Program: Seminar on group cohomology WS 2023/24, On Tuesdays 14:15-15:45, Room N000.7

1 10.10.23 Jacqueline Sifft	Group rings and group (co-)homology : Sections 1.1.1 and 1.1.2 in [L], bar and simplicial resolution [L, Sec. 1.2.1], group (co-)homology with coefficients in a $\mathbb{Z}G$ -module, functoriality in the group and the module [L, Sec. 1.2.2]
2 17.10.23 Lucces Cecchino	Low-dimensional examples : Description of H_0 and H^0 as (co-)invariants [L, Sec. 1.3], H_1 and H^1 as abelianisation and homomorphisms [L, Secs. 1.4.1 and 1.4.2], H^2 via abelian extensions [L, Thm 1.5.10 and Cor. 1.5.12]
3 24.10.23 Tobias Schmid	Group (co-)homology via projective resolutions : Sections 1.6.1 and 1.6.2 in [L], Examples: (co-)homology of finite cyclic groups [L, Cor. 1.6.13] and free groups [L, Cor. 1.6.23]
4 31.10.23 Jannek Müller	Classifying spaces 1 : BG, EG and their properties [L, Sec. 4.1.1], classifying spaces and their uniqueness [L, Thms 4.1.10 and 4.1.11]
5 7.11.23 Yordan Toshev	Classifying spaces 2 : Examples [L, Ex. 4.1.16 - 4.1.20] and (possibly) [L, Thm. 4.1.13], group (co-)homology via classifying spaces [L, Sec. 4.1.4]. Application: If BG is finite dimensional, then G is torsion-free
6 14.11.23 Ids Dankert	Derived functors : universal property, group (co-)homology via derived functors, expression in terms of Tor and Ext [L, Secs. 3.1.1-3.1.5] (see also [B, Secs. III.0-2])
7 21.11.23 Fynn Noah Wedek	Transfer maps : Definition of transfers, double coset formula [B, Sec. III.9], Applications: The (co-)homology of finite groups G is $ G $ -torsion [B, Cor. III.10.2], detection of cohomology by Sylow subgroups [B, Thm. III.10.3]
8 28.11.23 Bastian Rittmeyer	Product structures : The cross-product in homology and the cup-product in cohomology. Kuenneth theorems. [B, Secs. V.1-3] The cohomology ring $H^*(G)$. Example: the cohomology ring of cyclic groups.
9 5.12.23 Hannah Geron	Tate cohomology of finite groups: Definition and properties [B, Sec. VI.1-5]
10 12.12.23 Sven Ulf Schmitz	Free actions on spheres I: Theorems IV.4.1 and IV.4.3 in [B] on classifications of p -groups with a cyclic subgroup of index p or a unique subgroup of order p , see also [L, Sec. 1.6.3].
11 19.12.23 Emanuele Cortinovis	Free actions on spheres II : Theorems 4.3.7 and 4.3.3 in [L], see also [B, Sec. VI.9] on periodic cohomology rings
12 9.1.24 Melvin Weiβ	Cohomological dimension : Algebraic definition of cohomological dimension [B, Sec. VIII.2] and its (more or less) equality to the geometric dimension [B, Thm. VIII.7.1 and Cor. VIII.7.2]

13 16.1.24 Praneet Srivastava	Geometric group theory and bounded cohomology I: Word metric, Cayley graph and quasi-isometries [L, Sec. 2.1.1], amenable groups [L, Sec. 2.1.2]; definition of bounded cohomology [L, Sec. 2.3.1] and its application to amenability [L, Thm. 2.3.10]
14 23.1.24 Oleksandr Kharchenko	Geometric group theory and bounded cohomology II: Applications of bounded cohomology: Quasi-morphisms [L, Sec. 2.3.3] and stable commutator length [L, Sec. 2.3.4]
15 30.1.24 Jaime Guerrero	(Co-)homology of amalgamated products [B, Sec. II.7] Amalgamated prod- ucts, realization through $K(\pi, 1)$'s [B, Thm. 7.3] and the associated Mayer-Vietoris sequence [B, Cor. 7.7]; Application: Homology of $SL_2(\mathbb{Z})$ [B, Ex. 3, Section II.7] (also consider the cohomology ring); trees and amalgamations [B, Appendix].

References

[[]B] K. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.

[[]L] C. Löh. Group cohomology. Lecture notes, available at http://www.mathematik.uniregensburg.de/loeh/teaching/grouphom_ss19/.