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1. Historical remarks, motivation, and notation

My work is mostly concerned with the study of vector bundles on
projective lines over Dedekind domains, the ring of rational integers is
of particular interest. First of all, let me explain the motivation of our
work and recall some related results.

Date: June 2017.
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There are several ways which led us to the question of classification
of bundles over higher-dimensional arithmetic schemes.

1.1. Lattices. Firstly, vector bundles generalize naturally the notion
of a lattice (a finitely generated torsion free module over integral do-
main with an embedding into the vector space over the field of frac-
tions). Despite the fact that the Grothendieck group K(S) of unimod-
ular lattices is quite simple, in fact, it is identified with the subgroup
of Z × Z consisting of such elements (a, b) that a ≡ b (mod 2), the
lattices are among the most interesting objects in mathematics, and
give rise to modular forms, theta functions, Hecke operators and so
on. In the case of higher dimensional schemes, we have to define what
exactly “embedding” should mean. The possible answer is provided by
Arakelov theory. Due to Arakelov, Soulé, Gillet et al. we should study
metrized bundles.

1.2. Amalgams. Second source of motivation goes back to Serre’s
book “Trees”, where he deals with vector bundles over curves and amal-
gamated decompositions of certain “arithmetic” groups. Let me remind
some results from this work.

Theorem 1 (Nagao). The group GL2(k[t]) is the sum of the subgroups
GL2(k) and B(k[t]) amalgamated along their intersection B(k):

GL2(k[t]) = GL2(k) ∗B(k) B(k[t]). (1.1)

For any commutative ring R, we define B(R) as an intersection of
upper triangular matrices with GL2(R).

Theorem 2 (Ihara). The group SL2(Qp) is an amalgam of two copies
of SL2(Zp), the sum is taken over congruence subgroup Γ, first injection
is identical, and second is conjugate.

1.3. Serre’s amplitudes for bundles on curves. Assume for simpli-
city that k is finite or algebraically closed field. Let C be a smooth
projective curve over k, geometrically connected and of genus g. Let
E be a vector bundle of rank two on C, and F ⊂ E be a subbundle of
E of rank 1, so that the quotient sheaf E/F is a bundle. We put

N(E,F ) = deg(F )− deg(E/F ), and N(E) = sup
F
N(E,F ). (1.2)

It follows from Riemann-Roch theorem that

−2g ≤ N(E) < −∞.

Note that if N(E,F ) > 2(g − 1) then F is a direct factor of E.
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1.4. Complex geometry, line bundles over arbitrary base. The
last source I would like to mention is a classification of vector bundles
over complex projective spaces. Every vector bundle over projective
line over a field is decomposable (isomorphic to the sum of line bundles),
due to Grothendieck-Birkhoff theorem, which is no longer the case over
Z, but is nevertheless useful when studying fibres of bundles over closed
points. In addition, line bundles are easy to describe even over locally
noetherian base. Any line bundle over locally noetherian connected
base S is of the form π∗L ⊗ O(d), where π is a structure morphism
Pn
S → S, and O(d) is the dth tensor power of a Serre twisting sheaf.
The classification problems over complex projective spaces are proved

to be quite hard. Fortunately, the complex setting also provides us an
approach to the arithmetic problem. Namely, we have two Beilinson
spectral sequences that help us to reduce classification to the questions
of linear algebra (often quite difficult even over algebraically closed
fields). Nevertheless, we have applied this technique to obtain the clas-
sification in several particular cases.

1.5. Non-Euclidean PID. It is natural to ask how one can construct
bundles on P1

A, where A is a PID. There are three ’regular ways’ to do
that.

1.6. Beilinson. As it was mentioned earlier, we can use the Beilinson
spectral sequences and classify bundles with some fixed cohomological
data.

1.7. Quillen–Suslin. In the case when A is a PID, we can apply
Quillen–Suslin theorem to see that the set of isomorphism classes of
framed vector bundles on the projective line can be represented as the
following double quotient

Bunr(P
1
A) = GLr(A[x])\GLr(A[x, x−1])/GLr(A[x−1]. (1.3)

Let E be a vector bundle, and let r = rk(E). By frame for E we
mean two chosen trivialisations over the standard open sets U0 and U1

glued together over U01 by the invertible matrix over A[x, x−1]. Also,
every such a matrix defines a vector bundle.

1.8. Hanna’s theorem. Of course, the latter approach is very explicit
but the groups above are quite complicated, especially in the cases of
low rank. Due to first theorem of Hanna, we can reduce the study of
bundles to the case of rank two. Moreover, he obtained a surprising
result in the case where A is a Euclidean domain.
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Theorem 3 (Hanna). Let A be a Euclidean domain, and let F be any
vector bundle on P1

A. Then F has a filtration

0 = F0 ⊆ F1 ⊆ . . . ⊆ Fn = F

such that Fi/Fi−1 is a line bundle (1 ≤ i ≤ n = rkF ).

In particular, every bundle on P1
Z admits a filtration with linear

bundles as quotients.

Remark 1. It is worth mentioning that even in the case when A is
a non-euclidean PID, we do not know if the analogous statement still
holds. Since straightforward methods of proving statements of that
spirit lead us to questions about integral points on rational varieties of
high degree (actually, Fano varieties), we have no easy way of comput-
ing an invariant of A given by supE(N(E)loc−N(E)). So our strategy,
roughly speaking, is to find obstructions in the arithmetic of extensions
of Frac(A).

Remark 2. Given a vector bundle E, we want to study its subbundles
(not only subsheaves), this means that L ⊂ E if and only if E/L is a
locally free sheaf, or, equivalently, a section s : L → E has no zeroes
on P1

A.
We let H0(E)× denote the subset of all nowhere zero sections in

H0(P1, E).

1.9. Interpretation of Hanna’s theorem r = 2. Let E be a bundle
of rank two on P1

Z. We have seen that there exist line bundles L and
M , such that E fits into the exact sequence

0→ L→ E →M → 0. (1.4)

Thus, we get an element in Ext1(M,L), and the latter group is nat-
urally isomorphic to H0(M ⊗ L∗ ⊗ ωP1)∨ (Serre duality). We want to
identify the corresponnding element with a binary form.

Note that P1
A = Proj(V ), where V is a free A-module. There is a

natural isomorphism H0(O(k)) ' Symk(V ∨), and

Ext1(O,O(−k − 2)) = H1(P1,O(−k − 2)) ' S̃ym
k
(V ),

here S̃ym
k
(V ) means a submodule of symmetric tensors in V ⊗k, and

we have an obvious map to Symk(V ) (e.g. v ⊗ u+ u⊗ v 7→ 2uv).
We choose a basis of V ∗, so that P1

A = Proj(V ) = Proj(A[t0, t1]),
x = t1/t0, and y = t0/t1. We let v0 and v1 denote the dual basis (of
V ∨).
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1.10. Filtration on the space of binary forms. Let Φn denote the
space of all integral binary forms such that ith coefficient is divisible
by
(
n
i

)
where n is a degree.

It is easy to see that if L ⊂ E then L(−k) ⊂ E for every k > 0. So
one can define a space of ‘newforms’ of degree n. In particular, this is
closely related to the notion of minimal filtrations discussed above. It
could be interesting to understand this structure.

For example, starting with the element of Sym4(V ): F = 12(v4
0 −

3v3
0v1− 7v2

0v
2
1 + v4

1) we obtain a bundle E sitting in the exact sequence
O(−3) → E → O(3). We can check that the fibres of E are either of
the form O⊕O or O(1) ⊕ O(−1), so the classification theorem says
that E ' V0(m, e) for some m and e. But m could be recovered from
the catalecticant of the polynomial, which is 244 = 4 · 61. We are left
to somehow find e. Brutal computation shows that E admits also a
filtration of lower amplitude; namely O(−2)→ E → O(2), and there is
a corresponding quadratic form of discriminant 244: 16v2

0+4v0v1−15v2
1,

which represents 1 modulo 244. This proves that E is isomorphic to
the simplest bundle with conductor 244, the bundle V0(244, 1). Thus,
F is an old form of degree-‘level’ 4 coming from the level 0 form, which
is simply 244.

1.11. Notation, and first invariants. To continue I should intro-
duce a bit of notation and several invariants of bundles.

1.12. Subscheme of jumps. Let E be a rank 2 bundle on P1
Z, then

its fibre over the closed point P ∈ SpecZ is a decomposable bundle.
We define finite subscheme of “jumps” J(E) ⊂ SpecZ as a set of points,
where this decomposition differs from the decomposition obtained by
restriction to the general fiber. We can also define a more subtle in-
variant working with p-adic fibers of E, which are naturally defined for
every prime p. We write Ep for such a bundle.

1.13. Conductor. Let P be a point in J(E), then restricting to the
corresponding special fibre we obtain a decomposition E |P' O(d1,P )⊕
O(d2,P ), and d1,P ≤ d2,P . Then the base change theorem implies that
Ep has O(d1,P ) as a subbundle (this means that Ep/O(d1,P ) is also
locally free). It is crucial that we have only one closed point in this
situation. We can define local conductor of E at the point P as a pkP ,
where kP – is the largest natural k such that Ep×Zp/pkZp decomposes
as a sum of linear bundles.

The global conductor is, as usual, defined to be the product of local
ones, and denoted ∆(E).
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1.14. Amplitudes. It is natural to generalize Serre’s amplitude to our
situation. Note that we have local one, which we denoteNloc(E) defined
as a minimum over all points in J(E). There is also a global amplitude
N(E), defined the same way as above. Thus, we have an obvious
inequality N(E) ≤ Nloc(E).

It is easy to see that there is no lower bound on Nloc(E) even in the
case of bundles overP1

Zp
, to see this one combines the existence of jumps

and semicontinuity theorem. Thus N(E) is unbounded. This means
that we have many indecomposable bundles. The following question
seems interesting

Question 1. If there exists an upper bound for Nloc(E)−N(E)?

As above (cf. 1.3), if N(E) ≥ 0 then E is decomposable.

1.15. Simple jumps. We say that E has simple jumps if its local
fibers differs from the generic fiber not too much. Namely, let EQ '
O(d1) ⊕ O(d2) with d1 ≤ d2, so that d1 − d2 ≤ 0. Then simple jumps
correspond to the case (d1 − d2)−Nloc(E) = 2.

E.g. E⊗Fp ' O(−1)⊕O(1) for only one prime p, and E⊗Q ' O2.

2. Classification

The information required to apply Beilinson spectral sequences agrees
well with the notion of jumps, and we have classified vector bundles in
two cases:

− Trivial generic fibre and simple jumps. Smirnov.
− Generic fibre isomorphic to O⊕O(1) and simple jumps. Me.

Although the statements of this theorems are a bit cumbersome, I
would like to formulate both in detail. Because they are related to
reciprocity laws (namely, quadratic and cubic), and further results rely
on these statements.

2.1. Cubic reciprocity. Let p and q be primary numbers in the ring
Z[ω], both coprime to 3, where ω is a primitive cube root of unity
(rational integer is prime in Z[ω] iff it’s congruent to 2 modulo 3). The
congruence x3 ≡ p (mod q) is solvable if and only if x3 ≡ q (mod p) is
solvable.
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2.2. Standard examples. We let V0(m, e) denote the sheaf Coker[O(−2)2 ϕ−→
O(−1)4], where the map ϕ has the following form

ϕ =


t1 0
et0 t1
mt0 0

0 t0

 . (2.1)

We set V ′1(m, e) = Coker[O(−2)3 ψ′−→ O(−1)5], where ψ′ is defined
by the matrix

ψ′ =


t1 et0 0
0 t1 0
t0 0 t1
0 mt0 0
0 0 t0

 . (2.2)

Theorem 4. Let m 6= 0 and gcd(m, e) = 1, then V ′1(m, e) is a vector
bundle. Moreover, V ′1(m, e) is generically isomorphic to O⊕O(1) and
has simple jumps if m is not invertible, and ∆(E)(V ′1(m, e)) = |m|.

(1) Every vector bundle with the generic fibre O⊕O(1) and simple
jumps is isomorphic to V ′1(m, e) up to the action on Bun2 of
the involution W .

(2) V ′1(m, e) ' V ′1(m′, e′) if and only if (m) = (m′), and e ≡ ±e′
(mod m).

(3) V ′1(m, e) can be defined by the gluing matrix
(
ax−1 b
cx dx2

)
, where

где ad− bc = 1, (b) = (m), and a ≡ ±e (mod m).
(4) If e is not a perfect cube modulo m then O(−1) 6⊂ V ′1(m, e).

Remark 3. It is likely that the latter statement can be reversed. It
was checked for m ≤ 30

Theorem 5 (Smirnov). Let m be a non-zero integer, and e be an
integer prime to m, then V0(m, e) is a vector bundle. Moreover, every
rank two vector bundle with trivial generic fibre and simple jumps is
isomorphic to V0(m, e) for some m and e such that gcd(m, e) = 1, and

(1) ∆(E) = |m|.
(2) V0(m, e) ' V0(m′, e′) if and only if (m) = (m′), and there exists

λ ∈ Z, such that eλ2 = ±e′ (mod m).
(3) O(−1) ⊂ V0(m, e) if and only if at least one of the numbers ±e

is a quadratic residue modulo m.
(4) O(−2) is a subbundle of V0(m, e) for each pair (m, e) such that

gcd(m, e) = 1. ⇐ Gauss Reciprocity!
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(5) The bundle V0(m, e) can be identified with its gluing matrix(
ax−1 b
c dx

)
, where ad − bc = 1, (b) = (m), and there exists

λ ∈ Z such that aλ2 ≡ ±e (mod m).

This provides us an example of the situation when Nloc(E)−N(E) =
2, the ‘first’ such a bundle is V0(5, 2), due to the third statement above,
since neither 2 or −2 is a square modulo 5.

2.3. Translation into the language of quadratic forms. As we
have seen earlier, every bundle with trivial fiber and simple jumps
admits a filtration

0→ O(−2)→ E → O(2)→ 0. (2.3)

Associated gluing matrix will have the form
(
x−2 a0x

−1 + a1 + a2x
0 x2

)
.

Thus we can find an element in Ext1(O(2),O(−2)). Applying dual-
ity, we obtain a form f = a0v

2
0 + 2a1v0v1 + a2v

2
1, called associated to

E. Let d(f) = a2
1− a0a2 denote the determinant of an obvious bilinear

form. We can state the classification as follows.

Theorem 6. Let E and E ′ be vector bundles of rank two with triv-
ial generic fibre and simple jumps, and let f = (a0, 2a1, a2), f ′ =
(a′0, 2a

′
1, a
′
2) be the forms associated to E and E ′, respectively. Then

(1) f and f are almost primitive (outside 2).
(2) ∆(E) = |d(f)|, ∆(E ′) = |d(f ′)|
(3) E ' E ′ if and only if |d(f)| = |d(f ′)| = D, and f, f ′ ∈ Φ2(D, e).
Where Φ2(D, e) is the set of binary forms q with even middle term,
|d(q)| = D, and q ≡ ±e modulo squares in (Z/DZ)×.

Remark 4. Given any upper-triangular matrix in GL2(Z[x, x−1]), we
can describe the fibres of an associated vector bundle in terms of certain
invariants of the Laurent polynomial sitting in the obvious position.
This will be illustrated below for the binary cubic forms.

2.4. Compactified projective line. As mentioned earlier, there is an
analogy between lattices and metrized vector bundles. Unfortunately,
the operation of arithmetic compactification doesn’t seem canonical.
However, we can get some interesting information about vector bundles
over P1

Z.
Let us start with introducing notation and necessary definitions.

Arakelov model X of the projective line over the integers consists of
the following data
− X0 = P1

Z – a finite part of X.
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− Kähler metric on the tangent bundle of X∞ = P1
C, and asso-

ciated Kähler form ω0 is normalized
∫
X∞

ω0 = 1. It is simply
Fubini-Study form for P1

C.

We are going to define vector bundles on X by gluing pieces over X0

and X∞. By vector bundle E on X we mean a triple (E0, E∞, α) where

− E0 is a bundle on X0.
− E∞ =

⊕
O(di), where O(di) is a line bundle with Fubini-Study

metric induced from O(−1).
− α : E0 ⊗ R→ E∞, an isomorphism.

Since we have Kähler form ω0 on X∞, and hermitian metrics ( , )
on E∞, we can measure the length of sections of E0. More precisely,
given a global section s ∈ H0(E), we set

〈s, s〉2 =

∫
X∞

(α(s), α(s))ω0. (2.4)

We restrict ourselves to the case, where E is a semi-stable bundle
over the generic fibre. In our setting, this simply means that EQ is
isomorphic to O⊕r up to the twist. Moreover, we assume that E is
isomorphic to the trivial bundle of rank r over the generic fibre. To
avoid difficulties with constants, we consider only normalized α. More
accurately, we have a morphism

Det(α) : Det(E)⊗ R→ Det(E∞), (2.5)

this induces a map on cohomology, and we require that the length of
1 ∈ H0(P1

Z,Det(E)) is equal to one.
We define

ε̂1(E, n) = inf
α

inf
s∈H0(E(n))×

〈α(s), α(s)〉2. (2.6)

In the case of the bundles with trivial generic fibre and simple jumps
this invariant can be computed explicitly.

Theorem 7. Let V0(m, e) and Φ2(D, e) be the same as above. Then

ε̂1(V0(m, e), 2) =
1

3m
min

f∈Φ2(m,e)

√
2(tr(f)2 + 2m). (2.7)

In particular, ‘short’ sections correspond to reduced binary forms.

So this justifies the idea that sections of vector bundles on P1 are of
particular interest.
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2.5. Cubic extensions and sections. In conclusion, we explain how
sections of V1(m, e) are related to binary forms. It is not known yet,
if such a bundle admits O(−2) as a subbundle. However, we briefly
describe properties of the associated cubic forms in terms of sections
and invariants of E = V1(m, e).

Since we have computed gluing matrices for E, it is easy to describe
spaces of global sections of E(2). Each global section can be represented
by a pair of polynomials
s1 = u1x+ u0 +mwx2, s2 = w0 +w1x+w2x

2 +w3x
3 + dwx4, (2.8)

where de ≡ ±1 (mod m).

Theorem 8. Let f be a cubic form associated to the section s ∈
H0(V ′1(m, e)⊗O(2))×. Then

(1) disc(f/3) = −m2(u2
1 − 4mu0w).

(2) The Hessian of f is completely defined by m and s1, namely

Hf/3 = m(u0v
2
0 + u1v0v1 +mwv2

1).

(3) disc(f) 6= 0 if m 6= ±1.

Roughly speaking, this theorem is about Galois closures K̃ of cubic
extensions K/Q defined by adjoining a root of the equation f(v0, 1) =

0. We know that deg K̃ ≤ 6. Let me focus on the case deg K̃ =

6. By standard Galois theory, there is a quadratic subfield L in K̃,
such that K/L is abelian, of degree 3. The Hessian of a cubic form
contains the information about the quadratic subfield, square-free part
of its discriminant is a discriminant of a quadratic subfield. Content
of the Hessian (in our situation, it is m) says what primes are ramified
completely in the ring of integers of K (those dividing m).
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