Algebraic Geometry I

8. Exercise sheet

Exercise 1 (4 Points):

Let $n \geq d \geq 0$.
i) Prove that the functor sending a scheme X to the isomorphism classes of quotients $\mathcal{O}_{X}^{n} \rightarrow \mathcal{E}$ with \mathcal{E} locally free of rank d is representable by a scheme $\operatorname{Grass}_{n, d}$ over $\operatorname{Spec}(\mathbb{Z})$, called the Grassmannian.
ii) Prove that the morphism

$$
\operatorname{Grass}_{n, d} \rightarrow \mathbb{P}^{\binom{n}{d}-1},\left(\mathcal{O}_{X}^{n} \rightarrow \mathcal{E}\right) \mapsto\left(\mathcal{O}_{X}^{\binom{n}{d}} \cong \Lambda^{d} \mathcal{O}_{X}^{n} \rightarrow \Lambda^{d} \mathcal{E}\right),
$$

where $\Lambda^{d} \mathcal{F}$ denotes the d-the exterior power of a vector bundle \mathcal{F}, is well-defined and that it is a closed embedding if $n=4, d=2$.
Remark: The map, called the Plücker embedding, is a closed embedding in general.

Exercise 2 (4 Points):

i) Let $n \geq 0$. Prove that the functor

$$
X \mapsto\left\{a: \mathcal{O}_{X}^{n} \rightarrow \mathcal{O}_{X}^{n} \mid a \text { is an isomorphism }\right\}
$$

is representable by a scheme, called GL_{n}, over $\operatorname{Spec}(\mathbb{Z})$.
ii) Let S be a scheme and let \mathcal{E} be a vector bundle on S. Prove that the functor

$$
(f: X \rightarrow S) \mapsto\left\{a: f^{*} \mathcal{E} \rightarrow f^{*} \mathcal{E} \mid a \text { is an isomorphism }\right\}
$$

is representable by a scheme, called $\operatorname{Aut}(\mathcal{E})$, over S, which is locally on S isomorphic to $\mathrm{GL}_{n} \times S$.

Exercise 3 (4 Points):

Let X be a scheme.
i) Prove that the category $\mathrm{QCoh}(X)$ of quasi-coherent modules on X is a full abelian subcategory of the category \mathcal{O}_{X}-Mod of \mathcal{O}_{X}-modules that is closed under extensions. Show that the functor $\mathrm{QCoh}(X) \rightarrow \mathcal{O}_{X}-\operatorname{Mod}$ is exact.
ii) Assume that X is noetherian. Prove the same statements as in i) with the category $\mathrm{QCoh}(X)$ replaced by the category $\operatorname{Coh}(X)$ of coherent \mathcal{O}_{X}-modules.

Exercise 4 (4 Points):

Let k be a field and let $n \geq 0$. Let $U_{0}=\operatorname{Spec}(k[T]), U_{1}=\operatorname{Spec}\left(k\left[T^{-1}\right]\right)$ with intersection $U_{0} \cap U_{1}=\operatorname{Spec}\left(k\left[T^{ \pm 1}\right]\right)$ be the standard covering of \mathbb{P}_{k}^{1}.
i) Prove that the map

$$
\begin{array}{ccc}
\{\text { iso. classes. of rank } \mathrm{n} \text { vector bundles }\} & \rightarrow \mathrm{GL}_{n}(k[T]) \backslash \mathrm{GL}_{n}\left(k\left[T^{ \pm 1}\right]\right) / \mathrm{GL}_{n}\left(k\left[T^{-1}\right]\right), \\
\mathcal{E} & \mapsto & \alpha_{\mid U_{0} \cap U_{1}}^{-1} \circ \beta_{\mid U_{0} \cap U_{1}}
\end{array}
$$

where $\alpha: \mathcal{O}_{U_{0}}^{n} \rightarrow \mathcal{E}_{\mid U_{0}}$ and $\beta: \mathcal{O}_{U_{1}}^{n} \rightarrow \mathcal{E}_{\mid U_{1}}$ are two isomorphisms, is well-defined and bijective.
ii) Show that the map

$$
\begin{array}{ccc}
\left\{\left(d_{1}, \ldots, d_{n}\right) \in \mathbb{Z} \mid d_{1} \geq \ldots \geq d_{n}\right\} & \rightarrow & \mathrm{GL}_{n}(k[T]) \backslash \mathrm{GL}_{n}\left(k\left[T^{ \pm 1}\right]\right) / \mathrm{GL}_{n}\left(k\left[T^{-1}\right]\right) \\
d=\left(d_{1}, \ldots, d_{n}\right) & \mapsto & \operatorname{GL}_{n}(k[T]) T^{d} \mathrm{GL}_{n}\left(k\left[T^{-1}\right]\right),
\end{array}
$$

where T^{d} denotes the diagonal matrix with entries $T^{d_{1}}, \ldots, T^{d_{n}}$, is a bijection. Write down all vector bundles on \mathbb{P}_{k}^{1} (up to isomorphism).

To be handed in on: Tuesday, 13. December 2016.

