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Abstract

We give an algorithm for constructing a filtration of any vector bundle
with rank 2 on P1

A, where A is an Euclidean domain. All the quotients of this
filtration are linear bundles. In other words, the algorithm takes any invertible
2-matrix σ over A[x, x−1], and gives 2-matrices λ over A[x] and ρ over A[x−1]
such that the product λσρ is an upper triangular matrix.
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Introduction

We study vector bundles on the arithmetic surface P1
A, where A is a Dedekind

domain. In the case when A is a Euclidean domain, we give an algorithm for
constructing a linear filtration for the rank 2 vector bundles. Our construction uses
the ideas of Hanna’s proof of the existence of such filtrations; see [1].

The study of vector bundles over arithmetic surfaces, for instance on P1
Z, may

be regarded as a synthesis of algebraic theory of vector bundles and theory of vector
bundles over compactified curves. Our work is one of the steps toward studying
vector bundles on the compactification of P1

Z.
It would be interesting to obtain an interpretation of the results in the spirit

of Parshin’s works on higher Bruhat–Tits trees and vector bundles over algebraic
surfaces (see, for example, [2]). In the one-dimensional case, this approach is due to
Serre (see [4]).
∗Laboratory of Algebra and Number Theory, PDMI
†Chebyshev Laboratory, St. Petersburg State University
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1 General considerations

We shall study vector bundles over P1
A for a Dedekind domain A, in particular for

A = Z. It is instructive and more natural to state a few results in greater generality.
Thus let A be a Noetherian commutative ring.

We write usually O and O(d) instead of OX and OX(d) for a suitable scheme
X, especially if X can be easily specified. As usual, let

P1
A = ProjA[t0, t1], deg t0 = deg t1 = 1.

In addition, O(U0) = A[x], O(U1) = A[x−1], and O(U01) = A[x, x−1], where
x = t1/t0, Ui denotes the complement to the zero locus of ti, and U01 = U0 ∩ U1.

1.1 Basic results

We shall start with a brief review of vector bundles on P1
A.

1.1.1 Theorem (Grothendieck, [6]). Let F be a field. Any vector bundle on P1
F is

isomorphic to a sum of line bundles with uniquely defined summands.

Line bundles can be described as follows:

1.1.2 Theorem (EGA, [?]). Any line bundle on Pn
A is isomorphic to a bundle of

the form p∗L⊗O(d), where L is a line bundle on SpecA and p : Pn
A → SpecA is a

structure morphism.

In particular, any line bundle on P1
F is isomorphic to O(d) for some d ∈ Z.

Note that the situation for A = Z is more complicated. More generally, for
certain Dedekind domains A, there exist indecomposable rank 2 vector bundles on
P1

A (see [3], [8]). It is an open question whether any vector bundle on P1
A for a

Dedekind ring A admits a filtration with linear bundles as quotients. Let us cite a
few known results in this direction.

1.1.3 Theorem (Hanna, [1]). Let A be a PID, and let E be any vector bundle on
P1

A. Then E has a filtration

0 ⊆ E0 ⊆ E1 ⊆ . . . ⊆ Et = E

such that Ei/Ei−1 is a line bundle when i < t and Et/Et−1 has rank at most two.

The question is answered completely for any Euclidean ring.

1.1.4 Theorem (Hanna, [1]). Let A be a Euclidean domain, and let F be any vector
bundle on P1

A. Then F has a filtration

0 = F0 ⊆ F1 ⊆ . . . ⊆ Fn = F

such that Fi/Fi−1 is a line bundle (1 ≤ i ≤ n = rkF ).

In particular, every bundle on P1
Z admits a filtration with linear bundles as a

quotients.
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1.2 Gluing

Let A be a PID, and let σ ∈ GLn(A[x, x−1]). To σ one associates a vector bundle
on P1

A as follows: E
∣∣
U0

= Oe1 + · · ·+Oer, E
∣∣
U1

= Of1 + · · ·+Ofr, and

[e1, . . . , er]σ = [f1, . . . , fr] (1)

over U01, so that fj =
r∑

i=1

σi,jei.

By the Quillen–Suslin Theorem, every finitely generated projective A-module is
free, thus any vector bundle of rank r on P1

A can be obtained in that way. In this
case, the isomorphism class of such bundle is an element of the double quotient

Vectr(P1) = GLr(A[x])�GLr(A[x, x−1])�GLr(A[x−1]). (2)

1.3 Notation

1.3.1. Let F be a functor from the category of A-algebras. We set

Fxy = F (A[x, y]), Fx = F (A[x]), and Fy = F (A[y]).

Throughout this paper, we will use the following notation:

G = GLr The group of invertible r × r matrices
M = Mr,r The algebra of r × r matrices
T The set of diagonal matrices in G
B The standard Borel subgroup (upper-triangular matrices) in G

Let T be a set of variables. A row vector over A[T ] is said to be a T -row. A
column vector over A[T ] is called T -column. Moreover, a T -row (T -column) is said
to be a T -unimodular row (T -column) if it is unimodular over A[T ].

1.3.2. Let ω = (ωi,j) be an n × n matrix, where n ≥ 1. By θi,j we denote the
cofactor of ωi,j. Set θ = (θi,j). Then we define θt, the transpose of θ, to be the
adjugate of ω, and we denote it by ω∗.

The product of ω with its adjugate yields a diagonal matrix whose diagonal
entries are det(ω). More explicitly,

ωω∗ = det(ω)In,

where In is the n× n identity matrix.

1.3.3. Normalization. Let α be a nonzero xy-row and let α/x∗ be an x-row defined
by

α/x∗ = α/xn, (3)

where n is the largest integer such that α/xn is an x-row.
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In this situation, we say that α/x∗ is an x-normalization of α. We define a
y-normalization map α 7→ α/y∗ likewise.

Let ω ∈Mxy be a matrix with at least one nonzero element in every row.
Then set

ω/x∗ = (ωi,∗/x
∗), and ω/y∗ = (ωi,∗/y

∗), i = 1, . . . , r , (4)

where ωi,∗ is the ith row of ω.
Suppose A = Z. For an example of an x-normalization, consider the matrix

ω =

[
2y3 3x+ 4y2

5y4 6x5

]
.

Then we have

ω/x∗ =

[
2 3x4 + 4x
5 6x9

]
, and ω/y∗ =

[
2y4 3 + 4y3

5y9 6

]
.

1.3.4. Let K be the fraction field of A. By vx and vy we denote valuations

vx, vy : K(P1
K)∗ → Z

corresponding to the points x = 0 ∈ P1
K and y = 0 ∈ P1

K , respectively.
For instance, we have vx(x2 + x3) = 2, and vy(x2 + x3) = −3.

1.4 Euclidean rings

In this section, we recall briefly some basic facts about Euclidean rings (see [?]).

1.4.1. Definitions and notational conventions. A domain A is called Euclidean
if there exists a map ht : A→ {0, 1, . . .} satisfying the following conditions:

(i) ht(a) = 0 iff a = 0.

(ii) If a, b ∈ A − {0}, then there exist q, r ∈ A such that a = bq + r, where
ht(r) < ht(b).

(iii) If b divides a 6= 0 then ht(a) ≥ ht(b).

(iv) ht(1) = 1.

For instance, the ring Z becomes Euclidean if one defines ht(a) = |a|. Another
important example of a Euclidean domain is the ring of polynomials F [x] over a
field F . In this case, we define ht(f(x)) = 2deg f(x) (where it is understood that
deg 0 = −∞).

Given a Euclidean domain A, we will assume that ht function is fixed .
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1.4.2. [a/b] operation. Let A be a Euclidean domain. By the above definition, if
a, b ∈ A−{0} then there exists q ∈ A such that a = bq+r, where ht(a−bq) < ht(b).

Define [a/b] by the formula
[a/b] = q.

Of course, q is not uniquely determined in general.

1.4.3. Height of a row. Given an ideal I in a Euclidean domain A, we set

ht(I) = ht(a),

where (a) = I. It follows easily that the function ht is well-defined.
Let (a1, . . . , an) be a row vector over A. We set

ht(a1, . . . , an) = ht(I),

where I is the ideal generated by the a1, . . . , an.

1.4.4. Row reduction. Let a = (a1, . . . , an), b = (b1, . . . , bn) be non-zero row
vectors over A. Suppose that a and b are linearly dependent, i.e. aibj = ajbi,
(i, j = 1, . . . , n). Then [a/b] is defined by the formula

[a/b] := [u/v],

where u and v are the generators of the ideals (a1, . . . , an) and (b1, . . . , bn), respec-
tively, such that

aiv = ubi, (i = 1, . . . , n). (5)

Notice that the definition of [a/b] has an arbitrariness caused by the arbitrariness
of the operation [u/v] (see 1.4.2). However, [a/b] is actually independent of the choice
of u and v satisfying the condition (5).

In terms of [a/b] one defines a row vector r = (r1, . . . , rn) by the formula:

(r1, . . . , rn) := (a1, . . . , an)− [a/b](b1, . . . , bn).

We have
ht(r1, . . . , rn) < ht(b1, . . . , bn).

2 Reduction algorithm

Throughout the remainder of this paper, A is a Euclidean domain (see 1.4) and

r = 2,

where r = rk(E), and E is a vector bundle on P1
A.

We shall construct an algorithm for reducing invertible matrices over A[x, x−1]
to upper triangular form. In other words, for any E we shall construct an exact
sequence:

0→ L1 → E → L2 → 0, (6)
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where the Li are linear bundles on P1
A.

Geometrically, we need to find a linear bundle L and a map L → E, which
is nowhere zero. In other words, this is equivalent to showing that the projection
P(E)→ P1

A admits a section, where P(E) is the projectivization of E.

Let σ be a matrix in Gxy. The algorithm takes σ, and gives matrices λ ∈ Gx

and ρ ∈ Gy such that their product λσρ is an upper triangular matrix, i.e.

λσρ =

[
∗ ∗
0 ∗

]
,

where by ∗ we denoted elements of A[x, y]. In the notation of 1.3.1, we write

λσρ ∈ Bxy. (7)

2.1 Algorithm description

Our goal in this section is to introduce x-reduction and y-reduction routines. The
reduction to upper triangular form can be done by performing the above mentioned
routines, one after the other.

The x-reduction routine takes σ ∈ Gxy as input and gives a matrix λ ∈ Gx such
that

λσ is y-special (see the definition in 2.2.1). (8)

The y-reduction routine takes matrices σ ∈ Gxy and λ ∈ Gx satisfying (8), and
gives a matrix ρ ∈ Gy such that the equality (7) holds.

Thus in order to reduce σ ∈ Gxy we have to apply the x-reduction to σ, this step
gives an input for the y-reduction. Applying the y-reduction to σ and λ ∈ Gx, we
obtain the desired decomposition (7).

Let us remark that we will work with rows below. It is perhaps more natural to
work with columns in the setting of vector bundles. Then the presented algorithm
may be modified accordingly. In this case, one should start with constructing a
matrix ρ ∈ Gy.

2.2 y-special matrices

For any σ ∈ Gxy, we expect to be able to construct matrices λ ∈ Gx и ρ ∈ Gy such
that

λσρ ∈ Bxy.

Let σ ∈ Gxy be a given matrix, and let λ ∈ Gxy be a result of its x-reduction.
Thus it will be important for our purposes to determine, whether the following

condition
λσ ∈ BxyGy (9)
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holds.
Let us introduce the class of y-special matrices.

2.2.1 Definition. Let α be an xy-row. Then α is called y-special if the following
conditions are satisfied:

(i) α is xy-unimodular.

(ii) α/y∗ is y-unimodular (see (3)).

A matrix ω ∈ Gxy is said to be y-special if ω2,∗ is y-special.

By definition, any y-special matrix satisfies (9).

2.2.2. Speciality verification. Note that it can be very complicated to verify
that a given row vector α over A[x, y] is xy-unimodular. In our case, the latter
condition holds for every α such that α is a row of a matrix in Gxy. Indeed, it
follows from the completability of the row α to a matrix in Gxy. Thus we have only
to determine whether an xy-unimodular row is y-special. But the latter is equivalent
to the following condition:

α/y∗ (mod y) is a unimodular row over A. (10)

The last assertion follows from the observation that the open set U1 and the zero
locus of t1 ∈ Γ(P1

A,O(1)) form a cover of P1
A (see §1).

2.2.3 Examples. Using the condition (10) we see that the matrix

ω =

[
2y 5
1 2x

]
is not y-special.

In the case
ω =

[
2x 5
1 2y

]
,

we obtain ω2,∗/y
∗ (mod y) =

[
1, 0

]
. Hence, the y-speciality holds for ω.

Let us consider the matrix

ω =

[
−2x3 + 1 4x2

−x4 2x3 + 1

]
.

Since ω2,∗/y
∗ =

[
−1, 2y + y4

]
is unimodular over Z[y], it follows that ω is y-special.

2.3 x-reduction

We next wish to find λ ∈ Gx such that the product λσ, where σ ∈ Gxy, is y-special.
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2.3.1. Description. We sketch the main steps of the x-reduction procedure. We
start by forming an initial λ. Note that if λ is in Gx then the x-reduction is finished.
Otherwise we have to modify λ. To shorten notation we denote by R1 and R2

modifications of the first and second row of λ (see 2.3.3 and 2.3.4), respectively.
The remainder of the x-reduction can be done by performing R1 and R2 sub-

routines until the modified λ is invertible over A[x]. Let us remark that we are not
required to store old λ’s. By abuse of notation, the modified λ will again be denoted
by λ.

Thus the x-reduction routine can be represented with the following diagram.

��
��

-begin initialize λ - ��
��
endvx(detλ) = 0 -yes

?no

ht(λ1,∗(0)) ≥ ht(λ2,∗(0)
6

yes
6
no

R1

��
��*

R2

HH
HH Y

The initial λ is a matrix characterised by these properties:

λ ∈ Gxy; (11)

λ ∈Mx; (12)

λ1,∗(0) 6= [0, 0]; λ2,∗(0) 6= [0, 0]; (13)

λσ is y-special. (14)

Where by λi,∗(0) we denoted the evaluation of λi,∗ at the point x = 0.

The x-reduction ends after a finite number of steps. In order to check this, we
have to control the functions vx(detλ), ht(λ1,∗(0)), and ht(λ2,∗(0)).

In fact, later we shall see that

R2 strictly decreases ht(λ2,∗(0)); (15)
R1 leaves ht(λ2,∗(0)) unchanged; (16)
R1 does not increase vx(detλ); (17)
R1 decreases either ht(λ1,∗(0)), or vx(detλ). (18)

Also note that R1 leaves λ2,∗ unchanged, and it may happen that R1 increases
ht(λ1,∗(0)). Furthermore, R2 does not change the first row of the matrix λ, and
increases vx(detλ).

It follows from the properties (15) and (16) that R2 can not be executed more
than h2 times, where h2 = ht(λ2,∗(0)). Furthermore, R1 can be executed only a
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finite number of times. Indeed, this follows from the properties (17) and (18). Con-
sequently, the x-reduction process can always be completed in a finite number of
steps.

The reason, why the x-reduction succeeds (see 2.3) goes as follows. Roughly,
if the matrix λ becomes invertible over A[x] then the x-reduction process is done.
Otherwise, the rows of λ(0) are linearly dependent. Consequently, we can apply the
Euclidean algorithm.

More precisely, later we shall see that

R1 preserves the properties (11), (12), and (14); (19)
R2 preserves the properties (11), (12), and (14). (20)

We have seen (see the x-reduction flowchart) that the x-reduction is done when-
ever the condition vx(detλ) = 0 holds. From the latter condition, (11), and (12) it
follows that λ ∈ Gx.

Since the property (14) holds for λ, we see that the x-reduction process succeeds.

2.3.2. Initialization of λ. The matrix σ∗/x∗, where σ∗ is the adjugate to σ (see
1.3.2), satisfies (11), (12), (13), and (14). Moreover, it is evident that σ∗/x∗σ ∈ Txy.
Then we set

λ := σ∗/x∗.

Note that the choice of an initial λ is not unique.

2.3.3. R1: modification of the first row of λ. The R1 process modifies the first
row of λ, whereas the second row of λ remains unchanged. Also, the input of R1

consists of a matrix λ such that the conditions (11), (12), and

vx(detλ) 6= 0 (21)

hold.
It follows from (12) that the row λ(0) is well-defined. Besides, since λ satisfies

(21), we see that λ(0) = 0, i.e. the rows λ1,∗ and λ2,∗ are linearly dependent. Hence,
we can compute [λ1,∗/λ2,∗] (see 1.4.4).

R1 replaces λ1,∗ with the row [λ1,∗/λ2,∗].
The final step of R1 is the x-normalization of the modified matrix. More accu-

rately, if λ1,∗(0) = [0, 0] then we have to apply the x-normalization. As mentioned
before, it might happen that the height of the first row of the modified is increased.
But in the latter case, vx(detλ) decreases.

More explicitly, we describe steps of R1 by the following formulas:

λ1,∗ := λ1,∗ − [λ1,∗(0)/λ2,∗(0)]λ2,∗; (22)
λ1,∗ := λ1,∗/x

∗ (see (1.3.3)). (23)

It is easily shown that R1 has the properties (16), (17), (18), and (19) considered
before. This is an immediate consequence of the above description. For instance,
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since R1 does not change λ2,∗, we see that the second row of the product λσ remains
unchanged.

Finally, R1 is done as soon as the following inequality

ht(λ1,∗) < ht(λ2,∗) (24)

is satisfied. Thus, we have to modify the second row of λ.

2.3.4. R2: modification of the second row of λ. We shall decrease the height
of the second row of λ in order to make λ2,∗(0) unimodular. The main problem we
encounter is the fact that a modification of the second row of λ changes the second
row of the product λσ. In other words, we need to ensure that the modified λ is a
y-special matrix.

We change the limiting behaviour of λ2,∗ as x→ 0, whereas the behaviour of λ2,∗
will remain unchanged. Precisely the latter behaviour affects the y-speciality.

We describe steps of R2 by the following formulas:

n := max{1, vy(λ2,∗σ)− vy(λ1,∗σ) + 1}; (25)
λ2,∗ := xnλ2,∗ + λ1,∗. (26)

Let us remark that in (26) one may choose any positive n ∈ Z sufficiently large.
The R2 subroutine works with the matrix λ and vy(λ2,∗σ), vy(λ1,∗σ) ∈ Z. In this

case, it is more natural to consider that R2 uses λ and σ, whereas R2 modifies only
the second row of λ. Note that the matrix σ remains unchanged.

R2 clearly has the properties (15) and (20). This is an immediate consequence of
the R2 subroutine description. For instance, (15) follows from (24) and the positivity
of n. Since n > vy(λ2,∗σ) − vy(λ1,∗σ), we have that the product λσ satisfies (14)
after the modification of λ. The latter statement is a part of (20).

2.4 y-reduction

It should be pointed out that although the Euclidean condition is not necessary to
the following procedure, the Euclidean algorithm may be helpful. Moreover, it is
sufficient to require A to be a principal ideal domain.

As already noted in 2.1, the y-reduction routine takes as input σ ∈ Gxy and
λ ∈ Gx such that the y-speciality condition (see 2.2.1) holds for λσ. The resulting
output ρ ∈ Gy satisfies λσρ ∈ Bxy, i.e.

λσρ =

[
∗ ∗
0 ∗

]
,

where by ∗ we denoted arbitrary elements of A[x, y].

2.4.1. y-reduction description. Consider the y-normalization of λσ: namely, set

η := (λσ)/y∗ ∈My.
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Recall that the y-normalization operation is introduced in 1.3.3. Thus we have

λσ = δη, where δ ∈ Txy.

Since the matrix λσ is y-special, the second row of η is y-unimodular by defi-
nition. Assume now that η2,∗ is completed to a matrix θ ∈ Gy. Let ρ be defined
by

ρ = θ−1.

In this case, we have a chain of equalities

λσρ = δηθ−1 = δ

[
∗ ∗
0 1

]
=

[
∗ ∗
0 ∗

]
,

so that λσρ is upper triangular, as desired. This follows immediately from the fact
that the second row of ηθ−1 depends only on the second row of η. Thus the second
row of ηθ−1 coincides with the second row of the product θθ−1 = 1.

Consequently, to reduce σ to upper triangular form, it suffices to find such θ.
For this reason, we introduce a y-reduction routine.

It remains to complete given y-unimodular row to an invertible matrix over A[y].
The construction uses one of the subroutines E and S which will be introduced in
Sections 2.4.2 and 2.4.3 below. Note that it is far more convenient to deal with the
matrix η instead of working only with η2,∗.

The E subroutine requires A to be a Euclidean domain. In fact, it is based on
the R1 subroutine introduced in 2.3.3.

On the other hand, given any A-unimodular row, it can be completed to an
invertible matrix over A. The latter observation gives rise to the S subroutine.

2.4.2. E: completing η2,∗ to θ ∈ Gy. A is assumed here to be a Euclidean do-
main. Let η be a matrix over A[x] such that η ∈ Gxy, η1,∗(0) 6= [0, 0], and η2,∗ is
y-unimodular. The E subroutine takes such η as input. The structure of E can be
represented with the following diagram:

��
��

-begin initialize θ - ��
��
endvy(det θ) = 0 -

yes

?no

R1

6

�

θ can be initialized as follows
θ = η.

The description of R1 in 2.3.3 can easily be modified: namely, we replace λ by η
and x by y. In this case, by η(0) we denoted the evaluation of η at the point y = 0.

Moreover, E can be executed only a finite number of times by the arguments
given above (see the end of 2.3.3). It is readily verified that the resulting matrix θ
has the desired properties.
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2.4.3. S: completing a y-row η2,∗ to θ ∈ Gy. Let A be a PID in which every
unimodular row is completable. Let η be a matrix over A[x] such that η ∈ Gxy,
η1,∗(0) 6= [0, 0], and η2,∗ is y-unimodular.

We construct θ as follows

θ = αγ, where γ ∈ G(A). (27)

First note that γ can be obtained by completing the unimodular row η2,∗(0) to
an invertible matrix over A.

Further, define the initial α by

α = ηγ−1. (28)

Note that
α(0) =

[
∗ ∗
0 1

]
,

where by ∗ we denoted arbitrary elements of A. We also note that γ was introduced
for reducing α(0) to such form. It remains to modify α to obtain an invertible
matrix. We introduce the following steps:

(i) Let α =

[
a b
c d

]
.

(ii) Then set

α := α1/y
∗, where α1 =

[
a− b(0)c b− b(0)d

c d

]
.

More precisely, we have to repeat the process until α is not invertible. In other
words, one has to check whether vy(detα) = 0 before entering the loop body. Finally,
to find η, we use the resulting α and (27).

The same arguments as in 2.3.3 can be employed to prove the finiteness of the
described process.

2.5 Examples of constructed filtrations

Let A = Z and ht(n) = |n| (see 1.4 for the definition). We shall now consider three
examples. In order to illustrate a work of the algorithm, Example 2.5.1 is analyzed in
detail. In the second example we demonstrate a slight modification of the algorithm
(according to the remark in 2.3.4). Finally, we sketch more complicated Example
2.5.3.

2.5.1. Let E be a vector bundle defined by the gluing matrix

σ =

[
2x−1 5

1 2x

]
.

12



We now apply the algorithm to σ (see 2). We start by performing the x-reduction
to construct λ. In this case, the initial λ is defined by (see the flowchart 2.3.1 and
2.3.2):

λ = σ∗/x∗ =

[
2x −5
−1 2x−1

]
/x∗ =

[
2x −5
−x 2

]
. (29)

Here we have detλ = −x and vx(detλ) = 1. Hence, the condition vx(detλ) = 0 is
not satisfied.

Therefore we have to check whether the following inequality holds

ht(λ1,∗(0)) ≥ ht(λ2,∗(0)) (see the flowchart in 2.3.1).

Evaluating the rows of λ at the point x = 0, we see that the latter condition is
satisfied (namely, 5 ≥ 2). Hence, we have to apply the R1 subroutine (see 2.3.3).

Further, choose generators u = −5, v = 2 of the ideals (0,−5) and (0, 2), respec-
tively. They agree in the sense of (5). Now choose [u/v] to be equal −2.

Thus, we have

[λ1,∗(0)/λ2,∗(0)] = [[0,−5]/[0, 2]] = −2.

By applying the formulas (22) and (23) to λ (see (29)), we get a new λ, namely this
can be done as follows:

R1 :

[
2x −5
−x 2

]
md
 

[
0 −1
−x 2

]
/x∗ =

[
0 −1
−x 2

]
, (30)

where by md we mean the modification of λ by adding the second row multiplied
by 2 to the first row of λ.

We now continue the preceding construction by verifying the conditions in the
diagram depicted in 2.3.1. The verification shows that we have to perform the R2

subroutine (see 2.3.4). As a first step, we compute

λσ =

[
0 −1
−x 2

] [
2x−1 5

1 2x

]
=

[
−1 −2x
0 −x

]
.

In this case, we have

max{1, vy(λ2,∗σ)− vy(λ1,∗σ) + 1} = max{1, (−1)− (0) + 1} = 1,

and we set
n = 1. (31)

We obtain a new λ by applying the formula (26) to the matrix λ computed in
(30). More explicitly, a modified λ is constructed as follows:

R2 :

[
0 −1
−x 2

]
 

[
0 −1
−x2 −1 + 2x

]
,

i.e. the second row multiplied by xn = x is added to the first row.
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The remainder of the x-reduction routine will be sketched by the following chain
of modifications:[

0 −1
−x2 −1 + 2x

]
R1 

[
x −2
−x2 −1 + 2x

]
R1 

[
1 + 2x −4
−x2 −1 + 2x

]
. (32)

We see that detλ = −1 and vx(detλ) = 0, where λ is given by the right hand side
of (32). Consequently, the desired λ is constructed.

Our next goal is to find ρ (see the beginning of 2.1). To begin the y-reduction
(see 2.4), we set

η = (λσ)/y∗ =

[
2y2 5y + 2
−y2 −2y − 1

]
.

Recall that we have to complete the row η2,∗ = [−y2,−2y − 1] to an invertible
matrix θ over A[y]. Since Z is Euclidean, it follows that both subroutines introduced
in 2.4 are applicable in this case.

We first find λ using the S subroutine (see the description in 2.4.3). We have
η(0)2,∗(0) = [0,−1]. Let

γ =

[
−1 0
0 −1

]
.

We start with the initialization of α

α = ηγ−1 =

[
−2y2 −5y − 2
y2 2y + 1

]
.

The remainder of the S subroutine may be depicted as follows.

α =

[
−2y2 −5y − 2
y2 2y + 1

]
 

[
0 −1
y2 2y + 1

]
 

[
y 2
y2 2y + 1

]
 

[
1− 2y −4
y2 2y + 1

]
.

Since the latter matrix satisfies detα = 1, it follows that S is done. Then we have

θ = αγ =

[
−1 + 2y 4
−y2 −2y − 1

]
, and ρ = θ−1 =

[
−1− 2y −4

y2 −1 + 2y

]
.

Thus the matrices λ ∈ Gx and ρ ∈ Gy are constructed, so that we have a
decomposition

σ′ = λσρ =

[
2x−1 5 + 2x
−1 −2x− x2

] [
−1− 2y −4

y2 −1 + 2y

]
=

[
x−2 −1 + 2x−1

0 x2

]
.

In the setting of vector bundles, E fits into the following exact sequence

0→ O(−2)→ E → O(2)→ 0.
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2.5.2. We now consider a bundle E as above, i.e. E is defined by the matrix σ
from 2.5.1. We shall repeat several steps of 2.5.1, but choose a different n in (31) to
illustrate the remark in the description of R2. Set

n = 2. (33)

Then the desired λ can be obtained from the following chain of modifications:[
0 −1
−x 2

]
R2 

[
0 −1
−x3 −1 + 2x2

]
R1 

[
x −2
−x3 −1 + 2x2

]
R1 

[
1 + 2x2 −4x
−x3 −1 + 2x2

]
.

We start the y-reduction by defining

η = (λσ)/y∗ =

[
2y3 5y2 + 2
−y3 −2y2 − 1

]
.

For example, we take γ = −1. Further, α is defined by the formula α = ηγ−1.
We now sketch the remainder of the y-reduction.[
−2y3 −5y2 − 2
y3 2y2 + 1

]
 

[
0 −1
y3 2y2 + 1

]
 

[
y 2
y3 2y2 + 1

]
 

[
1− 2y2 −4y
y3 2y2 + 1

]
.

Since the latter matrix is invertible over A[y], it follows that the desired α is con-
structed. Then we have

θ = αγ =

[
−1 + 2y2 4y
−y3 −2y2 − 1

]
and ρ = θ−1 =

[
−1− 2y2 −4y

y3 −1 + 2y2

]
.

Finally, we obtain a decomposition

σ′ = λσρ =

[
x−3 2x−2 + 1− 2x2

0 x3

]
.

Thus E fits into the exact sequence

0→ O(−3)→ E → O(3)→ 0.

2.5.3. Let E be a vector bundle defined by the following matrix

σ =

[
5 17

2x 7x

]
.

We next define λ = σ∗/x∗. Further computations are sketched as follows.[
7x −17
−2x 5

]
R1 

[
x −2
−2x 5

]
R2 

[
x −2

x− 2x2 −2 + 5x

]
R1 

[
2x −5

x− 2x2 −2 + 5x

]
R1 

R1 

[
4x2 −1− 10x

x− 2x2 −2 + 5x

]
R2 

[
4x2 −1− 10x

4x2 + x3 − 2x4 −1− 10x− 2x2 + 5x3

]
R1 
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[
−x+ 2x2 2− 5x

4x2 + x3 − 2x4 −1− 10x− 2x2 + 5x3

]
R1 

R1 

[
−1 + 10x+ 2x2 − 4x3 −25− 4x+ 10x2

4x2 + x3 − 2x4 −1− 10x− 2x2 + 5x3

]
.

We see that det(λ) = 1. Consequently, λ is constructed. We next compute

λσ =

[
−5 + 2x2 −17− 5x+ 6x2 + 2x3

−2x+ x3 −7x− 2x2 + 3x3 + x4

]
,

and define
η = (λσ)/y∗ =

[
−5y3 + 2y −17y3 − 5y2 + 6y + 2
−2y3 + y −7y3 − 2y2 + 3y + 1

]
.

Taking θ = η and applying the E subroutine, we obtain a chain of modifications[
−5y3 + 2y −17y3 − 5y2 + 6y + 2
−2y3 + y −7y3 − 2y2 + 3y + 1

]
 

[
−y −3y − 1

−2y3 + y −7y3 − 2y2 + 3y + 1

]
 

[
−2y −7y − 2

−2y3 + y −7y3 − 2y2 + 3y + 1

]
 

[
−4y2 −14y2 − 4y − 1
−2y3 + y −7y3 − 2y2 + 3y + 1

]
 [

−2y2 − 4y + 1 −7y2 − 16y − 1
−2y3 + y −7y3 − 2y2 + 3y + 1

]
.

It easy to see that the latter matrix is invertible over A[y]; thus the required λ is
constructed. It remains to define ρ by

ρ = θ−1 =

[
−7y3 − 2y2 + 3y + 1 7y2 + 16y + 1

2y3 − y −2y2 − 4y + 1

]
.

An explicit computation shows that E fits into the following exact sequence

0→ O(−3)→ E → O(4)→ 0.

3 Conclusion

It is natural to ask if there exists an algorithm for finding minimal filtrations, or,
equivivalently, given a vector bundle E of rank 2, we wish to find a subbundle L ⊂ E
such that the number 2 degL − degE is maximal. A question arises: whether this
can be done using the introduced algorithm or its slightly modified forms? For
example, an initial λ in 2.3.2 may be chosen in a more careful way.

It is proved in [12] that any vector bundle on P1
Z with the generic fiber O2 and

simple jumps has O(−2) as a subbundle. Example 2.5.1 deals with a bundle E
of such a form. It can be also obtained that O(−1) * E. Thus the constructed
filtration is minimal in the sense defined above.
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1980.
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