6 connects Khovanov-Rozansky homology to
Soergel bimodules and look at a few examples in the construction of KR-homology where
working on the level of Soergel bimodules makes life a bit easier.

Suppose Γ is an acyclic MOY-graph, and we aim to calculate its value KR(Γ) under
KR-homology. By definition (see Section 3.1), we have to go through the following steps:

(1) Decompose Γ into basic MOY-graphs Γ1, ...,Γr,
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(2) take KR(Γ1), ...,KR(Γr) and finally

(3) calculate KR(Γ) :=
r⊗
i=1

KR(Γi), where the tensor product is over the common end-

points of the Γi.

For step (2), we know by Theorem 3.1.3 that each KR(Γi) is given as

(S (X|Y)/(Xi − Yi)〈r〉){ΣX
n+1−ΣYn+1}

for sets of variables X1, ...,Xk, Y1, ...,Yl and some internal degree shift r ∈ Z, and for step (3)
we know from Theorem 3.2.6 that we can exchange tensor products and stabilization when

calculating
r⊗
i=1

KR(Γi). We are therefore naturally led to consider modules which can be

“built” from the modules S (X|Y)/(Xi−Yi) by tensoring, and these are examples of singular
Soergel bimodules. For simplicity, we will focus on the case where all MOY graphs have labels
1 and 2 only; the modules occurring in this case where first studied by Soergel in [Soe07],
and we recall some of his results now. The general case of singular Soergel bimodules was
recently studied by [Wil10].

Definition 3.3.1 Fix m ∈ N and let Xi := {xi} be some variable for i = 1, ...,m. Denote
C[X] = S (X) the polynomial ring over {x1, ..., xm}. The symmetric group Sm acts on C[X]
by permutation of variables, and for I ⊂ Sm we denote C[X]I the subring of C[X] consisting
of those polynomials which are invariant under the actions of all w ∈ I. For w = (i, i + 1)
we abbreviate C[X]{e,w} by C[X]i.

Definition 3.3.2 The category of Soergel bimodules (for Sm), denoted Bm, is defined as the
smallest full, additive and idempotent-complete subcategory of the category C[X]-Mod-C[X]
of graded C[X]-bimodules containing all modules of the form

C[X]⊗C[X]i1 C[X]⊗C[X]i2 ...⊗C[X]ir C[X]

for i1, ..., ir ∈ {1, 2, ...,m− 1}.

Remark 3.3.3 Definition 3.3.2 seems to be weaker than the one given in [Soe07, Definition
5.11, Lemma 5.13]. However, by [Soe07, Theorem 6.14(4)] both definitions agree. ♦

One of the main results of [Soe07] is that the combinatorics of the category Bm is captured
by the Hecke algebra Hm(q) of Sm, which we now recall.

Definition 3.3.4 Fix m ∈ N. The (generic) Hecke-algebra Hm(q) (of Sm) is the associative
Z[q±1]-algebra generated by elements T1, ..., Tm−1 and unit Te subject to the relations

TiTj = TjTi for all i, j = 1, 2, ...,m− 1 s.t. |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 for all i = 1, 2, ...,m− 2

T 2
i = (q2 − 1)Ti + q2Te

We denote {Hw}w∈Sm
the Kazhdan-Lusztig basis of Hm(q) (see [Hum90, Section 7.9], where

these elements are denoted C ′w). In particular, we have Hi := H(i,i+1) = q−1(Te + Ti).

Definition 3.3.5 Let A be an essentially small additive category, and let Iso(A) be the set
of isomorphism classes of objects in A. Further, for X ∈ A we denote [X] the isomorphism
class of X. The split Grothendieck group of A, denoted K⊕0 (A), is defined as the free abelian
group Z(Iso(A)) subject to the relations [X] + [Y ]− [X ⊕ Y ] = 0 for all X,Y ∈ A.

If A carries a Z-grading (i.e. a strict, additive action of Z), then K⊕0 (A) carries a natural
structure of a Z[q±1]-module given by qn.[X] := [n.X], where n.X is the action of n on X. If
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A carries an additive monoidal structure, then K⊕0 (A) admits a natural ring structure given
by [X] · [Y ] := [X ⊗ Y ].

In particular, endowing Bm with the monoidal structure given by the tensor product
of graded C[X]-Mod-C[X] bimodules and the Z-grading given by n.X := X〈−n〉, the split
Grothendieck group K⊕0 (Bm) becomes a Z[q±1]-algebra.

Remark 3.3.6 Note the reversed Z-grading on Bm. ♦

Fact 3.3.7 Let A be an essentially small Krull-Remak-Schmidt category, i.e. an additive
category such that every object has a finite decomposition into indecomposable objects which
is unique up to permutation, and denote Indec(A) ⊂ Iso(A) the set of isomorphism classes
of indecomposable objects in A. Then the natural map

Z
(Indec(A)) −→ K⊕0 (A)

is an isomorphism. In particular, for all X,Y ∈ A we have

[X] = [Y ] in K⊕0 (A) ⇐⇒ X ∼= Y. (3.3-1)

Remark 3.3.8 The equivalence (3.3-1) allows to check relations in A inside K⊕0 (A). Hence,
to understand the combinatorics of A it is therefore sufficient to calculate K⊕0 (A). ♦

Theorem 3.3.9 In the notation of Definitions 3.3.2 and 3.3.4, the following hold:

(1) The assignment Hi 7→
[
C[X]⊗C[X]i C[X]〈1〉

]
extends to an isomorphism of Z[q±1]-

algebras
E : Hm(q)

∼=−−−−−→ K⊕0 (Bm).

(2) The set of isomorphism classes of indecomposable objects in Bm (up to shift) is canon-
ically parametrized by Sm:

Indec(Bm) = {[mBw]〈r〉}w∈Sm, r∈Z
∼= Sm × Z

(3) For each w ∈ Sm we have E(Hw) = [mBw].

(4) For a subset I = {(1, 2), (2, 3), ..., (m − 1,m)} of the simple transpositions in Sm and
wI the longest element in WI := 〈I〉, we have

mBwI ∼= C[X]⊗C[X]I C[X]〈l(wI)〉.

In particular, for i = 1, 2, ...,m− 1 we have

mB(i,i+1)
∼= C[X]⊗C[X]i C[X]〈1〉
∼= C[x1, ..., xm, y1, ..., ym]/(xi + xi+1 − yi − yi+1, xixi+1 − yiyi+1).

Remark 3.3.10 Part (2) of Theorem 3.3.9 is intentionally kept a bit vague as we will
only need the explicit description of mBwI given in part (4). In [Soe07], explicit conditions
characterizing all the indecomposable bimodules mBw are given. ♦

Proof. For (1), (2) and (3), see Soergel’s original article [Soe07] or the recent work [Wil10]
on generalized “singular” Soergel bimodules by Williamson. For (4), apply [Wil10, Theorem
7.4.3]: in the notation of loc.cit., one has IBI = I∇I (apply [Wil10, Theorem 7.4.2] for
p = WIeWI ∈ WI \W/WI) and I∇I = IRI〈l(wI)〉 (see [Wil10, Section 6.1]), while IRI is,
in our notation, given as C[X]I (see [Wil10, Definition 4.2.1]). �

With the notation of Theorem 3.3.9, Theorem 3.1.3 becomes:
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Figure 11: Another basic MOY-graph

Theorem 3.3.11 Fix n ≥ 2 and let Γ be the MOY-graph depicted in Figure 11. Define

w :=
(

1 2 · · · i− 1 i i+ 1 · · · i+ k − 1 i+ k · · · m

1 2 · · · i− 1 i+ k − 1 i+ k − 2 · · · i i+ k · · · m

)
.

Then, considering mBw as a module over C[X,Y] with |X| = |Y| = m, there is a canonical
homotopy equivalence

KR(Γ) ' mBw{ΣX
n+1−ΣYn+1}.

Proof. Considering Sk a subgroup of Sm via

σ 7→
(

1 2 · · · i− 1 i i+ 1 · · · i+ k − 1 i+ k · · · m

1 2 · · · i− 1 i− 1 + σ(1) i− 1 + σ(2) · · · i− 1 + σ(k) i+ k · · · m

)
,

Theorem 3.1.3 implies that

KR(Γ) '
(
C[X]⊗Sk

C[Y]
〈
k(k − 1)

2

〉){ΣXn+1−ΣYn+1}
.

On the other hand, Theorem 3.3.9 shows that

C[X]⊗Sk
C[Y]

〈
k(k − 1)

2

〉
∼= mBw,

where we use the fact that the length of the longest element w in Sk is k(k−1)
2 . �

1 2 i− 1 i i+ 1

2

i+ 2 m− 1 m

· · · · · ·

Figure 12: Basic MOY-braid σi

Corollary 3.3.12 Let γ = si1si2 ...sik be a MOY-braid on m strands, with i1, ..., ik ∈
{1, 2, ...,m− 1} and si as depicted in Figure 12. There is canonical homotopy equivalence

KR(γ) '
(
mBi1 ⊗C[X]

mBi2 ⊗C[X] ...⊗C[X]
mBik

){ΣXn+1−ΣYn+1}
.
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Theorem 3.3.9.(1) completely explains the relations that hold between Soergel bimodules
in terms of the Hecke algebra. Applying the stabilization functor, we see that the same
relations hold on the level of matrix factorizations. Let us pause to see an example for that.

Example 3.3.13 We want to prove the relation

KR(Γ0)⊕KR(Γ1) ' KR(Γ2)⊕KR(Γ3), (3.3-2)

where Γ0, ...,Γ3 are as in Figure 13. A short calculation in the Hecke algebra shows that for

2

2

2

Γ0

⊕ 2

Γ1

=

2

2

2

Γ2

⊕ 2

Γ3

Figure 13: Basic MOY-relation

i = 1, 2, ...,m− 1 we have

HiHi+1Hi + Hi = Hi+1HiHi+1 + Hi+1.

Applying Theorem 3.3.9 implies that the corresponding relation also holds on the level of
Soergel bimodules, i.e. that we have an isomorphism of C[X] bimodules (abbreviating C[X]
by S)

S ⊗
Si
S ⊗
Si+1

S ⊗
Si
S〈3〉 ⊕ S ⊗

Si
S〈1〉 ∼= S ⊗

Si+1
S ⊗
Si
S ⊗
Si+1

S〈3〉 ⊕ S ⊗
Si+1

S〈1〉. (3.3-3)

Considering C[X]-bimodules as modules over S (X|Y), where Yi := {yi} for variables y1, ..., ym,
we can now apply the stabilization functor

S (X|Y)/(ΣXn+1 − ΣYn+1)-mod
(−){ΣXn+1−ΣYn+1}
−−−−−−−−−−−−−→ HMF(S (X|Y),ΣXn+1 − ΣYn+1)

to (3.3-3); using Theorem 3.2.6 to exchange stabilization and tensor products, we get the
desired isomorphism (3.3-2). Note that it is nontrivial to prove (3.3-2) directly from the
definitions.

Example 3.3.14 In this example, we describe the χ-morphisms (see Figure 14) of [KR08,
Section 6] using the stabilization functor and Soergel bimodules. It would be very interesting
to do the same thing for the more general χ-morphisms in [Wu09, Section 7.6].

First we recall the definition of χ0 and χ1 given in [KR08], beginning with χ1. Abbrevi-

46



KR


Y1 Y2
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χ1

χ0

Γ1 Γ0

Figure 14: χ-morphisms

ating S (X|Y) = C[x1, x2, y1, y2] by S�, by the very definition we have

KR(Γ0)〈−1〉 = {x1 + x2 − y1 − y2, u1} ⊗S� {x1x2 − y1y2, u2}

=
(
S�

u1−→ S�(e1)〈−2〉 x1+x2−y1−y2−−−−−−−−−→ S�

)
⊗
S�

(
S�

u2−→ S�(e2)〈−4〉 x1x2−y1y2−−−−−−−→ S�

)

= S�(e1)⊕ S�(e2) S�(∅)⊕ S�(e1e2)

(
x1 + x2 − y1 − y2 x1x2 − y1y2

−u2 u1

)
(
u1 y1y2 − x1x2

u2 x1 + x2 − y1 − y2

)

Here ∅, e1, e2 and e1e2 are names for the generators of the several copies of S�, and u1 and u2

are as usual chosen in such a way that the potential is xn+1
1 +xn+1

2 −yn+1
1 −yn+1

2 . Similarly,

KR(Γ1)〈−1〉 = {x1 − y1, π1} ⊗S� {x2 − y2, π2}

=
(
S�

π1−→ S�(ẽ1)〈−2〉 x1−y1−−−−→ S�

)
⊗S�

(
S�

π2−→ S�(ẽ2)〈−2〉 x2−y2−−−−→ S�

)

= S�(ẽ1)⊕ S�(ẽ2) S�(∅)⊕ S�(ẽ1ẽ2)

(
x1 − y1 x2 − y2

−π2 π1

)
(
π1 y2 − x2

π2 x1 − y1

)

where π1 := xn+1
1 −yn+1

1
x1−y1

and π2 := xn+1
2 −yn+1

2
x2−y2

. In this explicit form of KR(Γ0) and KR(Γ1),
the map χ1 is given as

S�(e1)⊕ S�(e2) S�(∅)⊕ S�(e1e2)

S�(ẽ1)⊕ S�(ẽ2) S�(∅)⊕ S�(ẽ1ẽ2)

(
x1 − y1 x2 − y2

−π2 π1

)
(
π1 y2 − x2

π2 x1 − y1

)

(
x1 + x2 − y1 − y2 x1x2 − y1y2

−u2 u1

)
(
u1 y1y2 − x1x2

u2 x1 + x2 − y1 − y2

)
(

1 y2 + λ(x2 − y2)
1 x1 + λ(y1 − x1)

) (
1 0
a b

)

(3.3-4)

for some λ ∈ Z and

a = −λu2 +
u1 + x1u2 − π2

x1 − y1
and b = x1 − y2 + λ(y1 + y2 − x1 − x2).

Note that in [KR08] the sign of a differs, but this is just because of a different convention in
the differential of the Koszul complex. We will now use Example 2.3.7 to show that under
the canonical isomorphisms

KR(Γ0) ∼= (S�/(x1 + x2 − y1 − y2, x1x2 − y1y2)〈1〉){x
n+1
1 +xn+1

2 −yn+1
1 −yn+1

2 }

KR(Γ1) ∼= (S�/(x1 − y1, x2 − y2)){x
n+1
1 +xn+1

2 −yn+1
1 −yn+1

2 }
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the morphism χ1 corresponds to the stabilization of the canonical quotient map

S�/(x1 + x2 − y1 − y2, x1x2 − y1y2) can−−−−→ S�/(x1 − y1, x2 − y2). (3.3-5)

in the sense that the following diagram commutes (w := xn+1
1 + xn+1

2 − yn+1
1 − yn+1

2 ):

{(x1 + x2 − y1 − y2, x1x2 − y1y2), (u1, u2)} S�/(x1 + x2 − y1 − y2, x1x2 − y1y2){w}

{(x1 − y1, x2 − y2), (π1, π2)} S�/(x1 − y1, x2 − y2){w}

∼=

∼=

can{w}

(3.3-6)

In particular, we see that the homotopy class of χ1 does not depend on the choice of λ.
For the proof, we use the method of Example 2.3.7 with α = 1. To avoid confusion with

the notation, let us denote the variables x, y, x̃, ỹ from there by a, b, ã, b̃. Hence, (a1, a2) and
(ã1, ã2) are given by the regular sequences (x1+x2−y1−y2, x1x2−y1y2) and (x1−y1, x2−y2),
respectively, and (b1, b2) and (b̃1, b̃2) are given by (u1, u2) and (π1, π2), respectively. We have

x1 + x2 − y1 − y2 = (x1 + y1)− (x2 − y2)

x1x2 − y1y2 = (x1 − y1)(y2 + λ(x2 − y2)) + (x2 − y2)(x1 + λ(y1 − x1)),

hence (
λ11 λ21

λ12 λ22

)
=
(

1 y2 + λ(x2 − y2)
1 x1 + λ(y1 − x1)

)
,

and in particular

λ11λ22 − λ12λ21 = x1 − y2 + λ(y1 + y2 − x1 − x2)

Finally, we compute

µ =
λ12b1 + λ22b2 − b̃2

ã1
=
u1 + (x1 + λ(y1 − x1))u2 − π2

x1 − y1
= −λu2 +

u1 + x1u2 − π2

x1 − y1
.

Putting everything together, we see that the morphism constructed in 2.3.7 coincides with
(3.3-4), as claimed.

Similarly, we can handle the map χ0. Originally, it is defined as

S�(ẽ1)⊕ S�(ẽ2) S�(∅)⊕ S�(ẽ1ẽ2)

S�(e1)⊕ S�(e2) S�(∅)⊕ S�(e1e2)

(
x1 + x2 − y1 − y2 x1x2 − y1y2

−u2 u1

)
(
u1 y1y2 − x1x2

u2 x1 + x2 − y1 − y2

)

(
x1 − y1 x2 − y2

−π2 π1

)
(
π1 y2 − x2

π2 x1 − y1

)
(
y1 + λ(x1 − y1) λ(x2 − y2)− x2

−1 1

) (
y1 − x2 + µ(x1 + x2 − y1 − y2) 0

a 1

)

(3.3-7)

for some λ ∈ Z and

a = (1− λ)u2 +
u1 + x1u2 − π2

y1 − x1
. (3.3-8)
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We claim that χ0 is the stabilization of

S�/(x1 − y1, x2 − y2)
mult(x1−y2)=mult(x2−y1)−−−−−−−−−−−−−−−−−→ S�/(x1 + x2 − y1 − y2, x1x2 − y1y2). (3.3-9)

For the proof, we again use the method of Example 2.3.7 with α = y1−x2+λ(x1+x2−y1−y2).
First, we compute the λij ; we have

(x1 − y1)α = (x1 − y1)(y1 − x2 + λ(x1 + x2 − y1 − y2))

= (x1 + x2 − y1 − y2)(y1 + λ(x1 − y1))− (x1x2 − y1y2)

(x2 − y2)α = (x2 − y2)(y1 − x2 + λ(x1 + x2 − y1 − y2))

= (x1 + x2 − y1 − y2)(λ(x2 − y2)− x2) + x1x2 − y1y2,

and hence (
λ11 λ21

λ12 λ22

)
=
(
y1 + λ(x1 − y1) λ(x2 − y2)− x2

−1 1

)
.

In particular, we get λ11λ22−λ12λ21
α = 1. Finally,

µ =
λ12b1 + λ22b2 − (y1 − x2 + λ(x1 + x2 − y1 − y2))b̃2

ã1

=
−π1 + π2 − (y1 − x2 + λ(x1 + x2 − y1 − y2))u2

x1 + x2 − y1 − y2
,

and it is a tedious but straightforward computation to show that this equals (3.3-8). Applying
the result of example 2.3.7, we see that indeed χ0 is the stabilization of (3.3-9).

Summing up, we have seen in this example that the morphisms χ0 and χ1 from [KR08]
are stabilizations of canonical morphisms between Soergel bimodules. In [EK09], these mor-
phisms are depicted by and . It would be interesting to see if the stabilizations of other
canonical morphisms from [EK09] play a role in the construction of Khovanov-Rozansky
homology, too.

3.4 The effect of stabilization on Soergel bimodules

Until now, we showed how the image KR(γ) of a MOY-braid γ under the Khovanov-
Rozansky construction can be expressed as the stabilization of the Soergel bimodule cor-
responding to γ. Though this gives us a bunch of relations between the KR(γ) for free –
those which are already true on the level of Soergel bimodules – we didn’t investigate the
effect and use of stabilization yet.

By the big picture 5 from the introduction, the following theorem meets our expectations:

Theorem 3.4.1 Let w ∈ Sm be such that the Robinson-Schensted shape of w has more
than n rows. Then we have

proj.dimS (X|Y)/(ΣXn+1−ΣYn+1) Bw < ∞, i.e. mB{ΣX
n+1−ΣYn+1}

w = 0.

The proof will be divided in two steps:

(1) Using the theory of (two-sided) Kazhdan-Lusztig cells we reduce to w = (k, k−1, ..., 1)
for k > n, in which case mBw is the Soergel bimodule associated to the MOY graph in
Figure 15 (Theorem 3.3.9).

(2) In this case, we prove that mB(k, k−1, ..., 1) somehow involves the trivial category

HMF(S (x1, ..., xk),Σxn+1
i ) = 0

and deduce the triviality of its stabilization.
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We begin with step 1. Recall the following definition of Kazhdan-Lusztig cells of the Hecke
algebra (see [BB05, Exercise 6.11]). Note that thinking of the Kazhdan-Lusztig elements
as functors and products of them as compositions of these functors, it essentially formalizes
what should be meant by saying that one such functor factors through another.

Definition 3.4.2 For elements w,w′ ∈ Sm we write w ≤LR w′ if there exist s, t ∈ Sm such
that the coefficient of Hw in the product HsHw′Ht is nonzero. This defines a preorder on
Sm, and we say that w and w′ are ≤LR-equivalent, written as w ∼LR w′, if both w ≤LR w′

and w′ ≤LR w.

The following proposition completely characterizes≤LR-equivalence in terms of the Robinson-
Schensted correspondence (see [Ful97]):

Proposition 3.4.3 (see [BB05, Exercise 6.11(b)]) For w,w′ ∈ Sm the following are
equivalent:

(1) w ∼LR w′, i.e. w and w′ are ≤LR-equivalent.

(2) The Robinson-Schensted shapes of w and w′ are the same.

In particular, any w ∈ Sm whose Robinson-Schensted shape has columns of length

d1 ≥ d2 ≥ ... ≥ dk

is ≤LR-equivalent to the permutation

(d1, d1 − 1, · · · , 2, 1) (d1 + d2, d1 + d2 − 1, ..., d1 + 1) · · · (d1 + ...+ dk, ..., d1 + ...+ dk−1 + 1)

Corollary 3.4.4 Let w ∈ Sm have a Robinson-Schensted shape with k rows. Consider

mB{ΣW
n+1−ΣYn+1}

w ∈ HMF(S (W|Z),ΣWn+1 − ΣZn+1)

mB{ΣX
n+1−ΣYn+1}

(k, k−1, ..., 1) ∈ HMF(S (X|Y),ΣXn+1 − ΣYn+1)

for |W| = |X| = |Y| = |Z| = m. Then there exist matrix factorizations

A ∈ HMF(S (W|X),ΣWn+1 − ΣXn+1), B ∈ HMF(S (Y|Z),ΣYn+1 − ΣZn+1)

such that mB{ΣW
n+1−ΣZn+1}

w is a summand of

A⊗X mB{ΣX
n+1−ΣYn+1}

(k, k−1, ..., 1) ⊗Y B.

In particular, we have

mB{ΣX
n+1−ΣYn+1}

(k, k−1, ..., 1) = 0 =⇒ mB{ΣW
n+1−ΣZn+1}

w = 0.

Proof. Proposition 3.4.3 and Fact 3.3.7 show that the statement is true for Soergel bimodules,
hence by applying the stabilization functor we get the result from Theorem 3.2.6. �

This finishes step 1. For step 2, the following proposition is crucial:

Proposition 3.4.5 Let X and Y be sets of variables such that |X| = |Y| > n. Then we have
HMF(S (X|Y),ΣXn+1 − ΣYn+1) = 0.
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Proof. Let k := |X| = |Y| and recall that we denoted X1, ..., Xk the elementary symmetric
polynomials in X, while Xl := 0 for l > k. By [Wu09, Formula 4.4]) we have ΣXn+1 =
P (X1, ..., Xd), where

P :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

X1 X2 X3 · · · Xn (n+ 1)Xn+1

1 X1 X2 · · · Xn−1 nXn

0 1 X1 · · · Xn−2 (n− 1)Xn−1

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · X1 2X2

0 0 0 · · · 1 X1

∣∣∣∣∣∣∣∣∣∣∣∣∣
and similar for ΣYn+1. In particular, we conclude that ΣXn+1 − ΣYn+1 ∈ m2, for
m := (X1, ..., Xk, Y1, ..., Yk) the maximal ideal in S (X|Y), if and only if k ≤ n. Thus, in
case k > n we see that S (X|Y)/(ΣXn+1 − ΣYn+1) is regular (Proposition 2.2.4) and hence
its singularity category HMF(S (X|Y),ΣXn+1 − ΣYn+1) is trivial (Proposition 2.2.7). �

1
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1

Y2

1

Yk−1

1

Yk
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1

X2
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1

Y1

Xm−k−1

1

Ym−l−1

· · ·

Xm−k

1

Ym−k· · ·

· · ·

k > n strands

m strands

Figure 15: MOY-graph with trivial matrix factorization

Proof (of Theorem 3.4.1). We know from Corollary 3.4.4 that it suffices to show that

mB

n
ΣXn+1+ΣX

n+1−ΣYn+1−ΣY
n+1

o
(k, k−1, ..., 1) = 0.

for k > n, which is the matrix factorization associated to the MOY-graph in Figure 15. This
graph can be decomposed into Γ1k

1k involving the variables from X and Y and into m − k
copies of Γ1

1 involving the variables from X and Y, and so Theorem 3.2.4 yields

KR(Γ1k

1k t Γ1
1 t · · · t Γ1

1) ' KR(Γ1k

1k)⊗C KR(Γ1
1)⊗C ...⊗C KR(Γ1

1),

whence we may assume m = k. Applying Theorem 3.2.4 again, this time to the presentation
of Γ1k

1k as the concatenation of Γk1k , Γkk and Γ1k

k (similar to Figure 9), shows that it suffices
to prove KR(Γkk) ' 0. This follows from Proposition 3.4.5. �

Remark 3.4.6 The proof of Theorem 3.4.1 suggests that one should rather think of a matrix
factorization X ∈ HMF(S (X|Y),ΣXn+1 − ΣYn+1) as a functor

X ⊗
S (X|Y)

− ↑S (X|Y)
S (Y)

yS (X|Y)

S (X)

: HMF∞(S (Y),ΣYn+1) −→ HMF∞(S (X),ΣXn+1)

from the homotopy category of graded matrix factorizations of type (S (Y),ΣYn+1) to those
of type (S (X),ΣXn+1) . In some sense, this can be thought of as some kind of Fourier Mukai
transform with kernel X, noting the striking similarity to the usual formula

RprX∗ ◦
(
X

L

⊗ −
)
◦ pr∗Y : Db(Y ) −→ Db(X)
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for the Fourier-Mukai transform associated to some X ∈ Db(X × Y ). However, though this
viewpoint seems to be the most natural in our context, the author does not know to what
extend X is determined by the Fourier Mukai transform attached to it, which is why we
sticked working with X instead of its Fourier Mukai transform the proof of Theorem 3.4.1.♦

4 Duality on graded matrix factorizations

In this section, we define for graded matrix factorizations M and N of type (S�, w0) and
(S�, w1), respectively, a homomorphism factorization HomS�(M,N), which is a graded ma-
trix factorization of type (S�, w1 − w0). In particular, in case w0 = w1 we get a homomor-
phism complex which in fact coincides with the homomorphism complex in the canonical
differential-graded enrichment of MF∞(S�, w0). As a special case, we will define for each
graded matrix factorization M its dual M? to be HomS�(M,S), where S is the trivial matrix
factorization S� → 0 → S� of type (S�, 0), and we will check that the usual isomorphism
M? ⊗S� N

∼= HomS�(M,N) holds for finitely generated M . We will compare this duality
with the usual duality on MCM(S�/(w)).

4.1 Homomorphism factorizations and Duality

For easier reference, recall the definition of the shift functor:

[1] : MF(∞)(S�, w) −→MF(∞)(S�, w)(
M0

�
f−→M−1

�
g−→M0

�

)
7−→

(
M−1

� 〈d〉
−g−→M0

�
−f−→M−1

� 〈d〉
)

Definition 4.1.1 Let M := M0
�

f−→ M−1
�

g−→ M0
� , N := N0

�
f ′−→ N−1

�
g′−→ N0

� be graded
matrix factorizations of type (S�, w0) and (S�, w1), respectively. The homomorphism factor-
ization HomS�(M,N) is defined as

HomS�(M,N)0 := HomS(M0
� , N

0
� )� ⊕ HomS(M−1

� , N−1
� )�

HomS�(M,N)−1 := HomS(M0
� , N

−1
� )� ⊕ HomS(M−1

� , N0
� )�〈−d〉

HomS�(M,N)0 := HomS(M0
� , N

0
� )� ⊕ HomS(M−1

� , N−1
� )�

(
f ′ ◦ ? −(? ◦ f)
−(? ◦ g) g′ ◦ ?

)

(
g′ ◦ ? ? ◦ f
? ◦ g f ′ ◦ ?

)

This is a graded matrix factorization of type (S�, w1 − w0).

Definition 4.1.2 Let M := M0
�

f−→M−1
�

g−→M0
� be a graded matrix factorization of type

(S�, w) and denote by S the trivial matrix factorization S� → 0 → S� of type (S�, 0). The
dual of M , denoted M?, is defined as

M? := HomS�(M,S) =
(
M0

�

)? −g∗−−→ (
M−1

�

)? 〈−d〉 f∗−→
(
M0

�

)?
.

M? is a graded matrix factorization of type (S�,−w).

52



Fact 4.1.3 For a finitely generated graded matrix factorization M := M0
�

f−→ M−1
�

g−→
M0

� , the double dual M?? is canonically isomorphic to M via

M??
(
M0

�

)?? (
M−1

�

)?? (
M0

�

)??

M M0
� M−1

� M0
�

∼= −ev ∼= −ev ∼= −ev ∼=

−f∗∗ −g∗∗

f g

Fact 4.1.4 Let M := M0
�

f−→ M−1
�

g−→ M0
� , N := N0

�
f ′−→ N−1

�
g′−→ N0

� be graded
matrix factorizations of type (S�, w0) and (S�, w1), respectively, and assume that M is finitely
generated. Then there is a canonical isomorphism of matrix factorizations of type (S�, w1 −
w0)

M? ⊗S� N
∼=−→ HomS�(M,N).

There is another kind of duality on graded matrix factorizations which preserves the
type, namely the one corresponding to the usual duality HomR(−, R�)� on MCM(R�) for a
Gorenstein graded ring R�. It can be described explicitly as follows:

Definition 4.1.5 Let M := M0
�

f−→M−1
�

g−→M0
� be a graded matrix factorization of type

(S�, w). We define its w-dual M◦ as

M◦ :=
(
M−1

�

)? 〈−d〉 f?〈−d〉−−−−→
(
M0

�

)? 〈−d〉 g?〈−d〉−−−−→
(
M−1

�

)? 〈−d〉.
The shift in the internal degree is explained in the proof of the following fact.

Fact 4.1.6 The following diagram is commutative up to canonical isomorphism

MF(S�, w) MCM(R�)

MF(S�, w) MCM(R�)

coker

(−)◦

coker

HomR(−, R�)�

Proof. For a graded matrix factorization M := M0
�

f−→ M−1
�

g−→ M0
� of type (S�, w) we

have the usual exact sequence of graded R�-modules

...→M−1
� /wM−1

� 〈−d〉
g−→M0

� /wM
0
� 〈−d〉

f−−→M−1
� /wM−1

�
g−−→M0

� /wM
0
� −→ coker(M).

Applying HomR(−, R�)� to this sequence yields the exact sequence

...← HomR(M−1
� /wM−1

� , R�)� ← HomR(M0
� /wM

0
� , R�)� ← HomR(coker(M), R�)� ← 0

which is canonically isomorphic to

...
g?←−
(
M0

�

)
?/w

(
M0

�

)
?〈d〉 ←

(
M−1

�

)
?/w

(
M−1

�

)
? g?←

(
M0

�

)
?/w

(
M0

�

)
?← HomR(coker(M), R�)�.

We conclude that

HomR(coker(M), R�)�
∼= ker(g?) ∼= coker(g?)〈−d〉 ∼= coker(M◦)

as claimed. �
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Fact 4.1.7 Let M := M0
�

f−→ M−1
�

g−→ M0
� , N := N0

�
f ′−→ N−1

�
g′−→ N0

� be graded
matrix factorizations of type (S�, w0) and (S�, w1), respectively. Then there is a canonical
isomorphism

(M ⊗S� N)◦ ∼= M◦ ⊗S� N
◦[1].

Proof. This follows from direct calculation. �

The above two dualities are related by a sign change.

Definition 4.1.8 Let M := M0
�

f−→M−1
�

g−→M0
� be a graded matrix factorization of type

(S�, w). We define the sign change σ(M) of M as

σ(M) := M0
�
−f−→M−1

�
g−→M0

� .

This is a matrix factorization of type (S�,−w), and σ defines isomorphisms of categories

MF(∞)(S�, w) ∼= MF(∞)(S�,−w) and HMF(∞)(S�, w) ∼= HMF(∞)(S�,−w).

Fact 4.1.9 The following diagram is commutative up to canonical isomorphism:

MF(S�, w) MF(S�,−w)

MF(S�,−w) MF(S�,−w)

(−)?

σ

(−)◦

[1]

Proof. This is clear from the definitions. �

4.2 Compatibility of Duality and Stabilization

Next we study the compatibility of the stabilization functor with duality.

Proposition 4.2.1 Let M� be a Cohen-Macaulay module over R�, and let n := dim(S�) −
depth(M�). Then there is a canonical isomorphism in HMF(S�, w)(

M
{w}
�

)◦
[n+ 1] ∼= ExtnS(M�, S�)

{w}
� .

Proof. By a theorem of Grothendieck ([BH93, Theorem 3.5.7]), the local cohomology H∗m(M�)
is concentrated in the interval [depth(M),dim(M)] and nonzero on its boundary. Since M� is
Cohen-Macaulay of dimension n, it follows that H∗m(M�) is concentrated in degree n. Next,
by local duality ([BH93], Theorem 3.6.19) we have

Extdim(S)−i
S (M�, S�)�

∼= Hi
m(M�)∨ for all i ∈ Z,

where (−)∨ denotes Matlis duality. We conclude that Ext∗S(M�, S�)� is concentrated in degree
n which equals proj.dimS�

(M�) by the Auslander-Buchsbaum formula 1.2.19. Therefore we
can choose a finite free resolution F ∗� → M� of M� such that F i� = 0 for i < −n, and as
ExtkS(M�, S�)� = 0 for all k < n, applying HomS(−, S�)� gives an S�-free resolution

0→
(
F 0

�

)? −→ (
F−1

�

)? → ...→
(
F
−(n−1)
�

)?
−→

(
F−n�

)? −→ ExtnS(M�, S�)� → 0. (4.2-1)

Furthermore, if sn are higher homotopies for F ∗� → M� as in Lemma 2.3.1, their duals s?n
give higher homotopies for (4.2-1), so we can compute ExtnS(M�, S�)

{w}
� using (4.2-1) and the

s?n.

54



We distinguish the cases n even and odd. Carefully going through the constructions, in
case n = 2n′ we get

ExtnS(M�, S�)
{w}
�

2.3.3∼=
⊕
i∈Z

(
F−2i+1

�

)? 〈(n′ − i)d〉 ⊕
i∈Z

(
F−2i

�

)? 〈(n′ − i)d〉
∑
i≥0

s?i

∑
i≥0

s?i

∼=
(⊕
i∈Z

F
−(2i+1)
� 〈id〉

)?
〈(n′ − 1)d〉

(⊕
i∈Z

F−2i
� 〈id〉

)?
〈n′d〉

(∑
i≥0

si

)?
(∑
i≥0

si

)?

∼=
(
M
{w}
�

)◦
[n+ 1].

Similarly, for n = 2n′ + 1 we have

ExtnS(M�, S�)
{w}
�

2.3.3∼=
⊕
i∈Z

(
F−2i

�

)? 〈(n′ − i)d〉 ⊕
i∈Z

(
F
−(2i+1)
�

)?
〈(n′ − i)d〉

∑
i≥0

s?i

∑
i≥0

s?i

∼=
(⊕
i∈Z

F−2i
� 〈id〉

)?
〈n′d〉

(⊕
i∈Z

F
−(2i+1)
� 〈id〉

)?
〈n′d〉

(∑
i≥0

si

)?
(∑
i≥0

si

)?

∼=
(
M
{w}
�

)◦
[n+ 1].

which finishes the proof. �

Proposition 4.2.1 has the following interesting special case.

Corollary 4.2.2 Let M� = S�/(x1, ..., xn) for a regular sequence x1, ..., xn of homogeneous
elements such that w ∈ (x1, ..., xn). Then there is a canonical isomorphism in HMF(S�, w)(

M
{w}
�

)◦ ∼= M
{w}
� 〈|x1|+ ...+ |xn|〉[−(n+ 1)].

Proof. As (xi) is regular, M� is Cohen-Macaulay. Further, computing Ext∗S(M�, S�)� using
the self-dual Koszul-complex of the xi, we get ExtnS(M�, S�)�

∼= M�〈|x1|+ ...+ |xn|〉. Now the
claim follows from Proposition 4.2.1. �

Example 4.2.3 Let us pause for a moment to check the statement of Corollary 4.2.2 directly
using Proposition 2.4.3. For two homogeneous elements x, y ∈ S� we have

{x, y}◦ =
(
S�〈|x| − d〉

y−→ S�〈−d〉
x−→ S�〈|x| − d〉

)
= {x, y}〈|x|〉[−2]

which agrees with Corollary 4.2.2. In general, for a homogeneous regular sequence x1, ..., xn
and homogeneous elements y1, ..., yn satisfying w = x1y1 + ...+xnyn, we get from Fact 4.1.7
that

{x,y}◦ =

(
n⊗
i=1

{xi, yi}

)◦
∼=

(
n⊗
i=1

{xi, yi}◦
)

[n− 1] ∼= {x,y}〈|x1|+ ...+ |xn|〉[−(n+ 1)],

which agrees again with Corollary 4.2.2.

55



Corollary 4.2.4 Let M� be a Cohen-Macaulay module over R�, and put n := dim(S) −
depth(M). Then there is a canonical isomorphism in HMF(S�,−w)(

M
{w}
�

)∗ ∼= ExtnS(M�, S�)
{−w}
� [−n].

Proof. By Fact 4.1.9 and Proposition 4.2.1 we have(
M
{w}
�

)∗ ∼= (M{−w}�

)◦
[1] ∼= ExtnS(M�, S�)

{−w}
� [−n].

as claimed. �

Corollary 4.2.5 Let M� = S�/(x1, ..., xn) for a regular sequence x1, ..., xn of homogeneous
elements such that w ∈ (x1, ..., xn). Then there is a canonical isomorphism in HMF(S�,−w)(

M
{w}
�

)∗ ∼= M
{−w}
� 〈|x1|+ ...+ |xn|〉[−n].

Example 4.2.6 Again let us check explicitly that everything works for Koszul factoriza-
tions. If x, y are homogeneous and regular, then

{x, y}∗ =
(
S�
−x−→ S�〈|x| − d〉

y−→ S�

)
=
(
S�
−y−→ S�〈−|x|〉

x−→ S�

)
〈|x|〉[−1]

= {x,−y}〈|x|〉[−1].

as claimed.

5 Closing a MOY-braid

5.1 Braid closure as stabilized Hochschild cohomology

We now apply the results about duality from the preceding section to Khovanov-Rozansky
homology. Suppose we want to calculate the value of Khovanov-Rozansky homology on the
closure γ of a MOY-braid γ with strands of type (i1, ..., ir) and sets of variables X and Y; see
Figure 16. Intuitively, we expect that passing from γ to γ should involve some categorical
trace or Hochschild (co)homology; see [Kho07] or [Web07, Section 2.4]. This is indeed the
case. We will see that there is some “identity” matrix factorization id such that H∗(KR(γ))
is given by HMF(id[∗],KR(γ)) (for the precise statement, see Theorem 5.1.2) which can
be interpreted as some kind of “stabilized” Hochschild cohomology or as generalized Tate
cohomology; see Remark 5.1.4. But now let’s stop playing with fancy words and instead dig
into the somewhat technical details.

We already know that KR(γ) ∼= B(γ){ΣX
n+1−ΣYn+1}

� , where B(γ)� denotes the singular
Soergel bimodule corresponding to γ. Thus, we have

KR(γ) = Id{ΣY
n+1−ΣXn+1}

� ⊗
S (X|Y)

B(γ){ΣX
n+1−ΣYn+1}

� ,

where the first factor Id� is defined as

Id� :=
r⊗
j=1

S (Xj |Yj)/〈Xj,l − Yj,l | l = 1, ..., ij〉.

Clearly, it depends on the configuration of strands and the sets of variables; however, drop-
ping these data will hopefully not cause any confusion. The module Id� should be thought
of as the ’identity’ between X and Y.
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Figure 16: Closure of a braid

Proposition 5.1.1 PutN := i1+...+ir and k :=
r∑
j=1

ij(ij+1)
2 . Then we have an isomorphism

(
Id{ΣX

n+1−ΣYn+1}
�

)?
∼= Id{ΣY

n+1−ΣXn+1}
� 〈k〉[−N ].

Proof. This follows from Corollary 4.2.5 on the dual of the stabilization of a complete inter-
section. Here, for each j = 1, ..., r we have elementary symmetric polynomials Xj,1, ..., Xj,ij

of degrees 1, 2, ..., ij ; hence, the sum of their degrees is k. �

Now we can rewrite the cohomology of KR(γ) purely in terms of maximal Cohen-Macaulay
modules.

Theorem 5.1.2 Let γ be as above, and put N := i1 + ... + ir and k :=
r∑
j=1

ij(ij+1)
2 . Then

there is a homotopy equivalence of matrix factorizations

KR(γ) ∼= HomS (X|Y)

(
Id{ΣX

n+1−ΣYn+1}
� 〈k〉[−N ],B(γ){ΣX

n+1−ΣYn+1}
�

)
. (5.1-1)

Proof. Now on with our fancy little proof. We have

Id{ΣY
n+1−ΣXn+1}

�
∼=
(

Id{ΣY
n+1−ΣXn+1}

�

)??
∼=
(

Id{ΣX
n+1−ΣYn+1}

� 〈k〉[−N ]
)?

by Fact 4.1.3 and Proposition 5.1.1. Applying Fact 4.1.4 yields (5.1-1). �

Corollary 5.1.3 There are isomorphisms (abbreviating R� := S (X|Y)/(ΣXn+1 − ΣYn+1))

Hl(KR(γ)) ∼= HMF(R�)
(

Id{ΣX
n+1−ΣYn+1}

� 〈k〉[l −N ],B(γ){ΣX
n+1−ΣYn+1}

�

)
(5.1-2)

∼= MCM(R�)
(

Id{ΣX
n+1−ΣYn+1}

� 〈k〉[l −N ],B(γ){ΣX
n+1−ΣYn+1}

�

)
∼= R�-mod

(
Id{ΣX

n+1−ΣYn+1}
� 〈k〉[l −N ],B(γ)�

)
. (5.1-3)

Proof. This follows from Theorem 5.1.2 by taking cohomology and using the adjointness of
stabilization and inclusion; to get the grading right, note that Hl(M) ∼= H0(M [−l]). �
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Remark 5.1.4 Theorem 5.1.2 has at least two interesting interpretations. Firstly, the
expression (5.1-3) can be interpreted from the bimodule point of view as some kind of
Hochschild cohomology, by analogy with the usual formula

HH∗(M) = Ext∗A⊗A(A,M) = HomD(A⊗A)(R,M [∗])

for a ring A and an A-bimodule M . Secondly, (5.1-3) also equals the Tate-cohomology
between Id� and B(γ)� in the sense of [Buc86, Definition 6.1.1 and Lemma 6.1.2].

It would be interesting to study whether the usual properties of Hochschild cohomology
and/or Tate-cohomology can be applied here to calculate Khovanov-Rozansky homology. As
it stands for now, Theorem 5.1.2 is unfortunately not very useful in practice. ♦

5.2 A detailed example: The value of the unknot

Let’s work out the statement of Theorem 5.1.2 explicitly in the simplest case of the unknot
with label 1. In this case, γ is a single strand of label 1, hence B(γ)� = C[x, y]/(x− y) and

B(γ){x
n+1−yn+1}

� = {x−y, πxy}, where πxy = xn+1−yn+1

x−y . Further, we have Id{y
n+1−xn+1}

� =
{y − x, πxy}, so we get (see 2.4.1)

KR(unknot) = Id{y
n+1−xn+1}

� ⊗C[x,y] B(γ){x
n+1−yn+1}

�

= C[x, y]〈−1〉 ⊕ C[x, y]〈−1〉 C[x, y]⊕ C[x, y]〈k − 1〉

(
y − x x− y
−πxy πxy

)
(
πxy y − x
πxy y − x

)

which we consider as a 2-periodic complex of graded C[x, y]-modules. The cohomology at the
left is isomorphic to C[x, y]/(x− y, πxy)〈−1〉 ∼= C[z]/(zn)〈−1〉, while the cohomology at the
right is (up to shift) the middle cohomology of the Koszul-complex K∗(y − x, πxy), namely

0→ C[x, y]〈−(n+ 1)〉

 
y − x
−πxy

!
−−−−−−→ C[x, y]〈−n〉 ⊕ C[x, y]〈−1〉

(πxy y − x)
−−−−−−−−−→ C[x, y]→ 0

of the sequence (y − x, πxy). Since the latter sequence is regular, this cohomology vanishes.
The reader who prefers a direct proof could consider the following chain map:

0 C[x, y] C[x, y]⊕ C[x, y] C[x, y] 0

0 0 C[x, y]/(x− y) C[x, y]/(x− y) 0

(
y − x
−πxy

) (
πxy y − x

)

πxy

(
can 0

)
can

A direct check shows that it induces an isomorphism on cohomology. Further, πxy is not a
zero divisor in C[x, y]/(x−y) as it corresponds to (n+1)zn under the canonical isomorphism
C[x, y]/(x − y) ∼= C[z], and hence the cohomology is concentrated in degree 0 as claimed.
Note that this is just the usual reduction argument in showing that the Koszul complex of
a regular sequence is acyclic.

Let us now check that this fits together with Theorem 5.1.2. According to (5.1-2) we
have

Hl(KR(γ)) ∼= HMF({x− y, πxy}〈1〉[l − 1], {x− y, πxy}).
As HMF({x, y}) ∼= S�/(x, y) and HMF({x, y}, {x, y}[1]) = 0 for (x, y) regular, we conclude
that H0(KR(γ)) = 0 and

H1(KR(γ)) ∼= C[x, y]/(πxy, x− y)〈−1〉 ∼= C[z]/(zn)〈−1〉, (5.2-1)
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in agreement with our explicit calculation above.
Finally, let us also check (5.1-3). The module C[x, y]/(x− y) is already maximal Cohen-

Macaulay over R� := C[x, y]/(xn+1 − yn+1) as it possesses the 2-periodic resolution

...→ R�〈−(n+ 2)〉 x−y−−−→ R�〈−(n+ 1)〉 πxy−−→ R�〈−1〉 x−y−−−→ R� → C[x, y]/(x− y)→ 0.

From this it is also clear that C[x, y]/(x−y)[−1] = C[x, y]/(πxy)〈−1〉. By (5.1-3) we therefore
have

H0(KR(γ)) ∼= HomR�
(C[x, y]/(πxy),C[x, y]/(x− y))

and
H1(KR(γ)) ∼= EndR�

(C[x, y]/(x− y))〈−1〉.

As even HomC[x,y](C[x, y]/(πxy),C[x, y]/(x − y)) = 0 (πxy is not a zero divisor in
C[x, y]/(x − y)), we get H0(KR(γ)) = 0 as before. For the first cohomology, note that
EndC[x,y](C[x, y]/(x − y)) ∼= C[x, y]/(x − y), and that the multiplication with a polynomial
p ∈ C[x, y] on C[x, y]/(x− y) is stably trivial if and only if p ∈ (πxy). Consequently, we get

EndR�
(C[x, y]/(x− y)) ∼= C[x, y]/(πxy, x− y)

and therefore once again (5.2-1).
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Appendix

A Outline

In this appendix we study in more detail the tensor product of matrix factorizations and at-
tempt to extend Corollary 2.5.1 and Proposition 2.5.2 to more general and – most importantly
– more natural statements about the compatibility of tensor products and stabilization.

The rough outline is as follows. The reader might have observed that whenever we applied
the stabilization functor to a module M� we first replaced M� by an S�-free resolution of M�

together some ’enrichment’ in the form of higher nullhomotopies for the multiplication by
w on S�. In other words, the object we really worked with was the S�-free resolution of M�

instead of the module M� itself. Further, Proposition 2.5.2 only worked because the condition
TorkS(M�, N�) = 0 for k > 0 ensured that taking S�-free resolutions respected tensor products
of modules and derived tensor products of complexes, respectively, so that one could forget
about tensor products of S�/(w)-modules and instead work with tensor products of complexes
of S�-modules. These examples naturally lead us to the impression that we shouldn’t work
with S�/(w)-modules but instead with enriched complexes of free S�-modules.

We will see that for an arbitrary w ∈ Sd the category HMF(S�, w) can be described as
the singularity category Db

fg(K∗w)/Perf of the Koszul dg-S�-algebra

K∗w := ...→ 0→ S�〈−d〉
w−−−→ S� → 0→ ...

concentrated in degrees −1 and 0 (Theorem G.6). Modules over K∗w are the same as com-
plexes of S�-modules with the extra datum of a nullhomotopy s for the multiplication with w
satisfying s2 = 0, so they are precisely the enriched complexes of S�-modules we were looking
for. Moreover, we will see that the derived tensor product for K∗w-modules is compatible
with the tensor product of matrix factorizations, i.e. that

Db
fg(K∗w)×Db

fg(K∗w′) Db
fg(K∗w+w′)

Db
fg(K∗w)/Perf×Db

fg(K∗w′)/Perf Db
fg(K∗w+w′)/Perf

HMF(S�, w)×HMF(S�, w
′) HMF(S�, w + w′)

−
L

⊗S� −

−⊗S� −

can can

∼= ∼=

commutes (Theorem H.6). The question about the compatibility of the stabilization functor
and tensor products of matrix factorizations is therefore only a question about when the
derived tensor product of two S�/(w)-modules, considered as K∗w-modules, can be computed
naively, and this immediately yields Proposition 2.5.2.

Finally, we will describe in Appendix I how the duality (−)◦ on HMF(S�, w) looks like
for K∗w-modules, in particular generalizing Proposition 4.2.1.

Another nice feature of our new description of HMF(S�, w) is that it extends to the
case w = 0. There, the classical identification HMF(S�, w) ∼= Db

fg(S�/(w))/Perf heavily
breaks down, simply because S�/(w) = S� is regular in this case. However, the equivalence
HMF(S�, w) ∼= Db

fg(K∗w)/Perf still holds in this case. In view of possible applications to
Khovanov-Rozansky homology, this seems reasonable, as the case of vanishing potential is
by no means forbidden there; on the contrary, it occurs each time a link gets closed. Moreover,
the construction of Khovanov-Rozansky is local – if a knot gets closed it doesn’t matter if
there are some open link components somewhere around or not – while the condition that
the potential vanishes is not, so it shouldn’t play a role.
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B The derived category of modules over a dg-algebra

First we recall the definition of a dg-algebras and dg-modules over graded rings.

Definition B.1 Let S� be a graded ring.

(1) A dg-S�-algebra is an algebra object in the monoidal category of complexes of graded
S�-modules. In other words, a dg-S�-algebra is a complex of graded S�-modules (A∗� , ).
together with morphisms of complexes of graded S�-modules

A∗� ⊗S� A
∗
�

µ−→ A∗� and S�
η−→ A∗� ,

(here we consider S� as a complex concentrated in degree 0) satisfying the associativity
and unit axiom. We will usually abbreviate (A∗� , ,.µ, η) as A∗� and write ab := µ(a⊗b) for
a, b ∈ A∗� . We call A∗� graded-commutative if ab = (−1)|a|·|b|ba for all (cohomologically)
homogeneous a, b ∈ A∗� . It is called connected if Ak� = 0 for k > 0 and if the structure
morphism η : S� → A0

� is an isomorphism.

(2) Let A∗� be a dg-S�-algebra. A left A∗� -module is a module object over the algebra object
A∗� in the monoidal category of complexes of graded S�-modules. In other words, it
consists of a complex of graded S�-modules (M∗� , ). together with a morphism A∗� ⊗S�

M∗�
ρ−→ M∗� of complexes of graded S�-modules satisfying the associativity and unit

axiom. We will usually abbreviate (M∗� , ,.ρ) as M∗� and write a.m := ρ(a ⊗ m) for
a ∈ A∗� and m ∈ M∗� . Right A∗� -modules are defined similarly. If we say “A∗� -module”
we will always mean left a A∗� -module. If A∗� is graded commutative, any left A∗� -module
structure on a complex of graded S�-modules M∗� yields a right A∗� -module structure
via m.a := (−1)|m|·|a|a.m for cohomologically homogeneous a ∈ A∗� and m ∈M∗� .

Now we turn to the definition of morphisms of A∗� -modules.

Definition B.2 Let M∗� and N∗� be two A∗� -modules.

(1) The homomorphism complex(
HomA∗� (M∗� , N

∗
� )∗, ∂

)
⊂ HomS�(M

∗
� , N

∗
� )∗

is the subcomplex of HomS�(M
∗
� , N

∗
� )∗ such that f = (fk)k∈Z ∈ HomS∗� (M∗� , N

∗
� )n is

in HomA∗� (M∗� , N
∗
� )n if and only if for each a ∈ Ar� we have a ◦ fk = (−1)nrfk+r ◦ a

(here we identify a with its action on M∗� and N∗� ). Note that HomS�(M
∗
� , N

∗
� )∗ and

HomA∗� (M∗� , N
∗
� ) are only complexes of abelian groups.

(2) A homomorphism of A∗� -modules f : M∗� → N∗� is a 0-cocycle in HomA∗� (M∗� , N
∗
� )∗. In

other words, f consists of a family of (internal) degree preserving maps fk : Mk
� → Nk

�

such that a ◦ fk = fk+r ◦ a for all a ∈ Ar� . The category of A∗� -modules is denoted
A∗� -Mod.

(3) Two homomorphisms of A∗� -modules f, g : M∗� → N∗� are called homotopic if f − g
is a 0-coboundary in HomA∗� (M∗� , N

∗
� )∗. This amounts to the existence of a family of

internal degree preserving maps Dk : Mk
� → Nk−1

� such that a ◦Dk = (−1)rDk+r ◦ a
for all a ∈ Ar� and

fk − gk = dk−1
N∗�
◦Dk +Dk+1 ◦ dkM∗�

for all k ∈ Z. The homotopy category of A∗� -modules is denoted Ho(A∗� ).

(4) For later use in Section I we define HomA∗� (M∗� , N
∗
� )∗k as HomA∗� (M∗� , N

∗
� 〈k〉)∗. We de-

note HomA∗� (M∗� , N
∗
� )∗� :=

⊕
k∈Z

HomA∗� (M∗� , N
∗
� )∗k. This is naturally a complex of graded

S�-modules. Moreover, if N∗� is an A∗� -bimodule, HomA∗� (M∗� , N
∗
� )∗� carries a natural
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structure of a right A∗� -module; similarly, if M∗� is an A∗� -bimodule, HomA∗� (M∗� , N
∗
� )∗�

carries a natural structure of a (left) A∗� -module. For example, the natural A∗� -bimodule
structure on A∗� yields a right A∗� -module structure on HomA∗� (M∗� , A

∗
� )∗� , and for A∗�

graded commutative we can (and will!) regard this as a left A∗� -module. Explicitly, the
left action of A∗� on HomA∗� (M∗� , A

∗
� )∗� is given by a.f := (−1)|a|·nf ◦ a for (cohomolog-

ically) homogeneous a ∈ A∗� and f ∈ HomA∗� (M∗� , A
∗
� )n� .

Fact B.3 The dg-category of A∗� -modules is pretriangulated (see Remark 2.2.9). In partic-
ular, the homotopy category Ho(A∗� ) is naturally triangulated.

Proof. This follows from the fact that the cone of a morphism of A∗� -modules and the shift
of a A∗� -module both carry natural structures of A∗� -modules. �

Definition B.4 Denote by Acyc(A∗� ) the class of acyclic A∗� -modules. A homomorphism
of A∗� -modules f : M∗� → N∗� is called a quasi-isomorphism if it induces an isomorphism in
cohomology, i.e. if Cone(f) ∈ Acyc(A∗� ). The derived category of A∗� , denoted D(A∗� ), is
defined as the Verdier quotient Ho(A∗� )/Acyc(A∗� ).

We will mainly work with the description of D(A∗� ) as Ho(A∗� )/Acyc(A∗� ). However,
to understand how one can associate a derived base extension functor D(A∗� ) → D(B∗� )
to a morphism of dg-S�-algebras A∗� → B∗� (what is the correct replacement for projective
complexes in the classical derived category of a ring?), it is more natural to view D(A∗� ) as the
homotopy category of a particular model category structure on A∗� -Mod. For introductions
to the theory model categories we refer see e.g. [DS95], [GS07], [Hov99].

Definition B.5 A morphism f : M∗� → N∗� of A∗� -modules is called a

(1) weak equivalence, if it is a quasi-isomorphism,

(2) fibration, if it is surjective,

(3) cofibration, if for each diagram
M∗� P ∗�

N∗� Q∗�

α

f g

β

with g a trivial fibration (i.e. surjective quasi-isomorphism) a dotted map making the
whole diagram commute exists. A A∗� -module M∗� is called cofibrant (resp. fibrant) if
the canonical map 0→M∗� (resp. M� → 0) is a cofibration (resp. fibration). The class
of cofibrant objects is denoted Cof(A∗� ). Any module is fibrant.

The reader who is not familiar with model categories shouldn’t panic; for our purposes it
is perfectly sufficient to think of the cofibrant A∗� -modules as generalizations of complexes of
projectives in the classical homological algebra over a ring. Evidence for this will be given
soon.

Definition B.6 Let A∗� be a dg-algebra. For n, k ∈ Z, define D(n, k)∗� ∈ A∗� -Mod as

D(n, k)∗� := enA
∗
� [n]〈k〉 ⊕ en−1A

∗
� [n− 1]〈k〉

with differential given by (.en) := (.en−1). Further, put S(n, k)∗� := A∗� [n]〈k〉 and denote
ιn,k : S(n, k)∗� ↪→ D(n, k)∗� the canonical inclusion.
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Theorem B.7 With the classes of weak equivalences, fibrations and cofibrations the cate-
gory of A∗� -modules is a cofibrantly generated model category whose homotopy category is
equivalent to the derived category D(A∗� ). The set I := {0→ S(n, k) | n, k ∈ Z} is a generat-
ing set for the cofibrations in A∗� -Mod, and the set J := {S(n−1, k)

ιn,k−−−−→ D(n, l) | k, l ∈ Z}
is a generating set for the acyclic cofibrations.

Proof. It is shown in [Hov99, Theorem 2.3.11] that the category Ch(R) of (unbounded)
cochain complexes over a ring R equipped with quasi-isomorphism as weak equivalences and
degree-wise surjections as fibrations is a model category. Moreover, it is shown there that
Ch(R) is cofibrantly generated, where the set {S(n−1) ↪→ D(n) | n ∈ Z} is a generating set
for the cofibrations, and the set {0→ D(n) | n ∈ Z} is a generating set of acyclic cofibrations.
Here, S(n) := Z[n], and

D(n) := ...→ 0→ Z
1−−→ Z→ 0→ ...

concentrated in degrees −n and −n+1. In particular, this applies to Ch(Z), and we provide
Ch(Z)Z with the product model structure.

The model structure on Ch(Z)Z is cofibrantly generated, and generating sets for the
cofibrations and acyclic cofibrations can be described as follows: For n, k ∈ Z define D(n, k) ∈
Ch(Z)Z by D(n, k)k := D(n) and D(n, k)l := 0 for l 6= k. Here, (−)l denotes the l-th
component of an object in Ch(Z)Z. Similarly, define S(n, k) ∈ Ch(Z)Z by S(n, k)k := S(n)
and S(n, k)l := 0 for k 6= l. Then the sets ICh(Z)Z := {S(n − 1, k) ↪→ D(n, k) | n, k ∈ Z}
and JCh(Z)Z := {0 → D(n, k) | n, k ∈ Z} generate the cofibrations and acyclic cofibrations
in Ch(Z)Z, respectively.

This is enough preparation. To get the desired model structure on A∗� -Mod, we use [GS07,
Theorem 3.6] to pull back the model structure on Ch(Z)Z along the adjunctions

A∗� -Mod Ch(S�) Ch(Z)Z
forget forget

−⊗S� A
∗
� −⊗Z S�

This yields a model structure on A∗� -Mod with the correct classes of weak equivalences,
cofibrations and fibrations. Further, [GS07, Theorem 3.6] states that this model structure
is cofibrantly generated, and that the images of ICh(Z)Z and JCh(Z)Z along the left adjoints
− ⊗S� A

∗
� and − ⊗Z S� form generating sets for the cofibrations and acyclic cofibrations,

respectively. It is clear that these images are precisely the sets I and J from above, and so
we’re done. �

The crucial point is that Theorem B.7 implies that the canonical functor from the
homotopy category Ho(Cof(A∗� )) of cofibrant A∗� -modules to D(A∗� ) is an equivalence of
categories (see [Hov99, Theorem 1.2.10]); this is analogous to classical equivalences like
D+(R) ∼= Ho+(Pro(R)) for a ring R. It allows to define (left) derived functors by first
replacing an arbitrary A∗� -module by a quasi-isomorphic, cofibrant A∗� -module and then ap-
plying the functor which is to be derived; in analogy to the classical situation where one
has to take projective resolutions to compute derived tensor products for complexes over a
ring, for example. More generally, we have the following recipe for deriving a pair of adjoint
functors between two model categories.

Definition B.8 (see [Hov99, Definition 1.3.1]) Let C, D be model categories. An ad-
junction F : C � D : G (with F left adjoint to G) is called a Quillen adjunction if the following
equivalent conditions are satisfied:

(1) F preserves cofibrations and trivial cofibrations.

63



(2) G preserves fibrations and trivial fibrations.

In this case, define the total left derived functor LF as the composition

LF : Ho(C) ∼= Ho(Cc)
F−→ Ho(D)

and the total right derived functor RG as the composition

RG : Ho(D) ∼= Ho(Df ) G−→ Ho(C)

Here Cc (resp. Df ) denotes the subcategory of C (resp. D) consisting of cofibrant (resp.
fibrant) objects.

Explicitly, LF can be described as follows: First, we choose for each X ∈ C a cofibrant
replacement, i.e. a trivial fibration qX : QX → X such that QX is cofibrant. Sending X to
QX extends to a functor Ho(C) → Ho(Cc) which is quasi-inverse to the canonical functor
Ho(Cc)→ Ho(C), and thus we have LFX ∼= FQX. This is precisely the recipe we sketched
above: in order to calculate a left derived functor on an object, we first have to replace it
by some weakly equivalent cofibrant object, and then we can apply the functor naively; in

analogy to the calculation of, say, −
L

⊗R − in the derived bounded above category D+(R) of
a commutative ring R through projective resolutions.

Analogously, the right derived RG can be described as follows: We choose for each
Y ∈ D a fibrant resolution, i.e. a trivial cofibration rX : X → RX such that RX is fibrant.
Then, X 7→ RX extends to a quasi-inverse Ho(D) → Ho(Df ) to the canonical functor
Ho(Df )→ Ho(D), and hence we get RGX ∼= GRX for X ∈ D.

Different choices of Q and R yield canonically isomorphic derived functors. In the fol-
lowing, we will fix some particular choice for Q and R.

Fact B.9 (see [Hov99, Lemma 1.3.10]) Let C, D be model categories and let F : C �
D : G be a Quillen adjunction with unit ε : idC → GF and counit η : FG→ idD. Then there
is a derived adjunction

LF : Ho(C) � Ho(D) : RG. (B-1)

For cofibrant X ∈ C, its unit is given as the composition

X
εX−−−→ GFX

GrFX−−−−→ GRFX = (RG ◦ LF)(X), (B-2)

and for fibrant Y ∈ D, its counit is given as

(LF ◦RG)(Y ) = FQGY
FqGY−−−−→ FGY

ηY−−−→ Y. (B-3)

Definition B.10 (see [Hov99, Definition 1.3.12 and Proposition 1.3.13]) The adjunc-
tion F : C � D : G is called a Quillen equivalence if it is a Quillen adjunction and, in addition,
if for all cofibrant X ∈ C and all fibrant Y ∈ D the morphisms (B-2) and (B-3) are weak
equivalences.

Fact B.11 If F : C � D : G is a Quillen equivalence, then the derived adjunction (B-1) is
an adjoint equivalence of categories.

Proof. By assumption, the morphisms (B-2) and (B-3) are isomorphisms in Ho(C) and
Ho(D), respectively. On the other hand, they are unit and counit, respectively, of the
derived adjunction (B-1), and the claim follows. �
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Fact B.12 (see [Hov99, Corollary 1.3.16]) Let F : C � D : G be a Quillen adjunction
such that the following hold:

(1) For all cofibrant X ∈ C the morphism (B-2) is a weak equivalence.

(2) If Y
f−→ Y ′ is a morphism of fibrant objects in D such that Gf is a weak equivalence,

then f is a weak equivalence.

Then F a G is a Quillen equivalence.

We now return to the the model category of modules over a given dg-algebra described
in B.5. There, the cofibrant objects can be described explicitly as follows:

Definition B.13 A A∗� -module M∗� is called free if it is isomorphic to a sum of shifted copies
of A∗� . It is called semi-free if it possesses a filtration

0 = 0M∗� ⊂ 1M∗� ⊂ 2M∗� ⊂ ...

such that each filtration quotient n+1M∗� /
nM∗� is a free A∗� -module.

Fact B.14 The following hold:

(1) Any semi-free A∗� -module is cofibrant.

(2) Any cofibrant module is a summand of a semi-free module.

Proof. This is a formal consequence of Theorem B.7. Using the notation of [Hov99, Section
2.1.2] and the definition of I from Theorem B.7, any semi-free A∗� -module lies in I-cell (see
[Hov99, Lemma 2.1.13]), hence is cofibrant ([Hov99, Lemma 2.1.10]). On the other hand, the
small object argument and the finiteness of the objects involved in I imply that any cofibrant
object is a retract, hence a summand, of a semi-free A∗� -module (see [Hov99, Theorem 2.1.14]
for the general statement, or [GS07, Theorem 3.5] for the case of a finitely generated model
category). �

As an example of a Quillen adjunction, we look at the base change adjunction associated
to a morphism of dg-algebras.

Proposition B.15 Let ϕ : A∗� → B∗� be a morphism of graded dg-S�-algebras. Then ϕ

defines a Quillen adjunction

A∗� -Mod B∗� -Mod
ϕ∗ := −⊗A∗� B∗�

ϕ∗
(B-4)

with induced derived adjunction

D(A∗� ) D(B∗� )
−

L

⊗A∗� B∗�
ϕ∗

(B-5)

on the derived categories. The adjunction (B-4) is a Quillen equivalence if and only if ϕ is
a quasi-isomorphism. In this case, (B-5) is an adjoint equivalence of categories.

Proof. The existence of the adjunction (B-4) is clear. To see that it is a Quillen adjunction,
it suffices to see that the forgetful functor preserves fibrations and trivial fibrations, which
is obvious.

Next, assume that (B-4) is a Quillen equivalence. Then, taking X∗� := A∗� in (B-2) yields
ϕ : A∗� → B∗� , and hence ϕ is a quasi-isomorphism. Conversely, assume that ϕ is a quasi-
isomorphism. We have to show that (B-2) is a weak equivalence for all cofibrant modules
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X∗� . By Fact B.14 we may assume that X∗� is a semi-free A∗� -module. Then (B-2) is given
by the canonical morphism of A∗� -modules

X∗�
∼= X∗� ⊗A∗� A

∗
�

id⊗ϕ−−−−→ X∗� ⊗A∗� B
∗
� .

The cone of this morphism is isomorphic to X∗� ⊗A∗� Cone(ϕ). As X∗� is semi-free, the
complex of S�-modules underlying X∗� ⊗A∗� Cone(ϕ) has a bounded below increasing filtration
by iterated cones of sums of shifted copies of Cone(ϕ), hence is acyclic. As ϕ� clearly reflects
quasi-isomorphisms, Fact B.12 yields that (B-4) indeed is a Quillen equivalence. �

As an application, we present the proof given in [Avr10, Proposition 2.2.2] of the following
fact which is crucial in section 3.4.

Proposition B.16 Let S� be a local graded ring with maximal homogeneous ideal m, and
let w ∈ m \m2 be homogeneous. Then the following hold:

(1) If M� is a finitely generated graded S�/(w)-module with minimal S�-free resolution
F ∗� →M�, then F ∗� admits the structure of a semi-free K∗w-module.

(2) If S� is regular, then so is S�/(w).

Lemma B.17 Let S� be a local graded ring with maximal homogeneous ideal m and suppose
f : P� → Q� is a homomorphism of finitely generated projective S�-modules. Further, assume
that

f ⊗S� S�/m : P�/mP� −→ Q�/mQ�

is injective. Then f is a split injection.

Proof (of Lemma B.17). Set K� := coker(f). Assume for a moment that f is injective.
Applying −⊗S� S�/m to the short exact sequence

0→ P�
f−→ Q� → K� → 0 (B-6)

yields the exact sequence

0 = Tor1
S(Q�, S�/m)� → Tor1

S(K�, S�/m)� → P�/mP�
f⊗S�S�/m−−−−−−→ Q�/mQ� → K�/mK� → 0.

As f ⊗S� S�/m is injective by assumption, we conclude that Tor1
S(K�, S�/m)� = 0. Hence

β0
S�

(K�) = 0 (see Definition 1.2.16), so K� is projective, and (B-6) splits. Note that we did
not use the projectivity of P�.

Now we treat the general case. The assumption that f ⊗S� S�/m is injective implies that
ker(f) ⊂ mP�, so the projection P� → P�/ker(f) becomes an isomorphism when applying
− ⊗S� S�/m. Hence we can apply the case of injective f to the map f : P�/ker(f) → Q�,
proving that P�/ker(f) is projective. This implies that ker(f) is a summand of P�, which
together with ker(f) ⊂ mP� yields ker(f) = 0. Thus, f is injective, hence split injective by
the first part. �

Proof (of Proposition B.16). (1): We have to construct a map s : F ∗� → F ∗−1
� 〈d〉 with the

following properties:

(1) For each n ∈ N>0, im(sn−1) = ker(sn), and this S�-module has a complement in Fn� .

(2) We have ∂0s0 = widF 0
�

and ∂n+1sn + sn−1∂n = widPn� for all n ∈ N>0.

The existence of maps sn satisfying the second condition follows from the embedding S�-Mod ↪→
Ho−fr(S�-Mod). We will now go through the usual inductive construction of the sn, addition-
ally taking care of the first condition, for which we will need the assumption w ∈ m \m2.
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First, by projectivity of F 0
� there is a map s0 : F 0

� → F 1
� of internal degree d such

that ∂0s0 = w. For homogeneous x ∈ F 0
� \mF 0

� , we have ∂1s0 = wx ∈ mF 0
� \m2F 0

� , and as
im(∂1) ⊂ mF 0

� by the minimality of F ∗� (see Definition 1.2.12), it follows that s0x ∈ F 1
� \mF 1

� ,
hence s0 ⊗S� S�/m is injective. By Lemma B.17, s0 is a split injection (note that a priori it
is not even clear that s0 is injective, as w might be a zero divisor). Let U1

� := im(s0) and
let V 1

� be some complement of U1
� in F 1

� . Next, a small calculation shows that w − s0∂1

vanishes on U1
� and has image in ker(∂1) = im(∂2). Hence there exists some s1 : F 1

� → F 2
�

of degree d such that ∂2s1 + s0∂1 = w and s1|U1
�

= 0. Now if x ∈ V 1
� \ mV 1

� , we have
∂2s1(x) = (w− s0∂1)(x) ∈ mF 1

� \m2F 1
� , since both summands on the right hand side live in

different summands of F 1
� = V 1

� ⊕ U1
� , and wx ∈ mV 1

� \m2V 1
� . As before, the minimality of

F ∗� implies that s1x ∈ F 2
� \mF 2

� . Applying Lemma B.17 again shows that s1|V 1
�

: V 1
� → F 2

�

is a split injection, and we put U2
� := im(s1). Continuing in this way, one can construct the

maps sn satisfying the above conditions.
(2): It suffices to prove that any finitely generated graded S�/(w)-module M� has finite

projective dimension over S�/(w). By assumption we have proj.dimS�
(M�) < ∞, so the

minimal S�-free resolution F ∗� → M� of M� is finite. Now, applying (2), F ∗� admits the
structure of a semi-free K∗w-module, and so we have

M�
∼= M�

L

⊗K∗w S�/(w) ∼= F ∗� ⊗K∗w S�/(w)

in D(S�/(w)). As F ∗� ⊗K∗w S�/(w) is bounded and S�/(w)-free, it follows that M� is perfect
in D(S�/(w))), hence proj.dimS�/(w)(M�) <∞ as claimed. �

C Boundedness conditions

Again fix a commutative graded Noetherian ring S� and a dg-S�-algebra (A∗� , ).. In this section,
we will define several subcategories of D(A∗� ) imposing various boundedness conditions on
(the cohomology of) the dg-A∗� -modules.

Definition C.1 For ∗, ∗′ ∈ {+,−, b, ∅}, let D∗,∗
′
(A∗� ) denote the full subcategory of D(A∗� )

consisting of those A∗� -modules that are cohomologically bounded according to ∗ and bounded
according to ∗′. For example, D+,∅(A∗� ) contains all (potentially unbounded) A∗� -modules
with bounded below cohomology. Further, we will abbreviate D∗,∅(A∗� ) by D∗(A∗� ).

The full subcategories Ho∗,∗
′
(A∗� ) and Acyc∗,∗

′
(A∗� ) of Ho(A∗� ) are defined analogously.

Fact C.2 For ∗ ∈ {+,−, b}, the subcategories D∗,∅(A∗� ) are triangulated subcategories of
D(A∗� ), and D∗,∗(A∗� ) ⊂ D∗,∅(A∗� ). If Ak� = 0 for k > 0, then this inclusion is an equivalence,
and in particular D∗,∗(A∗� ) is a triangulated subcategory of D(A∗� ).

Proof. The subcategories D∗,∅(A∗� ) are triangulated because an exact triangle induces a long
exact sequence in cohomology. It is clear the we have an inclusion D∗,∗(A∗� ) ⊂ D∗,∅(A∗� ).

Now assume Ak� = 0 for all k > 0. We have to show that each object of D∗,∅(A∗� ) is
isomorphic to an object of D∗,∗(A∗� ). For this, first assume M∗� ∈ D−,∅(A∗� ), and choose
n� 0 such that Hk(M∗� ) = 0 for k > n. Then the truncation

τ≤n : ... −→Mn−2
�

dn−2
M∗�−−−→Mn−1

�

dn−1
M∗�−−−→ ker

(
dnM∗�

)
−→ 0→ ...

is an A∗� -submodule of M∗� (here we need our assumption that Ak� = 0 for k > 0), and the
inclusion τ≤nM∗� →M∗� is a quasi-isomorphism. Hence, M∗� ∼= τ≤nM

∗
� in D(A∗� ), and so the

inclusion D−,−(A∗� ) ↪→ D−,∅(A∗� ) is an equivalence.
Analogously, for M∗� ∈ D+,∅(A∗� ) we choose n� 0 such that Hk(M∗� ) = 0 for k ≤ n and

consider the truncation

τ≥n : ...→ 0 −→Mn
� /im

(
dn−1
M∗�

) dnM∗�−−−→Mn+1
�

dn+1
M∗�−−−→Mn+2

� → ... (C-1)
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As τ≥nM∗� = M∗� /τ≤nM
∗
� , this is a quotient A∗� -module of M∗� , and the choice of n implies

that M∗� → τ≥nM
∗
� is a quasi-isomorphism. Hence, M∗� ∼= τ≥nM

∗
� in D(A∗� ), and so the

inclusion D+,+(A∗� ) ↪→ D+,∅(A∗� ) is an equivalence. If moreover M∗� ∈ D−,−(A∗� ), we have
τ≥nM

∗
� ∈ D−,−(A∗� ) as well, showing that Db,b(A∗� ) ↪→ Db,∅(A∗� ) is an equivalence. �

Definition C.3 A complex M∗� of graded S�-modules is called S�-free (resp. S�-finite) if
each component Mk

� is a free (resp. finitely generated) graded S�-module.

Definition C.4 For a category C of A∗� -modules (e.g. D(A∗� ) or Ho(A∗� )) we denote Cfg the
full subcategory of S�-finite objects in C. By Cfr we denote the full subcategory of S�-free
objects in C. If more than one condition is to be applied, the subscripts are separated by
commata. For example, Cfr,fg denotes the full subcategory of those objects in C which are
both S�-free and S�-finite (note the difference with the meaning of, say, D+,b(A∗� ), where the
first supscript refers to the cohomology).

Proposition C.5 If A∗� is S�-free and Ak� = 0 for k > 0, then the inclusions D−,−fr (A∗� ) ⊂
D−,−(A∗� ) is an equivalence. If in addition S� is regular (i.e. S�-Mod is of finite global
dimension), the inclusion Db,b

fr (A∗� ) ⊂ Db,−
fr (A∗� ) is an equivalence. Analogous statements are

true for the inclusions D−,−fr,fg(A∗� ) ⊂ D−,−fg (A∗� ) and Db,b
fr,fg(A∗� ) ⊂ Db,−

fr,fg(A∗� ) if A∗� is S�-finite.

Proof. The small object argument yields for each A∗� -module M∗� a functorial surjective
quasi-isomorphism M̃∗� → M∗� with M̃∗� semi-free. Since A∗� is S�-free, any semi-free A∗� -
module is S�-free, and so the inclusion Dfr(A∗� ) ⊂ D(A∗� ) is an equivalence. Moreover, a
look into the proofs of the small object argument in [Hov99, Theorem 2.1.14] and [GS07,
Theorem 3.5] shows that the construction given there produces a bounded above M̃∗� if M∗�
was bounded above, proving that D−,−fr (A∗� ) ⊂ D−,−(A∗� ) is an equivalence. However, the
unmodified small object argument yields very large A∗� -modules M̃∗� even if M∗� is S�-finite,
and hence it cannot be used to establish the equivalence D−,−fg (A∗� ) ∼= D−,−fg,fr(A∗� ). What we

will do now is to give a construction of a quasi-isomorphism M̃∗� → M∗� based on the one
given by the small object argument such that the output M̃∗� is S�-finite if M∗� and A∗� are
S�-finite; however, this construction will no longer be functorial. The topologically minded
reader will note that the construction below very much resembles the usual construction of
CW-approximations for topological spaces (see [Hat02, Proposition 4.13]).

To prove that D−,−fr,fg(A∗� ) ⊂ D−,−fg (A∗� ) is an equivalence, it suffices to construct for each

bounded above, S�-finitely A∗� -module M∗� a quasi-isomorphism M̃∗� →M∗� with M̃∗� bounded
above S�-free and S�-finite. Assume without loss of generality that Mk

� = 0 for k > 0. Let
{m0

i }i∈I0 be a finite set of homogeneous elements generating M0
� as a graded S�-module and

put
0M̃∗� :=

⊕
i∈I0

e0
iS(0, |m0

i |) =
⊕
i∈I0

e0
iA
∗
� 〈−|m0

i |〉,

where the e0
i are just names for the units in the respective copies of A∗� . By construction, we

have a morphism ϕ0 : 0M̃
∗
� → M∗� defined by ei 7→ m0

i for i ∈ I0, inducing an epimorphism
in the 0-th cohomology. This is our first approximation to the desired quasi-isomorphism
M̃∗� →M∗� .

Next, we try to find a better approximation 1M̃∗� →M∗� correcting the failure of injectivity
of H0(ϕ) and surjectivity of H−1(ϕ). For this, pick a finite set {z0

j }j∈J0 ⊂ Z0(0M̃∗� ) of
homogeneous elements such that {z0

j }j∈J0 is a generating set of

ker
(

H0(0M̃∗� )
H0(ϕ0)−−−−→ H0(M∗� )

)
.
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Further, pick a finite set {m1
i }i∈I1 ⊂ Z1(M∗� ) of homogeneous elements such that {m1

i }i∈I1

generates H−1(M∗� ) as a graded S�-module. Then, we take 1M̃∗� to be the pushout⊕
j∈J0

ẽ0
jS(0, |z0

j |) 0M̃∗�

⊕
j∈J0

f1
jD(1, |z0

j |)⊕
⊕
i∈I1

e1
iS(1, |e1

i |) 1M̃∗�

(C-2)

Here, the left vertical map comes from the inclusions S(n− 1, k) ↪→ D(n, k), and the upper
horizontal map is given by ẽ0

j 7→ z0
j . Next, by definition of the z0

j there are elements b0j ∈M
−1
|z0
j |

such that (.b
1
j ) = ϕ0(z0

j ), and f1
j 7→ b1j , e

1
i 7→ m1

i defines a morphism
⊕
j∈J0

f1
jD(1, |z0

j |) ⊕⊕
i∈I1

e1
iS(1, |e1

i |)→M∗� giving rise to a commutative outer square in the diagram

⊕
j∈J0

ẽ0
jS(0, |z0

j |) 0M̃∗�

⊕
j∈J0

f1
jD(1, |z0

j |)⊕
⊕
i∈I1

e1
iS(1, |e1

i |) 1M̃∗�

M∗�

ϕ0

ϕ1

(C-3)

By the universal property of the pushout, we get a unique morphism ϕ1 : 1M̃
∗
� →M∗� making

the whole diagram commute.
Intuitively, taking the pushout (C-5) amounts to killing the cohomology classes associated

to the z0
j by making them boundaries of formally adjoint “cells”, causing H0(1M̃∗� →M∗� ) to

become injective, while at the same time glueing in new “spheres” to make H−1(1M̃∗� →M∗� )
surjective.

Rigorously, the pushout (C-5) comes from a short exact sequence of A∗� -modules

0→
⊕
j∈J0

ẽ0
jS(0, |z0

j |)→
⊕
j∈J0

f1
jD(1, |z0

j |)⊕
⊕
i∈I1

e1
iS(1, |e1

i |)⊕ 0M̃
∗
� → 1M̃

∗
� → 0. (C-4)

which induces a long exact sequence in cohomology. Since S(n, k) ∼= A∗� [n]〈−k〉 has no
cohomology in degrees above −n and D(n, k) is contractible, we see that the canonical map
0M̃
∗
� → 1M̃

∗
� induces an isomorphism in the cohomology in degrees above 0. In degree 0 and

−1, the long exact cohomology sequence induced by (C-4) degenerates to exact sequences⊕
j∈J0

H0(ẽ0
jS(0, |z0

j |))→ H0(0M̃
∗
� )→ H0(1M̃

∗
� )→ 0

⊕
i∈I1

H−1(e1
iS(1, |e1

i |))⊕H−1(0M̃
∗
� )→ H0(1M̃

∗
� )→

⊕
j∈J0

H0(ẽ0
jS(0, |z0

j |))→ 0

By definition of ϕ1, this implies that H0(ϕ1) is an isomorphism, while H−1(ϕ1) is surjective,

as claimed, finishing the construction of the second approximation 1M̃
∗
�

ϕ1

−→ M∗� to the
desired quasi-isomorphism M̃∗� →M∗� .

The method by which we constructed 0M̃
∗
� from 0→M∗� and 1M̃

∗
� →M∗� from 0M̃

∗
� →

69



M∗� can be used again and again to find a commutative diagram

0M̃
∗
�

1M̃
∗
�

2M̃
∗
� ... M̃∗� =

⋃
n≥0

nM̃
∗
�

M∗�

ι0 ι1 ι2

ϕ0

ϕ1
ϕ2

ϕ (C-5)

such that for each n ≥ 0 the following properties are satisfied:

(1) Hk(ϕn) : Hk(nM̃
∗
� )→ Hk(M∗� ) is an isomorphism for k > −n and an epimorphism for

k = −n.

(2) coker(ιn : nM̃
∗
� → n+1M̃

∗
� ) is a finite direct sum of modules of the form A∗� [k]〈l〉 with

l ∈ Z and k ≥ n.

As cohomology commutes with filtered colimits, (1) implies that the induced map ϕ : M̃∗� →
M∗� is a quasi-isomorphism. Finally, (2) implies that S�-finite, and so we’re done.

For the second statement, assume S� is regular local and let M∗� ∈ Db,−
fr (A∗� ). Choose

n � 0 such that Hk(M∗� ) = 0 for k < −n. Then ker(dkM∗� ) ↪→ Mk
� splits for all k <

−n−gl.dim(S�-Mod), and hence τ≥kM∗� ∈ Db,b
fr (A∗� ) (note that by Kaplansky’s theorem, every

projective S�-module is S�-free). Moreover, if M∗� ∈ Db,−
fr,fg(A∗� ), then τ≥kM

∗
� ∈ Db,b

fr,fg(A•� ).
This proves the second statement. �

Note that we defined Db,b
fr (A∗� ) as a full subcategory of D(A∗� ), and hence a priori mor-

phisms in Db,b
fr (A∗� ) may involve unbounded A∗� -modules. However, for regular local S� we

can avoid unbounded modules in the description of the morphism spaces:

Proposition C.6 If Ak� = 0 for k > 0, the canonical triangulated functor

Hob,b(fg)(A
∗
� )/Acycb,b(fg)(A

∗
� ) −→ Db,b

(fg)(A
∗
� ) (C-6)

is an equivalence. If, in addition, S� is regular local, the same is true for

Hob,bfr,(fg)(A
∗
� )/Acycb,bfr,(fg)(A

∗
� ) −→ Db,b

fr,(fg)(A
∗
� ).

Proof. As (C-6) is the identity on objects, we only have to check that it is fully faithful. We
restrict to the free, non-finitely generated case; the other cases are proved along the same
lines, noting that truncation preserves the property of being finitely generated.

We will use the description of morphisms in D(A∗� ) through upper roofs. Thus, assume
that M∗� , N

∗
� ∈ Db,b

fr (A∗� ) and that we have a morphism M∗� → N∗� in Db,b
fr (A∗� ) represented

by the upper roof
X∗�

M∗� N∗�

α β (C-7)

where α is a quasi-isomorphism. Then X∗� ∈ Db,∅(A∗� ), and for k � 0 the inclusion τ≤kX∗� ↪→
X∗� is a quasi-isomorphism. Further, there exists a quasi-isomorphism Y ∗� → τ≤kX

∗
� with

Y ∗� ∈ Db,−
fr (A∗� ). Thus, expanding the above roof with the resulting composition Y ∗� → X∗�

we may assume that a priori X∗� ∈ Db,−
fr (A∗� ). Next, as M∗� and N∗� are bounded, there exists

k � 0 such that the following hold:

(1) τ≥kX
∗
� ∈ Db,b

fr (A∗� ) (possible since S� is regular)

(2) X∗� → τ≥kX
∗
� is a quasi-isomorphism.
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(3) α and β factor as X∗� → τ≥kX
∗
�

eα−→M∗� and X∗� → τ≥kX
∗
�

eβ−→ N∗� , respectively.

Under these assumptions, the roof (C-7) is equivalent to the roof

τ≥kX
∗
�

M∗� N∗�

α̃ β̃

proving that (C-6) is full. The faithfulness is proved similarly. �

Remark C.7 Let ϕ : A∗� → B∗� be a morphism of dg-S�-algebras concentrated in non-
positive degrees. Then note that even though we have a description of Db,b

(fr),(fg)(A
∗
� ) not

involving unbounded A∗� -modules, the calculation of the derived tensor product functor

D(A∗� )
−
L

⊗A∗� B
∗
�−−−−−−−−−→ D(B∗� )

does involve unbounded modules, even if we restrict it to bounded A∗� -modules and regular
S�, because there might be bounded A∗� -modules which do not possess bounded semi-free
resolutions. ♦

Next we discuss to what extend the derived adjunction corresponding corresponding to a
morphism ϕ : A∗� → B∗� respects the subcategories of D(A∗� ) and D(B∗� ) we just introduced.

Fact C.8 Let A∗� and B∗� be dg-S�-algebras, and assume Ak� = 0 for k > 0. Further, let
ϕ : A∗� → B∗� be a homomorphism of dg-S�-algebras. Then the functor

ϕ∗ : D(B∗� ) −→ D(A∗� )

takes D∗,∗
′
(B∗� ) to D∗,∗

′
(A∗� ) for all ∗, ∗′ ∈ {∅, b,+,−}. Its adjoint

−
L

⊗A∗� B
∗
� : D(A∗� ) −→ D(B∗� )

takes D−,∅(A∗� )→ D−,∅(B∗� ). If ϕ is a quasi-isomorphism, the adjoint equivalence (B-5) be-
tween D(A∗� ) and D(B∗� ) restricts to an adjoint equivalence between D∗,∅(A∗� ) and D∗,∅(B∗� )
for all ∗ ∈ {∅, b,+,−}.

D The Koszul resolution of S�/(w)

Consider S�/(w) as a dg-S�-algebra concentrated in degree 0. Then a dg-S�/(w)-module is just
a complex of S�/(w)-modules, and so the derived category of the dg-S�-algebra S�/(w) equals
the derived category of the abelian category S�/(w)-mod. Hence, there is no unambiguity
when talking about the derived category D(S�/(w)).

Our strategy is to apply Proposition B.15 to certain S�-free dg-S�-algebras quasi-isomorphic
to S�/(w), thereby converting our intuition ’S�/(w)-modules should be replaced by enriched
complexes of free S�-modules’ into a precise statement.

Definition D.1 Let as usual S� be a regular local graded ring and w be homogeneous of
degree d (possibly zero). The Koszul-resolution K∗w of S�/(w) is defined as the dg-S�-algebra

K∗w := ...→ 0→ S�〈−d〉
·w−→ S� → 0→ ...,

where S� is concentrated in cohomological degree 0. In other words, it is the free graded-
commutative dg-algebra with generator s of cohomological degree −1 and internal degree d
and differential given by (.s) := w · 1.
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Proposition D.2 There is a natural morphism of dg-S�-algebras κw : K∗w → S�/(w) which
is a quasi-isomorphisms if and only if w 6= 0. In particular, we have a derived adjunction

D(K∗w-Mod) D(S�/(w)-Mod)
−

L

⊗K∗w S�/(w)

(κw)∗

which is a derived equivalence if and only if w 6= 0.

Proof. The morphism κw is given by the diagram

· · · 0 S�〈−d〉 S� 0 · · ·

· · · 0 0 S�/(w) 0 · · ·

·w

and it is clear that κw is a quasi-isomorphism if and only if w 6= 0. The second statement
follows from Proposition B.15 applied to κw. �

Fact D.3 Let M∗� be a complex of S�-modules. Giving M∗� the structure of a dg-K∗w-module
is equivalent to giving a nullhomotopy s for the multiplication by w on M∗� such that s2 = 0.

Convention: We will often write a K∗w-module M∗� in the form

... Mn−1
� Mn

� Mn+1
� ...

d
s

d
s

d
s

d
s

where the arrows pointing to the left denote the action of s on M∗� .

E The Bar resolution

In order to calculate the image of a dg-module M∗� under a derived functor like −
L

⊗K∗w S�/(w)
we need to know an explicit cofibrant resolution of M∗� . The goal of this section is to describe
one particular such resolution for S�-free A∗� -modules, which is even functorial in M∗� : the
Bar resolution. Throughout we fix an arbitrary commutative graded ring S�.

The results of this and the following section are taken from [Avr10, Section 3.1].

Definition E.1 Let A∗� be a connected, S�-free dg-S�-algebra with unit η : S� → A∗� , and set
Ã∗� := coker(η) = A>0

� . Further, let M∗� be an A∗� -module. The Bar resolution Q(A∗� ,M
∗
� )

of M∗� over A∗� is defined as follows:

(1) The underlying Z-graded graded S�-module is given by

Q(A∗� ,M
∗
� )n� :=

⊕
h−p+i1+...+ip+j=n

Ah� ⊗S� Ã
i1
� ⊗S� · · · ⊗S� Ã

ip
� ⊗S� M

j
� , (E-1)

and the action of A∗� on Q(A∗� ,M
∗
� ) is given by left multiplication on the first tensor

factor.

(2) The differential is given by ∂ := ∂′ + ∂′′, where

∂′(a⊗ ã1 ⊗ ...⊗ ãp ⊗m) := ∂(a)⊗ ã1 ⊗ ...⊗ ãp ⊗m (E-2)

+
p∑
r=1

(−1)r+h+i1+...+ir−1a⊗ ã1 ⊗ ...⊗ ∂(ãr)⊗ ...⊗ ãp ⊗m

+ (−1)h+p+i1+...+ipa⊗ ã1 ⊗ ...⊗ ãp ⊗ ∂(m)
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and

∂′′(a⊗ ã1 ⊗ ...⊗ ãp ⊗m) := (−1)h(aa1)⊗ ã2 ⊗ ...⊗ ãp ⊗m (E-3)

+
p−1∑
r=1

(−1)r+h+i1+...+ira⊗ ã1 ⊗ ...⊗ ãrar+1 ⊗ ...⊗ ãp ⊗m

+ (−1)h+p+i1+...+ip−1a⊗ ã1 ⊗ ...⊗ ãp−1 ⊗ apm

(3) The structure map Q(A∗� ,M
∗
� )→M∗� is defined by

a⊗ ã1 ⊗ ...⊗ ãp ⊗m 7−→

{
0 if p > 0

am if p = 0.
.

Proposition E.2 The following hold:

(1) (Q(A∗� ,M
∗
� ), ∂)→M∗� is a quasi-isomorphism.

(2) If M∗� is S�-free, (Q(A∗� ,M
∗
� ), ∂) is a semi-free A∗� -module.

Proof. The first statement follows from the results [Avr10, Construction 3.1.4] applied to the
ungraded dg-algebra and ring underlying A∗� and S�, respectively. For the second statement,
note that if M∗� is S�-free then the submodules

UM∗� (n) :=
⊕

p−i1−...−ip−j≤n

A∗� ⊗S� Ã
i1
� ⊗S� · · · ⊗S� Ã

ip
� ⊗S� M

j
�

form a semi-free filtration of Q(A∗� ,M
∗
� ). �

F The Bar resolution for the Koszul-resolution of S�/(w)

Next, we make the Bar resolution explicit in the case where A∗� = K∗w is the Koszul-resolution
of S�/(w) (see Definition D.1). In this case K̃∗w ∼= S�〈−d〉[1], so we get the following isomor-
phism of graded S�-modules, where we consider S�[t] as a Z-graded graded S�-module with t
sitting in cohomological degree −2 and internal degree d.

Q(K∗w,M
∗
� ) ∼= K∗w ⊗S� S�[t]⊗S� M

∗
�

(−1)na⊗ s̃⊗ ...⊗ s̃︸ ︷︷ ︸
n times

⊗m ←− [ a⊗ tn ⊗m
(F-1)

(Note that the left hand side has cohomological degree |a| − 2n + |m|; see the indexing in
(E-1)) This isomorphism induces a differential on K∗w⊗S� S�[t]⊗S�M

∗
� , yielding the following:

Proposition F.1 Let M∗� be an S�-free K∗w-module, and denote by S�[t] a polynomial ring
with the indeterminate t sitting in cohomological degree −2 and internal degree d. Then,
the K∗w-module K∗w ⊗S� S�[t]⊗S� M

∗
� with differential given by

a⊗ tn ⊗m 7−→ ∂(a)⊗ tn ⊗m+ (−1)|a|a⊗ tn ⊗ ∂(m)

+ (−1)|a|+1as⊗ tn−1 ⊗m+ (−1)|a|a⊗ tn−1 ⊗ sm.

is a semi-free resolution of M∗� .

Proof. This follows immediately from the isomorphism (F-1) and the explicit formula (E-2)
and (E-3) for the differential on the Bar resolution. Note that both the differential and the
multiplication on K̃∗w are trivial. �
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Proposition F.1 allows us to explicitly compute the image of some dg-K∗w-module under the
derived tensor functor Db(K∗w)→ D−(S�/(w)):

Corollary F.2 Let M∗� be an S�-free K∗w-module, and denote by S�/(w)[t] a polynomial
ring over S�/(w) with the indeterminate t sitting in cohomological degree −2 and internal
degree d. Then there is a canonical isomorphism in Db(S�/(w)):

M∗�
L

⊗K∗w S�/(w) ∼= (S�/(w)[t]⊗S� M
∗
� , ∂)

where ∂ is given by
∂(tn ⊗m) := tn ⊗ ∂(m) + tn−1 ⊗ sm.

Remark F.3 Corollary F.2 yields a proof of Proposition 2.3.2 in case sn = 0 for all n ≥ 2
as follows. We start with an S�/(w)-module M� and assume that we have chosen an S�-free
resolution F ∗� →M� together with a homotopy s for the multiplication by w on F ∗� such that
s2 = 0. In this case, the claim of 2.3.2 is that S�/(w)[t]⊗S� F

∗
� together with the differential

id ⊗ ∂ + t∗ ⊗ s is an S�/(w)-free resolution of M�. Now, this follows from Corollary F.2 by
tracing M� along the adjoint equivalence

D−(S�/(w))
κ∗w−−−−→ D−(K∗w)

−
L

⊗K∗wS�/(w)
−−−−−−−−−→ D−(S�/(w)). (F-2)

Indeed, considering F ∗� together with the homotopy s as a module over K∗w (see Fact D.3), it
is isomorphic to the image of M� under κ∗w. By Corollary F.2, F ∗� is sent to S�/(w)[t]⊗S� F

∗
�

with differential id ⊗ ∂ + t∗ ⊗ s under −
L

⊗K∗w S�/(w). However, we know a priori that the
result has of this computation has to be an S�/(w)-free resolution of M�, as the composition
(F-2) is isomorphic to the identity. ♦

G Connecting the Koszul-resolution to matrix factorizations

Let S� be regular local, w ∈ m \ {0}. We know that Db
fg(S�/(w))/Perf ∼= HMF(S�, w) and

Db
fg(S�/(w)) ∼= Db

fg(K∗w), so we ask what the composed functor

Db
fg(K∗w) −→ Db

fg(S�/(w)) −→ HMF(S�, w)

looks like. It turns out that it has a nice description which even makes sense for arbitrary
w = 0.

Definition G.1 We denote Perf∞ ⊂ Db,b
fr (K∗w) the smallest thick triangulated subcategory

of Db,b
fr (K∗w) which contains all free K∗w-modules.

Proposition G.2 Let S� be a regular local graded ring and w ∈ S� be homogeneous of
degree d. Then the assignment

(F ∗� ,d) 7−→

(⊕
n∈Z

F 2n
� 〈−nd〉

d+s−−−−−→
⊕
n∈Z

F 2n−1
� 〈−nd〉 d+s−−−−−→

⊕
n∈Z

F 2n
� 〈−nd〉

)
(G-1)

for an S�-free K∗w-module F ∗� induces triangulated functor

fold : Db,b
fr (K∗w)/Perf∞ −→ HMF∞(S�, w).

Proof. We use the description of Db,b
fr (A∗� ) given in Proposition C.6. Thus, to make (G-1)

into a triangulated functor Db,b
fr (K∗w)/Perf∞ → HMF∞(S�, w), we have to work through the

following steps:
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(1) Define fold as a functor K∗w-Modb,bfr → MF∞(S�, w), i.e. say what happens to mor-
phisms.

(2) Check that homotopic morphisms of K∗w-modules yield homotopic morphisms of matrix
factorizations.

(3) Verify that the resulting functor Hob,bfr (K∗w)→ HMF∞(S�, w) carries the structure of a
triangulated functor, i.e. check that it naturally commutes with the shift and preserves
exact triangles.

(4) Prove that fold takes quasi-isomorphisms of K∗w-modules into homotopy equivalences
of matrix factorizations. This will define fold as a functor Db,b

fr (K∗w)→ HMF∞(S�, w).

(5) Prove that fold vanishes on the subcategory Perf∞(K∗w) of perfectK∗w-modules, yielding
the desired functor Db,b

fr (K∗w)/Perf∞ → HMF∞(S�, w).

(1): If ϕ := (ϕn)n∈Z : P ∗� → Q∗� is a homomorphism of S�-free K∗w-modules, define fold(ϕ)
by ⊕

n∈Z
P 2n

� 〈−nd〉
⊕
n∈Z

P 2n−1
� 〈−nd〉

⊕
n∈Z

P 2n
� 〈−nd〉

⊕
n∈Z

P 2n
� 〈−nd〉

⊕
n∈Z

Q2n−1
� 〈−nd〉

⊕
n∈Z

Q2n
� 〈−nd〉

(ϕ2n)n∈Z (ϕ2n−1)n∈Z (ϕ2n)n∈Z

d + s d + s

d + s d + s

This is a morphism of matrix factorizations since the ϕn are degree-preserving and we have
dϕn = ϕn+1d and sϕn = ϕn−1s by definition of a morphism of dg-K∗w-modules.

(2): Assume ψ := (ψn)n∈Z is another morphism of K∗w-modules homotopic to ϕ. Then,
by definition of the homotopy relation, there exists a family of degree-preserving maps Dn :
P ∗� → P ∗−1

� such that sDn = −Dn−1s and dDn + Dn+1d = ϕn − ψn for all n ∈ Z. This
yields a homotopy between fold(ϕ) and fold(ψ) as follows:⊕

n∈Z
P 2n

� 〈−nd〉
⊕
n∈Z

P 2n−1
� 〈−nd〉

⊕
n∈Z

P 2n
� 〈−nd〉

⊕
n∈Z

P 2n
� 〈−nd〉

⊕
n∈Z

Q2n−1
� 〈−nd〉

⊕
n∈Z

Q2n
� 〈−nd〉

ϕ ψ ϕ ψ ϕ ψ

d + s d + s

d + s d + s

(D2n−1)n∈Z (D2n)n∈Z

Note that the degree shifts in fold(P ∗� ) and fold(Q∗� ) cause (D2n)n∈Z to preserve and (D2n−1)n∈Z
to raise the degree by d.

(3): For some bounded, S�-free K∗w-module F ∗� we have the following:

fold(F ∗� [1]) =

(⊕
n∈Z

F 2n+1
� 〈−nd〉 −∂−s−−−−→

⊕
n∈Z

F 2n
� 〈−nd〉

−∂−s−−−−→
⊕
n∈Z

F 2n+1
� 〈−nd〉

)

=

(⊕
n∈Z

F 2n
� 〈−nd〉

∂+s−−→
⊕
n∈Z

F 2n−1
� 〈−nd〉 ∂+s−−→

⊕
n∈Z

F 2n
� 〈−nd〉

)
[1]

= fold(F ∗� )[1].

Note that the action of s on F ∗� [1] is the negative of the action on F ∗� , because the K∗w-module
structure on F ∗� [1] is given by the composition

K∗w ⊗S� F
∗
� [1]

∼=−−−→ (K∗w ⊗S� F
∗
� ) [1] −−−→ K∗w[1],

where the first isomorphism is given by a ⊗ b 7→ (−1)|a|a ⊗ b, hence involves the required
sign. This shows that fold commutes with the shift functor. It remains to be checked that
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it preserves exact triangles (see (2.2-5) for the definition of the cone of a morphism between
matrix factorizations). Given a morphism ϕ : P ∗� → Q∗� of bounded, S�-free K∗w-modules, we
have

fold(Cone(ϕ))0
� =

⊕
n∈Z

Cone(ϕ)2n
� 〈−nd〉

=
⊕
n∈Z

(
Q2n

� ⊕ P 2n+1
�

)
〈−nd〉

=

(⊕
n∈Z

Q2n
� 〈−nd〉

)
⊕

(⊕
n∈Z

P 2n+1
� 〈−(n+ 1)d〉

)
〈d〉

= Cone(fold(ϕ))0
�

fold(Cone(ϕ))−1
� =

⊕
n∈Z

Cone(ϕ)2n−1
� 〈−nd〉

=
⊕
n∈Z

(
Q2n−1

� ⊕ P 2n
�

)
〈−nd〉

=

(⊕
n∈Z

Q2n−1
� 〈−nd〉

)
⊕

(⊕
n∈Z

P 2n
� 〈−nd〉

)
= Cone(fold(ϕ))−1

� ,

which shows that fold(Cone(ϕ)) ∼= Cone(fold(ϕ)) as Z/2Z-graded S�-modules. The proof
that this identification is compatible with the differentials on both sides is omitted.

(4): By (3) we know that fold is a triangulated functor Hob,bfr (K∗w)→ HMF∞(S�, w). As
the cone of a quasi-isomorphism is acyclic, the claim that quasi-isomorphisms are mapped
to homotopy equivalences is therefore equivalent to the following: If F ∗� is a bounded, S�-free
K∗w-module with vanishing cohomology, then fold(P ∗� ) is contractible. This will follow from
direct calculation; it would be nice to have a more conceptual proof at hand.

To prove that fold(F ∗� ) is zero in HMF∞(S�, w), we have to construct a null-homotopy
for the identity on fold(F ∗� ):

⊕
n∈Z

F 2n
� 〈−nd〉

⊕
n∈Z

F 2n−1
� 〈−nd〉

⊕
n∈Z

F 2n
� 〈−nd〉

⊕
n∈Z

F 2n
� 〈−nd〉

⊕
n∈Z

F 2n−1
� 〈−nd〉

⊕
n∈Z

F 2n
� 〈−nd〉

d + s d + s

d + s d + s

s̃ s̃

The condition that s̃ is a null-homotopy for the identity means that

idfold(F∗� ) = s̃d + s̃s+ ss̃+ ds̃. (G-2)

Let us pause for a moment and compare this to the datum of a contraction of the K∗w-module
F ∗� before being folded. There, a contraction is a diagram

... Fn−1
� Fn� Fn+1

� ...

... Fn−1
� Fn� Fn+1

� ...

s̃s̃ s̃s̃

d
s

d
s

d
s

d
s

d
s

d
s

d
s

d
s

such that
ds̃+ s̃d = idF∗� and s̃s = −ss̃. (G-3)
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Thus, condition (G-2) is weaker than (G-3) in two respects: Firstly, in (G-2) we only impose a
condition on the sum s̃d+ s̃s+ss̃+ds̃, while in (G-3) we impose conditions on the summands
s̃d + ds̃ and ss̃ + s̃s. Secondly, in (G-2) the map s̃ is allows to consist of a whole family of
maps s̃n : F ∗� → F

∗−(2n−1)
� for all n ∈ Z, while in (G-3) the map s̃ is of fixed cohomological

degree −1.
Back to the proof of (4). The homotopy s̃ we construct will only involve s̃n : F ∗� →

F
∗−(2n−1)
� for n ≥ 1. Condition (G-2) can then be rewritten as

ds̃1 + s̃1d = idF∗� , (G-4)

i.e. s̃1 is a contraction of F ∗� as a complex of S�-modules, and

ss̃n + s̃ns+ ds̃n+1 + s̃n+1d = 0 (G-5)

for all n ≥ 1. We construct the maps s̃n inductively. Start by taking s̃1 to be an arbitrary
contraction of F ∗� as a complex of S�-modules; such a contraction exists since F ∗� is S�-free,
bounded above and acyclic. Now assume that we already constructed s̃1, ..., s̃n satisfying
(G-5). Since F ∗� is contractible, the morphism complex Hom∗S�

(F ∗� , F
∗
� ) is acyclic, and so

the existence of s̃n+1 satisfying (G-5) is equivalent the fact that ss̃n + s̃ns is a cycle in
Hom∗S�

(F ∗� , F
∗
� ). Denoting by ∂ the differential of this complex, this follows from a direct

calculation, using ∂(s) = w, ∂(s̃n) = −(ss̃n−1 + s̃n−1s) and the fact that ∂ satisfies the
Leibniz-rule:

∂(ss̃n + s̃ns) = ws̃n + s(ss̃n−1 + s̃n−1s)− (s̃n−1s+ ss̃n−1s)s− ws̃n = 0.

This finishes the inductive construction of the s̃n and establishes, in the whole, a contraction
s̃ of fold(F ∗� ).

(5): Finally we check that fold vanishes in perfect K∗w-modules. By definition, Perf(K∗w)
is the smallest thick triangulated subcategory of Db,b

fr (K∗w) which containing all free K∗w-
modules. As we already know that fold is triangulated and commutes with internal degree
shifts, it is therefore sufficient to show that fold(K∗w) = 0. However,

fold(K∗w) =
(
S�

id−→ S�〈−d〉
w−→ S�

)
which vanishes since the dashed arrows in

S� S�〈−d〉 S�

S� S�〈−d〉 S�

id w

id w

id 0

constitute a nullhomotopy for the identity on
(
S�

id−→ S�〈−d〉
w−→ S�

)
. �

Remark G.3 Note that the proof of Proposition G.2 also works for bounded below, S�-
free K∗w-modules if we replace infinite sums by infinite products. However, this forces us to
consider matrix factorizations with non-free entries (these are called duplexes in [KR08]),
and the author doesn’t know how to think about them. ♦

Now we go in the other direction:

Proposition G.4 Let S� be a regular local graded ring and w ∈ S� be homogeneous of
degree d. Then the assignment

M0
� M−1

� M0
� 7−→ ... 0 M−1

� M0
� 0 ...

g

f

f g
(G-6)
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(with M0
� concentrated in cohomological degree 0) induces a functor

ι : HMF∞(S�, w) −→ Db,b
fr (K∗w)/Perf∞

which is right inverse to fold.

Remark G.5 We do not claim here that ι is triangulated. However, we will see later in
Theorem G.6 that ι and fold are actually mutually inverse equivalences of categories. Since
fold is triangulated, this gives the triangulated structure on ι for free. ♦

Proof (of Proposition G.4). Similar to the proof of Proposition G.2 we will proceed along
the following steps:

(1) Extend (G-6) to a functor MF∞(S�, w) → K∗w-modb,bfr , i.e. say what happens to mor-
phisms.

(2) Check that homotopic morphisms of matrix factorizations give rise to equal mor-
phisms in the stabilized derived category Db,b

fr (K∗w)/Perf∞. This yields a functor
ι : HMF∞(S�, w)→ Db,b

fr (K∗w)/Perf∞.

Once this is done, the claim follows because fold ◦ ι equals the identity on HMF∞(S�, w).
(1): Given a morphism

M� M0
� M−1

� M0
�

N� N0
� N−1

� N0
�

(α, β)

f

f ′

g

g′

α β α

of graded matrix factorizations, we define ι(α, β) to be

... 0 M−1
� M0

� 0 ...

... 0 N−1
� N0

� 0 ...

g

f

g′

f ′

α β

It is clear that this extends (G-6) to a functor MF∞(S�, w)→ K∗w-Modb,bfr .
(2): Assume we have two morphisms (α, β) and (γ, δ) of graded matrix factorizations,

and suppose they are homotopic through a homotopy D = (D0, D1):

M0
� M−1

� M0
�

N0
� N−1

� N0
�

f

f ′

g

g′

α β αγ δ γD1 D0 (G-7)

We have to show that ι(α, β) and ι(γ, δ) are equal in Db,b
fr (K∗w)/Perf∞. As

Db,b
fr (K∗w)/Perf∞

∼=−→ D−,bfr (K∗w)/Perf∞

is an equivalence (Proposition C.5), it suffices to prove that ι(α, β) = ι(γ, δ) in D−,bfr (K∗w)/Perf∞.
For this we will show that the difference of the two upper horizontal maps in the D−,bfr (K∗w)-
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diagram

Q(K∗w, ι(M�)) Q(K∗w, ι(N�))

ι(M�) ι(N�)

Q(K∗w, ι(α, β))

Q(K∗w, ι(γ, δ))

qis qis

ι(α, β)

ι(γ, δ)

is homotopic, as a morphism of K∗w-modules, to a map factoring through a perfect K∗w-
module. Since the vertical maps are isomorphisms in D−,bfr (K∗w), and since morphisms of K∗w-
modules factoring through a perfect module up to homotopy are zero in D−,bfr (K∗w)/Perf∞,
this will prove that ι(α, β) = ι(γ, δ) in D−,b(K∗w)/Perf∞ as claimed.

The Bar resolution of ι(M�) is explicitly given as follows, see F.1; to save space, we do
not keep track of internal gradings for the rest of the proof.

... M−1
� ⊕M0

� M0
� ⊕M−1

� M−1
� ⊕M0

� M0
�

(
f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(

g w

−idM−1
�

−f

)
(

0 0
idM0

�
0

)
(

f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(
g w

)
(

0
idM0

�

)

The homotopy (G-7) of graded matrix factorizations yields the following homotopy of mor-
phisms of K∗w-modules:

... M−1
� ⊕M0

� M0
� ⊕M−1

� M−1
� ⊕M0

� M0
� 0

... M−1
� ⊕M0

� M0
� ⊕M−1

� M−1
� ⊕M0

� M0
� 0

(
g w

−idM−1
�

−f

)
(

0 0
idM0

�
0

)
(

f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(
g w

)
(

0
idM0

�

)

(
g w

−idM−1
�

−f

)
(

0 0
idM0

�
0

)
(

f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(
g w

)
(

0
idM0

�

)

(
D0 0
0 D1

) (
D0 0
0 D1

) (
D0

0

)(
β − δ 0

0 α− γ

) (
α− γ 0

0 β − δ

) (
β − δ 0
−D1 α− γ −D1 ◦ f

)
α− β −D1 ◦ f

Therefore, Q(K∗w, ι(α, β))−Q(K∗w, ι(γ, δ)) is homotopic to

... M−1
� ⊕M0

� M0
� ⊕M−1

� M−1
� ⊕M0

� M0
� 0

... M−1
� ⊕M0

� M0
� ⊕M−1

� M−1
� ⊕M0

� M0
� 0

(
g w

−idM−1
�

−f

)
(

0 0
idM0

�
0

)
(

f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(
g w

)
(

0
idM0

�

)

(
g w

−idM−1
�

−f

)
(

0 0
idM0

�
0

)
(

f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(
g w

)
(

0
idM0

�

)

0 0
(

0 0
D1 D1 ◦ f

)
D1 ◦ f

which factors through the perfect K∗w-module

... 0 M0
� M0

� 0 ... ∼= K∗w ⊗S� M
0
� .

w

id

By the remarks above, this shows that in Db,b(K∗w)/Perf∞ we have

Q(K∗w, ι(α, β)) = Q(K∗w, ι(γ, δ))

and hence ι(α, β) = ι(γ, δ), as claimed. �
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Theorem G.6 There is a natural isomorphism

ε : ι ◦ fold
∼==⇒ idDb,b

fr (K∗w)/Perf∞

which together with the equality fold ◦ ι = idHMF∞(S�,w) forms an adjoint equivalence

fold : Db,b
fr (K∗w)/Perf∞ HMF∞(S�, w) : ι

∼=

Proof. Let F ∗� be a bounded, S�-free K∗w-module; without loss of generality we may assume
F k� = 0 for k > 0. Then Q(K∗w, (ι ◦ fold)(F ∗� )) is explicitly given as

... F even
� 〈−d〉 ⊕ F odd

� 〈−d〉 F odd
� ⊕ F even

� 〈−d〉 F even
�

(
+. s w

−id −(+. s)

)
(

0 0
id 0

)
(

+. s w

−id −(+. s)

)
(

0 0
id 0

)
(
+. s w

)
(

0
id

)

where F even
� :=

⊕
n≥0

F−2n
� 〈nd〉 and F odd

� :=
⊕
n≥0

F−2n−1
� 〈nd〉. We define εF∗� as the roof

... 0 F odd
� F even

�

... F even
� 〈−d〉 ⊕ F odd

� 〈−d〉 F odd
� ⊕ F even

� 〈−d〉 F even
�

... F−2
� F−1

� F 0
�

(
id +. s

)
+. s

+. s

(
+. s w

−id −(+. s)

)
(

0 0
id 0

)
(

+. s w

−id −(+. s)

)
(

0 0
id 0

)
(
+. s w

)
(

0
id

)

d
s

d
s

d
s

(
prF−2

�
s ◦ prF−1

�

) (
prF−1

�
s ◦ prF 0

�

)
prF 0

�

(G-8)

Observe that the internal grading shifts are such that this indeed preserves the grading.
Clearly, this morphism is natural in F ∗� .

Note that, although the denominator Q(K∗w, (ι ◦ fold)(F ∗� )) is not in Db,b
fr (K∗w), εF∗� is

a morphism in Db,b
fr (K∗w), because we defined the latter as a full subcategory of D(K∗w).

Nonetheless, we know from the equivalence Hob,bfr (K∗w)/Acycb,bfr (K∗w) ∼= Db,b
fr (K∗w) (Proposi-

tion C.6) that εF∗� can be represented by a roof having a denominator in Db,b
fr (K∗w). More

concretely, we can replace Q(K∗w, (ι ◦ fold)(F ∗� )) by τ≥2nQ(K∗w, (ι ◦ fold)(F ∗� )) for n� 0 such
that F k� = 0 for k ≤ 2n; in degrees 2n to 2n+ 2 this truncation is explicitly given as follows:

F even
� 〈nd〉

(
F odd

� 〈d〉 ⊕ F even
�

)
〈nd〉

(
F even

� ⊕ F odd
�

)
〈(n+ 1)d〉 ...

(
d+ s

−id

)
(
0 id

)
(

d + s w

−id −(d + s)

)
(

0 0
id 0

)

To see that ε as the counit and id = fold ◦ ι as the unit form an adjunction ι a fold, we have
to check the following:

(1) For each M∗� ∈ HMF∞(S�, w), the map

ι(M∗� ) = ι((fold ◦ ι)(M∗� )) = (ι ◦ fold)(ι(M∗� ))
ει(M∗� )−−−−→ ι(M∗� )

is the identity.

(2) For each X∗� ∈ K∗w-Modfr, the map

fold(F ∗� )
fold(εX∗�

)
−−−−−−→ fold((ι ◦ fold)(F ∗� )) = (fold ◦ ι)(fold(F ∗� )) = fold(F ∗� )

is the identity.
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Statement (1) holds because in the case where F k� = 0 for k 6= −1, 0, the numerator and
denominator in the roof (G-8) defining εF∗� are equal. For (2), we first construct an explicit
inverse for the homotopy equivalence

fold
(
τ≥2nQ(K∗w, ι(M

∗
� )) −→ ι(M∗� )

)
for a matrix factorization M∗� =

(
M0

�
f−→M−1

�
g−→M0

)
and n� 0:

... M−1
� ⊕M0

� M0
� ⊕M−1

� M−1
� ⊕M0

� M0
�

M−1
� M0

�

(
id
0

)(
id
0

) (
id
0

)(
id
0

)

g

f

(
f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(

g w

−idM−1
�

−f

)
(

0 0
idM0

�
0

)
(

f w

−idM0
�
−g

)
(

0 0
idM−1

�
0

)
(
g w

)
(

0
idM0

�

)

(G-9)
The map from M0

� into the truncated component τ≥2nQ(K∗w, ι(M
∗
� ))2n

� = M0
� is the identity.

Now ifM� = fold(F ∗� ) as above, it is clear that the composition of (G-9) and the numerator
fold(Q(K∗w, (ι ◦ fold)(F ∗� )) → F ∗� ) from (G-8) is the identity on fold(F ∗� ), so (2) holds. This
finishes the proof of the adjunction ι a fold.

It remains to show that εF∗� : (ι ◦ fold)(F ∗� ) → F ∗� is an isomorphism in Db,b
fr (K∗w). For

this, first define

Q(K∗w, F
∗
� ) ⊃ UF∗� (n) := spanS�

{
a⊗ tk ⊗m | 2k − |m| ≤ n

}
.

It is clear from the explicit description of the differential on Q(K∗w, F
∗
� ) in Proposition F.1

that d(UF∗� (n)) ⊂ UF∗� (n), so UF∗� (n) is a K∗w-submodule of Q(K∗w, F
∗
� ). We put DF∗� (n) :=

Q(K∗w, F
∗
� )/UF∗� (n− 1) and denote DF∗� (n→ m) : DF∗� (n) −→ DF∗� (m) the projection map

for n ≤ m. We have
DF∗� (0) = Q(K∗w, F

∗
� )

and
DF∗� (2n) ∼= Q(K∗w, (ι ◦ fold)(F ∗� ))[2n]〈−nd〉

for n� 0, so DF∗� (∗) interpolates between the bar resolutions of F ∗� and (ι ◦ fold)(F ∗� ). We
will now prove that the quotient map

DF∗� (0→ 2n) : Q(K∗w, F
∗
� ) = DF∗� (0) −→ DF∗� (2n) ∼= Q(K∗w, (ι ◦ fold)(F ∗� ))[2n]〈−nd〉

is an isomorphism in D−,bfr (K∗w)/Perf∞ by showing that its cone is in Perf∞. By the octa-
hedral axiom, it suffices to show that Cone

(
DF∗� (n→ n+ 1)

)
∈ Perf∞ for each n ∈ Z. For

this, note that as DF∗� (n→ n+ 1) is an epimorphism, we have an isomorphism in D−,bfr (K∗w)

Cone
(
DF∗� (n→ n+ 1)

) ∼= ker
(
DF∗� (n→ n+ 1)

)
= K∗w ⊗S� spanS�

{
tk ⊗m | 2k − |m| = n

}
,

where the action of K∗w and the differential on the right hand side is given by their respective
action on the first tensor factor K∗w. Thus, Cone(DF∗� (n→ n+1)) is of the form K∗w⊗S�X�[k]
for some free S�-module X� and some k ∈ Z, and hence in Perf∞.

Next, note that applying the previous paragraph to (ι ◦ fold)(F ∗� ) instead of F ∗� , we see
that Q(K∗w, (ι◦ fold)(F ∗� ))[2n]〈−nd〉 is also isomorphic to D(ι◦fold)(F∗� )(2n) for n� 0. Hence,
we have the following diagram in D−,bfr (K∗w), where the diagonal maps are have perfect cones,
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i.e. are isomorphism in D−,bfr (K∗w)/Perf∞:

Q(K∗w, (ι ◦ fold)(F ∗� )) Q(K∗w, F
∗
� )

Q(K∗w, (ι ◦ fold)(F ∗� ))[2n]〈−nd〉

ψ

We will know describe explicitly a map ψ making the diagram commute. It is then auto-
matically an isomorphism in D−,bfr (K∗w)/Perf∞. Next, it will be clear that the composition

Q(K∗w, (ι ◦ fold)(F ∗� ))
ψ−→ Q(K∗w, F

∗
� ) −→ F ∗� (G-10)

is precisely the numerator in the roof (G-8) defining εF∗� , proving that εF∗� is an isomorphism
in D−,bfr (K∗w)/Perf∞.

The map ψ is given as follows (negative powers of t are to be interpreted as 0):

K∗w ⊗S� S�[t]⊗S� ι(fold(F ∗� )) K∗w ⊗S� S�[t]⊗S� F
∗
�

a⊗ tk ⊗m−2l a⊗ tk−l ⊗m−2l

a⊗ tk ⊗m−2l−1 a⊗ tk−l ⊗m−2l−1

ψ

∈ ∈
Here m−2l and m−2l−1 denote elements in F−2l

� and F−2l−1
� , respectively. Let us check care-

fully that this makes sense, i.e. that both cohomological and internal degrees are preserved.

(1) The cohomological degree of a⊗ tk ⊗m−2l in Q(K∗w, (ι ◦ fold)(F ∗� )) is |a| − 2k, and the
cohomological degree of a⊗tk−l⊗m−2l in Q(K∗w, F

∗
� ) equals |a|−2(k−l)−2l = |a|−2k.

Similarly, the cohomological degree of a ⊗ tk ⊗ m−2l−1 in Q(K∗w, (ι ◦ fold)(F ∗� )) is
|a| − 2k − 1, and the cohomological degree of a ⊗ tk−l ⊗ m−2l−1 in Q(K∗w, F

∗
� ) is

|a| − 2(k − l)− 2l − 1 = |a| − 2k − 1.

(2) Recalling that F even
� =

⊕
n∈Z

F−2n
� 〈nd〉 and F odd

� =
⊕
n∈Z

F−2n−1
� 〈nd〉, we see that the

internal degree of a⊗ tk ⊗m−2l in Q(K∗w, (ι ◦ fold)(F ∗� )) is deg(a) + kd− 2l− ld, while
the internal degree of a⊗ tk−l ⊗m−2l in Q(K∗w, F

∗
� ) is deg(a) + (k− l)d− 2l; similarly

in the odd case.

We leave it to the reader to check that ψ respects the differential.
Finally, it is clear from the explicit description of ψ that the composition (G-10) sends

a ⊗ tk ⊗m−2l to am−2l if k = l and to 0 otherwise. Similarly, a ⊗ tk ⊗m−2l−1 is sent to
am−2l−1 if k = l and to 0 otherwise. This shows that (G-10) equals the numerator in the
roof (G-8) defining εF∗� , finishing the proof of Theorem G.6. �

Remark G.7 The map Q(K∗w, (ι◦ fold)(F ∗� ))→ Q(K∗w, F
∗
� ) from the proof of Theorem G.6

is a lift of the map we constructed in Remark 2.3.8. ♦

Theorem G.6 is also true in the finitely generated case, with the same proof.

Definition G.8 We denote Perf ⊂ Db,b
fr,fg(K∗w) the smallest thick triangulated subcategory

of Db,b
fr,fg(K∗w) containing all finitely generated free K∗w-modules.

Theorem G.9 Define fold and ι as in Proposition G.2 and G.4. Then there is a natural
isomorphism

ε : ι ◦ fold
∼==⇒ idDb,b

fr,fg(K∗w)/Perf
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which together with the equality fold ◦ ι = idHMF(S�,w) forms an adjoint equivalence

fold : Db,b
fr,fg(K∗w)/Perf HMF(S�, w) : ι

∼=

Next we check that the equivalence fold : Db,b
fr,fg(K∗w) ∼= HMF(S�, w) indeed coincides

with the composition

Db,b
fr,fg(K∗w) ∼= Db

fg(S�/(w)) ∼= HMF(S�, w).

Theorem G.10 Let S� be a regular local graded ring and let w ∈ m \ {0} be homogeneous
of degree d. Then the following diagram commutes up to natural isomorphism:

Db
fg(S�/(w))/Perf Db

fg(K∗w)/Perf

HMF(S�, w)

−
L

⊗K∗w S�/(w)

V

ι foldcoker

Proof. For a graded matrix factorization M∗� =
(
M0

�
f−→M−1

�
g−→M0

�

)
we have

ι(M∗� )
L

⊗
K∗w

S�/(w) ∼= Q(K∗w, ι(M
∗
� )) ⊗

K∗w

S�/(w)

∼=
(
...

g−→M0
� 〈−d〉

f−→M−1
�

g−→M0
� → 0→ ...

)
⊗
S�

S�/(w) �

which is canonically isomorphic to coker(g) in Db(S�/(w)). This shows that(
−

L

⊗K∗w S�/(w)
)
◦ ι ∼= coker.

We end this section with a funny description of the translation functor on Db,b
fr (K∗w)/Perf

as swapping the roles of s and d in K∗w:

Corollary G.11 For F ∗� ∈ Db,b
fr (K∗w) there is a canonical isomorphism in Db,b

fr (K∗w)/Perf:

... F−1
� F 0

� F 1
� ... ∼= ... F 1

� 〈−d〉 F 0
� F−1

� 〈d〉 ...

−2 −1 0 1 2−2 −1 0 1 2

d
s

d
s

d
s

d
s

s

d

s

d

s

d

s

d
(G-11)

In particular, there is a natural isomorphism in Db,b
fr (K∗w)/Perf:

F ∗� [1] ∼= ... F 2
� 〈−d〉 F 1

� F 0
� 〈d〉 F−1

� 〈2d〉 ...

−2 −1 0 1 2 3

s

d

s

d

s

d

s

d

s

d

Here the small numbers above an expression indicate its cohomological degree.

Proof. This follows from Theorem G.6 together with the fact that the foldings of both sides
in (G-11) are the same. �
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H Derived tensor products

In this section we introduce and study the derived tensor product functor for modules over
the Koszul-resolution K∗w. We will see that this tensor product is compatible with the
tensor product on matrix factorizations (Theorem H.6), yielding a generalization of the
statement about the compatibility of the stabilization functor with tensor products of matrix
factorizations from Section 2.1 (see Proposition 2.5.2).

Definition H.1 The derived tensor product

D(K∗w)×D(K∗w′)
−
L

⊗S�−−−−−−−−−→ D(K∗w ⊗S� K
∗
w′)

is defined as the composition

D(K∗w)×D(K∗w′) Ho(Cof(K∗w))×Ho(Cof(K∗w′))

D(K∗w ⊗S� K
∗
w′) Ho(K∗w ⊗S� K

∗
w′)

∼=

−⊗S� −−
L

⊗S� −

Remark H.2 The derived tensor product depends on the choice of a quasi-inverse to the
canonical equivalence

Ho(Cof(K∗w(′)))
∼=−−−−−→ D(K∗w(′)),

but any two choices yield canonically isomorphic tensor products. In particular, by Fact
B.14, the derived tensor product can be computed via semi-free resolutions. ♦

Although the derived tensor product in Definition H.1 is defined through cofibrant reso-
lutions, the derived tensor product of two bounded above K∗

w(′) -modules can actually be
computed through S�-free resolutions:

Fact H.3 For M∗� ∈ D−,−fr (K∗w), N∗� ∈ D−,−fr (K∗w′) there is a canonical isomorphism in
D(K∗w ⊗S� K

∗
w′)

M∗�
L

⊗S� N
∗
�
∼= M∗� ⊗S� N

∗
� .

Proof. If p : QM∗� → M∗� and q : QN∗� → N∗� denote bounded above semi-free replace-
ments of M∗� and N∗� , respectively, both p and q are homotopy equivalences of complexes
of S�-modules, since all complexes involved are bounded above and S�-free. As the class of
homotopy equivalences is stable under tensoring with arbitrary complexes, we get canonical
isomorphisms in D(K∗w ⊗S� K

∗
w′)

M∗�
L

⊗S� N
∗
�

Def.= QM∗� ⊗S� QN
∗
�

p⊗id−→∼= M∗� ⊗S� QN
∗
�

id⊗q−→∼= M∗� ⊗S� N
∗
�

as claimed. �

The derived tensor product on D(K∗
w(′)) is also well behaved in the sense that is preserves

complexes with bounded cohomology; note that this is not true for the derived tensor product
on D(S�/(w(′))).
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Fact H.4 Let M∗� ∈ Db(K∗w) and N∗� ∈ Db(K∗w′). Then M∗
L

⊗S� N
∗
� ∈ Db(K∗w⊗S� K

∗
w′). In

other words, the dashed arrow in the following diagram exists:

Db(K∗w)×Db(K∗w′) Db(K∗w ⊗S� K
∗
w′)

D(K∗w)×D(K∗w′) D(K∗w ⊗S� K
∗
w′)

−
L

⊗S� −

−
L

⊗S� −

Proof. By Fact C.2 and Proposition C.5 the inclusion Db,b
fr (K∗

w(′))→ Db(K∗
w(′)) is an equiv-

alence. Hence we may without loss of generality assume that M∗� and N∗� are bounded and

S�-free, and in this case Fact H.3 yields a canonical isomorphism M∗�
L

⊗S� N
∗
�
∼= M∗� ⊗S� N

∗
� .

As M∗� ⊗S� N
∗
� is bounded, the claim follows. �

Fact H.5 For homogeneous w,w′ ∈ S� of degree d, there is a canonical morphism of dg-S�-
algebras

K∗w+w′ −→ K∗w ⊗S� K
∗
w′

s 7−→ s⊗ 1 + 1⊗ s

Proof. The element s ⊗ 1 + 1 ⊗ s in K∗w ⊗S� K
∗
w′ satisfies (.s ⊗ 1 + 1 ⊗ s) = w + w′ and

(s⊗ 1 + 1⊗ s)2 = 0, and hence

K∗w+w′ 3 s 7−→ s⊗ 1 + 1⊗ s ∈ K∗w ⊗S� K
∗
w′

indeed extends uniquely to a morphism of dg-S�-algebras K∗w+w′ → K∗w ⊗S� K
∗
w′ . �

Concatenating the derived tensor product

D(K∗w)×D(K∗w′)
−
L

⊗S�−−−−−−→ D(K∗w ⊗S� K
∗
w′)

with the functor D(K∗w ⊗S� K
∗
w′)→ D(K∗w+w′) induced by the morphism K∗w+w′ → K∗w ⊗S�

K∗w′ from Fact H.5 yields another derived tensor product functor

−
L

⊗S� − : D(K∗w)×D(K∗w′)
−
L

⊗S�−−−−−−→ D(K∗w ⊗S� K
∗
w′) −→ D(K∗w+w′).

We will now see that this derived tensor product is compatible with the tensor product
functor

HMF∞(S�, w)×HMF∞(S�, w
′)
−⊗S�−−−−−−→ HMF∞(S�, w + w′)

with respect to the canonical functor

Db(K∗w) ∼= Db,b
fr (K∗w) can−−−→ Db,b

fr (K∗w)/Perf fold−→ HMF∞(S�, w)

constructed in Section G (see Theorem G.6).

Theorem H.6 Let S� be a regular local graded ring and let w,w′ ∈ S� be homogeneous of
degree d. Then the diagram

Db(K∗w)×Db(K∗w′) Db(K∗w+w′)

HMF∞(S�, w)×HMF∞(S�, w
′) HMF∞(S�, w + w′)

−
L

⊗S� −

−⊗S� −

commutes up to natural isomorphism.
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Proof. By Fact H.3 the upper square in the following diagram is commutative

Db(K∗w)×Db(K∗w′) Db(K∗w+w′)

Db,b
fr (K∗w)×Db,b

fr (K∗w′) Db,b
fr (K∗w+w′)

HMF∞(S�, w)×HMF∞(S�, w
′) HMF∞(S�, w + w′)

−
L

⊗S� −

−⊗S� −

−⊗S� −

can ∼= can∼=

fold× fold fold

Hence, to prove the theorem it suffices to prove that the lower square is commutative. This
is the same calculation as in Proposition 2.5.2: If M∗� ∈ Db,b

fr (K∗w) and N∗� ∈ Db,b
fr (K∗w′), we

have

fold(M∗� ) ⊗
S�

fold(N∗� )

=
(
M even

� ⊗
S�

Nodd
� ⊕Modd

� ⊗
S�

N even
� � M even

� ⊗
S�

N even
� ⊕Modd

� ⊗
S�

Nodd
� 〈d〉

)
=

(
(M∗� ⊗S� N

∗
� )odd � (M∗� ⊗S� N

∗
� )even

)
= fold (M∗� ⊗S� N

∗
� )

as claimed (we omit the details about differentials and internal grading). �

Theorem H.7 Let S� be a regular local graded ring, and let w,w′ ∈ S� be homogeneous
the same degree. Then, if M� ∈ S�/(w)-Mod and N� ∈ S�/(w′)-Mod, there is a canonical
morphism in HMF∞(S�, w + w′)

M
{w}
� ⊗S� N

{w′}
� −→ (M� ⊗S� N�){w+w′} (H-1)

which is an isomorphism if TorkS(M�, N�)� = 0 for all k > 0.

Proof. We have to compare the images of (M�, N�) under the composed functors from the
upper left to the lower right corner in the following diagram:

S�/(w)-Mod× S�/(w′)-Mod S�/(w + w′)-Mod

Db(K∗w)×Db(K∗w′) Db(K∗w+w′)

HMF∞(S�, w)×HMF∞(S�, w
′) HMF∞(S�, w + w′)

−
L

⊗S� −

−⊗S� −

−⊗S� −

can can=⇒

�

The lower square commutes by Theorem H.6, and the upper square admits a natural trans-

formation as indicated, given by the canonical morphism M�
L

⊗S� N� → M� ⊗S� N�. This
morphism is an isomorphism if and only if TorkS(M�, N�)� = 0 for all k > 0, and the claim
follows. �

Remark H.8 It is not clear to the author what the morphism (H-1) looks like explicitly,
because for bounded S�-free resolutions QM� →M� and QN� → N� with square-zero nullho-
motopy for the multiplication by w and w′, respectively, the morphism

QM� ⊗S� QN�
∼= M�

L

⊗S� N� −→ M� ⊗S� N�
∼= Q(M� ⊗S� N�)
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in D(K∗w+w′) need not be representable by a morphism of K∗w+w′ -modules Q(M�) ⊗S�

Q(N�) → Q(M� ⊗S� N�), but only by a roof between these modules. This is why we didn’t
succeed in constructing it directly in Section 2.5. ♦

I Duality for modules over the Koszul resolution

We know from Theorem G.6 that fold : Db,b
fr,fg(K∗w)/Perf ∼= HMF(S�, w) and from Definition

4.1.5 and Fact 4.1.6 that HMF(S�, w) admits a duality (−)◦ compatible with the usual
duality HomS�/(w)(−, S�/(w))� on MCM(S�, w). It is therefore natural to ask what the
duality on Db,b

fr,fg(K∗w)/Perf obtained from pulling back (−)◦ along fold looks like, and whether
it admits a lifting to a duality on Db,b

fg (K∗w). In this section we will see that such a lifting exists
and is given by component-wise dualizing a dg-module over K∗w (for the precise definition,
see Definition I.1). This coincides with the duality established by Frankild and Jørgensen
in [FJ03]; they defined the notion of a Gorenstein dg-algebra in terms of the existence of
a duality and established the Gorensteinness of Koszul algebras over Gorenstein local rings
(for arbitrary sequences in the maximal ideal).

Definition I.1 The dual of a K∗w-module M∗� , denoted D(M)∗� , is the K∗w-module defined
by

D(M)n� := HomS(M−(n+1)
� , S�)�〈−d〉.

Its differential is given by (.f) := (−1)n+1f ◦ d−(n+2)
M∗�

for f ∈ D(M)n� , and the action of s
is given by s.f := (−1)nf ◦ s. This gives a contravariant endofunctor on the category of
K∗w-modules.

Definition I.1 coincides with the duality induced by HomK∗w
(−,K∗w)∗� :

Fact I.2 Let M∗� be a K∗w-module. Then there is a natural isomorphism of K∗w-modules

D(M)∗� ∼= HomK∗w
(M∗� ,K

∗
w)∗� .

Proof. An element of HomK∗w
(M∗� ,K

∗
w)nk is given by a diagram

... M−n−2
� M−n−1

� M−n� M−n+1
� ...

... 0 S�〈−d〉 S� 0 ...

s s s s s

α β

id

where each vertical map raises the internal degree by k and where each square commutes up to
the sign (−1)n. This forces β = (−1)nα◦s, while α can be chosen freely in HomS(M−n−1

� , S�)k.
Hence we have a canonical isomorphism

HomK∗w
(M∗� ,K

∗
w)nk ∼= D(M)nk ,

and it is easily checked that this isomorphism is compatible with the differential and the
action of K∗w on both sides (see Definition B.2). �

Fact I.3 The duality functor

HomK∗w
(−,K∗w)∗� = D : K∗w-Mod→ K∗w-Mod

takes quasi-isomorphisms between bounded above, S�-freeK∗w-modules to quasi-isomorphisms.
Therefore, its derived functor

RHomK∗w
(−,K∗w)∗� : D(K∗w) −→ D(K∗w)
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may be computed naively on the subcategory D−,−fr,fg(K∗w), and the diagram

Db
fg(K∗w) Db

fg(K∗w)

Db,b
fr,fg(K∗w) Db,b

fr,fg(K∗w)

RHomK∗w
(−,K∗w)∗�

D

incl ∼= incl∼=

is well-defined and commutative up to natural isomorphism.

Proof. It is clear that D◦ [1] ∼= [−1]◦D and that D(Cone(α)) ∼= Cone(D(α)) for a morphism
α of K∗w-modules. Thus, to prove the first statement we only have to check that the dual of
an acyclic, bounded above and S�-free is acyclic. However, such a module is contractible as a
complex of S�-modules, and so is its component-wise S�-dual. This proves the first statement,
and the second statement is an immediate consequence. �

Proposition I.4 The following diagram commutes up to natural isomorphism:

Db,b
fr,fg(K∗w) Db,b

fr,fr(K
∗
w)

HMF(S�, w) HMF(S�, w)

D

(−1)◦

fold fold

Proof. For F ∗� ∈ Db,b
fr,fg(K∗w) we have

(fold(F ∗� ))◦ =

(⊕
n∈Z

F 2n
� 〈−nd〉 −→

⊕
n∈Z

F 2n−1
� 〈−nd〉 −→

⊕
n∈Z

F 2n
� 〈−nd〉

)◦

=

(⊕
n∈Z

(
F 2n−1

�

)? 〈(n− 1)d〉 −→
⊕
n∈Z

(
F 2n

�

)? 〈(n− 1)d〉 −→
⊕
k∈Z

(
F 2n−1

�

)? 〈(n− 1)d〉

)

=

(⊕
n∈Z

D(F ∗� )2n
� 〈−nd〉 −→

⊕
n∈Z

D(F ∗� )2n−1
� 〈−nd〉 −→

⊕
n∈Z

D(F ∗� )2n
� 〈−nd〉

)
= fold (D(F ∗� )) . �

Proposition I.5 For w 6= 0, the following diagram commutes up to natural isomorphism:

Db
fg(S�/(w)) Db

fg(S�/(w))

Db,b
fr,fg(K∗w) Db,b

fr,fr(K
∗
w)

D

RHomS�/(w)(−, S�/(w))∗�

∼=−
L

⊗K∗w S�/(w) ∼= −
L

⊗K∗w S�/(w)

Proof. By Fact I.3 it suffices to show that the diagram

Db
fg(S�/(w)) Db

fg(S�/(w))

Db
fg(K∗w) Db

fg(K∗w)
RHomK∗w(−,K∗w)∗�

RHomS�/(w)(−, S�/(w))∗�

∼=−
L

⊗K∗w S�/(w) ∼= −
L

⊗K∗w S�/(w)
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commutes up to natural isomorphism. To prove this, we note that for M∗� ∈ D(K∗w) we have
a natural isomorphism in D(S�/(w))

RHomS�/(w)

(
M∗�

L

⊗K∗w S�/(w), S�/(w)
)∗

�

∼= RHomK∗w

(
M∗� , K∗wS�/(w)

)∗
�
. (I-1)

Further, we have a natural isomorphism in D(K∗w):

RHomK∗w

(
M∗� ,K∗w S�/(w)

)∗
�
∼= RHomK∗w

(M∗� ,K
∗
w)∗� (I-2)

Putting (I-1) and (I-2) together, we see that the composition

Db
fg(K∗w)

−
L

⊗K∗wS�/(w)
−−−−−−−−−→ Db

fg(S�/(w))
RHomS�/(w)(−,S�/(w))∗�−−−−−−−−−−−−−−−−→ Db

fg(S�/(w)) −→ Db
fg(K∗w)

is naturally isomorphic to

Db
fg(K∗w)

RHomK∗w (−,K∗w)∗�−−−−−−−−−−−−→ Db
fg(K∗w)

so the claim follows. �

Together, Propositions I.4 and I.5 yield the following compatibility of stabilization and
duality:

Theorem I.6 For w 6= 0 the following diagram commutes up to natural isomorphism:

Db
fg(S�/(w)) Db

fg(S�/(w))

HMF(S�, w) HMF(S�, w)

RHomS�/(w)(−, S�/(w))∗�

(−1)◦

stab stab

Remark I.7 Theorem I.6 generalizes Proposition 4.2.1 for if M� is Cohen-Macaulay module
over S� with defect n := dim(S�) − depth(M�), it is also Cohen-Macaulay over S�/(w) with
defect n− 1, and hence we have

RHomS�/(w)(M�, S�/(w))∗� ∼= Extn−1
S�/(w)(M�, S�/(w))�[−n+ 1] ∼= ExtnS�

(M�, S�)�[−n+ 1]

as claimed (for the last isomorphism, see [BH93, Lemma 3.1.16])). Thus, the Cohen-
Macaulay modules over S� enter because they are precisely the modules M� for which
RHomS�/(w)(M�, S�/(w))∗� is concentrated in a single degree. ♦
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