Prof. Dr. P. Scholze Dr. J. Anschütz

Algebraic Geometry I

7. Exercise sheet

Exercise 1 (4 Points):

Let S be a scheme and let \mathcal{A} be a quasi-coherent \mathcal{O}_S -algebra. Prove that the functor

 $(f: Y \to S) \mapsto \operatorname{Hom}_{\mathcal{O}_S - alg}(\mathcal{A}, f_*(\mathcal{O}_Y))$

on the category of schemes over S is representable by a scheme over S (denoted $\underline{\operatorname{Spec}}_{\mathcal{O}_{S}}\mathcal{A}$).

Exercise 2 (4 Points):

Let R be a ring. Compute the global sections of $\mathcal{O}_{\mathbb{P}^n_R}(m), m \in \mathbb{Z}$.

Exercise 3 (4 Points):

i) Let S be a scheme and let \mathcal{E} be a vector bundle on S. Let $s \in \mathcal{E}(S)$ be a global section. Prove that there exists a unique closed subscheme V(s) of S such that a morphism $f: Y \to S$ factors over V(s) if and only if $f^*(s) \in f^*\mathcal{E}(Y)$ is zero.

ii) Recall the Segre embedding $f: \mathbb{P}_R^1 \times_{\mathrm{Spec}(R)} \mathbb{P}_R^1 \subseteq \mathbb{P}_R^3$ from exercise sheet 6. Show that f is a closed embedding, isomorphic to V(s) for a suitable s and \mathcal{E} .

Exercise 4 (4 Points):

Let R be a ring and set $X := \mathbb{P}_R^n$. Let \mathcal{M} be a quasi-coherent \mathcal{O}_X -module of finite type. Show that there exists an $m_0 \in \mathbb{Z}$ such that for every $m \geq m_0$ the \mathcal{O}_X -module $\mathcal{M} \otimes_{\mathcal{O}_X} \mathcal{O}_X(m)$ is generated by global sections. If R is noetherian, deduce that every closed subscheme of X is of the form described in exercise 3.i).

To be handed in on: Tuesday, 6. December 2016.