Algebraic Geometry I

11. Exercise sheet

Let X be a scheme of finite type over a field k. A k-rational point $x \in X(k)$ is called smooth if its tangent space

$$
T_{x} X:=\operatorname{Hom}_{k}\left(\mathfrak{m}_{X, x} / \mathfrak{m}_{X, x}^{2}, k\right)
$$

has dimension equal to the Krull dimension of $\mathcal{O}_{X, x}$. Here $\mathfrak{m}_{X, x} \subseteq \mathcal{O}_{X, x}$ denotes the maximal ideal of $\mathcal{O}_{X, x}$.

Exercise 1 (4 Points):

Let k be a field and let X be a normal scheme of finite type over k with $\operatorname{dim} X \leq 1$. Prove that every $x \in X(k)$ is a smooth point of X.

Exercise 2 (4 Points):

Let k be an algebraically closed field and let $f \in k[x, y]$ be a non-zero polynomial such that $f(0,0)=0$. Write

$$
f=f_{r}+f_{r+1}+\ldots+f_{n}+\ldots
$$

with f_{n} homogeneous of degree n and $f_{r} \neq 0$. Let $X:=V(f) \subseteq \mathbb{A}_{k}^{2}$ and define $Z:=V\left(f_{r}\right) \subseteq \mathbb{A}_{k}^{2}$. i) Prove that $f_{r}=l_{1} \cdots l_{r}$ with $l_{i} \in k[x, y]$ homogeneous of degree 1 . Deduce that Z is a union of lines.
ii) Show that X is smooth in $(0,0)$ if and only if $r=1$.
iii) Solve exercise I.5.1 in Hartshorne's "Algebraic Geometry". (A non-smooth point $z \in X(k)$ is also called a singular point.)
Remark: The variety Z is called the "tangent cone" of X in $(0,0)$.

Exercise 3 (4 Points):

i) Let R be a normal domain and let G be a group acting on R by ring homomorphisms. Show that the ring

$$
R^{G}:=\{r \in R \mid g r=r \text { for all } g \in G\}
$$

of G-invariants is again a normal domain.
ii) Let k be a field of characteristic $\neq 2$. Prove that the cone $X:=V(f) \subseteq \mathbb{A}_{k}^{3}$ with

$$
f(x, y, z):=x y-z^{2} \in k[x, y, z]
$$

is a normal domain and that the point $(0,0,0) \in X(k)$ is not smooth.

Exercise 4 (4 Points):

Let k be a field, let X be a scheme of finite type over k and let $x \in X(k)$ be a k-rational point. i) Show that $T_{x} X$ is in natural bijection to the set of morphisms

$$
g: \operatorname{Spec}\left(k[\varepsilon] / \varepsilon^{2}\right) \rightarrow X
$$

such that $g_{\mid \operatorname{Spec}(k)}=x$.
ii) Assume $X=V\left(f_{1}, \ldots, f_{r}\right) \subseteq \mathbb{A}_{k}^{n}$ and write $x=\left(x_{1}, \ldots, x_{n}\right) \in X(k)$. We define the Jacobi matrix $J_{x} \in k^{r \times n}$ at x as the $r \times n$-matrix

$$
J_{x}:=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial X_{1}}\left(x_{1}, \ldots, x_{n}\right) & \ldots & \frac{\partial f_{1}}{\partial X_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial f_{r}}{\partial X_{1}}\left(x_{1}, \ldots, x_{n}\right) & \ldots & \frac{\partial f_{r}}{\partial X_{n}}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)
$$

where

$$
\frac{\partial f}{\partial X_{i}}:=\sum j_{i} a_{j_{1}, \ldots, j_{n}} X_{1}^{j_{1}} \cdots X_{i}^{j_{i}-1} \cdots X_{n}^{j_{n}}
$$

denotes the i-th partial derivative of a polynomial

$$
f=\sum a_{j_{1}, \ldots, j_{n}} X_{1}^{j_{1}} \cdots X_{n}^{j_{n}} \in k\left[X_{1}, \ldots, X_{n}\right] .
$$

Let $d:=\operatorname{dim} \mathcal{O}_{X, x}$ be the Krull dimension of the local ring $\mathcal{O}_{X, x}$. Prove that x is a smooth point of X if and only if J_{x} has rank $n-d$.

To be handed in on: Tuesday, 17. January 2017.

