Prof. Dr. P. Scholze Dr. J. Anschütz

Algebraic Geometry I

9. Exercise sheet

Exercise 1 (4 Points):

Let A be a noetherian, factorial ring. Prove that Pic(A) = 0. Hint: Proposition B.60, B.70, B.72 and remark B.75 in the book "Algebraic Geometry I" by Görtz-Wedhorn might be helpful.

Exercise 2 (4 Points):

Let k be a field. Prove that $\mathbb{Z} \cong \operatorname{Pic}(\mathbb{P}^n_k)$ via $1 \mapsto \mathcal{O}_{\mathbb{P}^n_k}(1)$. Hint: Use Exercise 1.

Exercise 3 (4 Points):

Let R be a ring and define

 $X := \{ ((x_0, \dots, x_n), (y_0 : \dots : y_n)) \in \mathbb{A}_R^{n+1} \times_{\mathrm{Spec}(R)} \mathbb{P}_R^n \mid x_i y_j = x_j y_i \text{ for all } i, j \}.$

i) Show that X is a closed subscheme in $\mathbb{A}_R^{n+1} \times_{\operatorname{Spec}(R)} \mathbb{P}_R^n$. ii) Prove that X is isomorphic (as a \mathbb{P}_R^n -scheme) to the total space $\mathbb{V}(\mathcal{O}_{\mathbb{P}_R^n}(-1))$ of the line bundle $\mathcal{O}_{\mathbb{P}^n_{\mathcal{P}}}(-1).$

iii) Let $\pi: X \to \mathbb{A}^{n+1}_{R}$ be the canonical projection. Show that

$$\pi_{|\pi^{-1}(\mathbb{A}_R^{n+1}\setminus\{0\})} \colon \pi^{-1}(\mathbb{A}_R^{n+1}\setminus\{0\}) \to \mathbb{A}_R^{n+1}\setminus\{0\}$$

is an isomorphism and that $\pi^{-1}(0) \cong \mathbb{P}_R^n$. iv) Define $\mathcal{I} := (x_0, \ldots, x_n) \subseteq \mathcal{O}_{\mathbb{A}_R^{n+1}}$ and let $f: S \to \mathbb{A}_R^{n+1}$ be a morphism such that the ideal sheaf $f^{-1}(\mathcal{I})\mathcal{O}_S \subseteq \mathcal{O}_S$ is invertible. Prove that f factors uniquely through π . Remark: The scheme X is called the blow-up of \mathbb{A}_R^{n+1} in the closed subscheme $0 \in \mathbb{A}_R^{n+1}$.

Exercise 4 (4 Points):

i) Show that closed immersions are stable under composition and base change. Show that if $f: X \to Y, g: Y \to S$ are morphisms of schemes such that g and $g \circ f$ are closed immersions, then also f is a closed immersion.

ii) Let $f: X \to Y, g: Y \to S$ be two morphisms of schemes. Assume that $g \circ f$ is proper and that g is separated. Prove that f is proper.

To be handed in on: Tuesday, 20. December 2016.