Algebraic Geometry I

1. Exercise sheet

Let k be an algebraically closed field and denote by $\mathbb{A}^{n}(k)=k^{n}$ the affine n-space over k together with its Zariski topology.

Exercise 1 (4 Points):

1) Let $Z \subseteq \mathbb{A}^{n}(k)$ be a finite set. Prove that Z is Zariski closed in $\mathbb{A}^{n}(k)$.
2) Show that the Zariski topology on $\mathbb{A}^{2}(k)$ is not given by the product topology on $\mathbb{A}^{1}(k) \times \mathbb{A}^{1}(k)$.

Exercise 2 (4 Points):

Prove, without using the Nullstellensatz, that every non-constant polynomial $f \in k\left[X_{1}, \ldots, X_{n}\right]$ has a zero in $\mathbb{A}^{n}(k)$.

Exercise 3 (4 Points):

Let $X \subseteq \mathbb{A}^{n}(k)$ be an affine algebraic set with

$$
I(X):=\left\{f \in k\left[X_{1}, \ldots, X_{n}\right] \mid f\left(x_{1}, \ldots, x_{n}\right)=0 \text { for all } x=\left(x_{1}, \ldots, x_{n}\right) \in X\right\} .
$$

and coordinate ring $A:=\mathcal{O}(X)=k\left[X_{1}, \ldots, X_{n}\right] / I(X)$. Let $f \in A$ be any element. Prove that

$$
D(f):=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in X \mid f\left(x_{1}, \ldots, x_{n}\right) \neq 0\right\}
$$

is open in X. Show that

$$
D(f) \subseteq \mathbb{A}^{n+1}(k), x \mapsto\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}\right)^{-1}\right)
$$

is again an affine algebraic set with coordinate ring given by the localisation $A\left[f^{-1}\right]$.

Exercise 4 (4 Points):

We identify the space $M_{2,2}(k)$ of 2×2-matrices over k with $\mathbb{A}^{4}(k)$ (with coordinates $\left.a, b, c, d\right)$. We define ideals

$$
\begin{gathered}
\mathfrak{a}:=\left(a^{2}+b c, d^{2}+b c,(a+d) b,(a+d) c\right) \subseteq k[a, b, c, d] \\
\mathfrak{b}:=(a d-b c, a+d) \subseteq k[a, b, c, d]
\end{gathered}
$$

and denote their vanishing loci by $V(\mathfrak{a})$ resp. $V(\mathfrak{b})$. Prove that

$$
X:=V(\mathfrak{a})=V(\mathfrak{b})=\left\{A \in M_{2,2}(k) \mid A \text { is nilpotent }\right\}
$$

i.e., that a matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is nilpotent if and only if $A^{2}=0$ if and only if the determinant and the trace of A are zero. Moreover, prove that $\operatorname{rad} \mathfrak{a}=\mathfrak{b}$, but $\mathfrak{a} \neq \mathfrak{b}$.
The affine algebraic set X is called the nilpotent cone.
To be handed in: Tuesday, 25. October 2016.

