Algebraic Geometry I

4. Exercise sheet

Exercise 1 (4 Points):

Let X be a topological space and let \mathcal{F} be the presheaf

$$
U \mapsto\{f: U \rightarrow \mathbb{R} \mid f \text { continuous and bounded }\}
$$

on X. Describe the sheafification $\tilde{\mathcal{F}}$ of \mathcal{F}.

Exercise 2 (4 Points):

Let $\left(X, \mathcal{O}_{X}\right)$ be a locally ringed space.
i) Let $U \subseteq X$ be an open and closed subset. Show that there exists a unique section $e_{U} \in \Gamma\left(X, \mathcal{O}_{X}\right)$ such that $e_{U \mid V}=1$ for all open subsets $V \subseteq U$ and $e_{U \mid V}=0$ for all open subsets $V \subseteq X \backslash U$. Show that $U \mapsto e_{U}$ yields a bijection

$$
\mathrm{OC}(X) \leftrightarrow \operatorname{Idem}\left(\Gamma\left(X, \mathcal{O}_{X}\right)\right)
$$

from the set of open and closed subsets of X to the set of idempotents in $\Gamma\left(X, \mathcal{O}_{X}\right)$.
ii) Show that $e_{U} e_{U^{\prime}}=e_{U \cap U^{\prime}}$ for $U, U^{\prime} \in \mathrm{OC}(X)$.
iii) Prove that X is connected if and only if $\Gamma\left(X, \mathcal{O}_{X}\right)$ contains no idempotent $e \neq 0,1$ if and only if $\Gamma\left(X, \mathcal{O}_{X}\right)$ is not isomorphic to $R_{1} \times R_{2}$ for two non-zero rings R_{1}, R_{2}.

Exercise 3 (4 Points):

Let p be a prime, let \mathbb{F}_{p} be the field with p elements, and let $i_{(p)}: \operatorname{Spec}\left(\mathbb{F}_{p}\right) \rightarrow \operatorname{Spec}(\mathbb{Z})$ be the canonical morphism. We call a ring A of characteristic p if $p \cdot 1_{A}=0$. Let X be a scheme. Prove that the following conditions are equivalent:
i) For every open subset $U \subseteq X$, the ring $\Gamma\left(U, \mathcal{O}_{X}\right)$ is of characteristic p.
ii) The ring $\Gamma\left(X, \mathcal{O}_{X}\right)$ has characteristic p.
iii) The canonical scheme morphism $X \rightarrow \operatorname{Spec}(\mathbb{Z})$ factors through $i_{(p)}$.

Are these conditions equivalent to iv)?
iv) For all $x \in X$ the residue field $k(x)$ is of characteristic p.

Exercise 4 (4 Points):

Let $U_{i}, i=1,2$, be two schemes. Let $V_{i} \subseteq U_{i}$ be open subsets and let $\varphi: V_{1} \xrightarrow{\sim} V_{2}$ be an isomorphism.
i) Show that there exists a scheme X with open subsets $W_{i} \subseteq X$ and isomorphisms $\alpha_{i}: U_{i} \xrightarrow{\sim} W_{i}$, $i=1,2$, such that $\alpha_{i}^{-1}\left(W_{1} \cap W_{2}\right)=V_{i}$ and $\varphi=\alpha_{2}^{-1} \circ \alpha_{1 \mid V_{1}}$.
Remark: We say that X is obtained from U_{1} and U_{2} by gluing along φ.
ii) Let A be a ring and let $X_{ \pm 1}$ be the scheme obtained by glueing $U_{1}=U_{2}=\operatorname{Spec}(A[T])$ along the isomorphism $\varphi_{ \pm 1}: \operatorname{Spec}\left(A\left[T, T^{-1}\right]\right) \rightarrow \operatorname{Spec}\left(A\left[T, T^{-1}\right]\right), T \mapsto T^{ \pm 1}$. Show that $X_{ \pm 1}$ is not an affine scheme.
Remark: X_{1} is called the affine line over A with doubled origin, X_{-1} is called the projective line over A.

To be handed in on: Tuesday, 15. November 2016.

