WS 2016/17

Algebraic Geometry I

14. Exercise sheet

Exercise 1:

Let k be a field.

i) Show that the group $\operatorname{GL}_{n+1}(k)$ acts naturally on \mathbb{P}_k^n and that this action factors through

$$\mathrm{PGL}_{n+1}(k) := \mathrm{GL}_{n+1}(k)/k^{\times}.$$

ii) Show that any automorphism of \mathbb{P}_k^n can be lifted to an automorphism of the pair $(\mathbb{P}_k^n, \mathcal{O}_{\mathbb{P}_k^n}(1))$. *Hint: Use that* $\operatorname{Pic}(\mathbb{P}_k^n) \cong \mathbb{Z}$.

iii) Show

$$\operatorname{Aut}_k(\mathbb{P}^n_k) \cong \operatorname{PGL}_{n+1}(k),$$

where $\operatorname{Aut}_k(\mathbb{P}^n_k)$ denotes the group of k-automorphisms of \mathbb{P}^n_k .

Exercise 2:

Let X be a qcqs scheme and set $A := \Gamma(X, \mathcal{O}_X)$. Show that the following are equivalent:

i) There exists an open immersion $X \hookrightarrow Y$ with Y affine.

ii) The canonical morphism $X \to \operatorname{Spec}(A)$ is an open immersion.

iii) The open subsets D(f) for $f \in A$ form a basis of the topology of X.

iv) The line bundle \mathcal{O}_X is ample.

Remark: A qcqs scheme X satisfying these properties is called quasi-affine.

Exercise 3:

Let X be a scheme admitting an ample line bundle \mathcal{L} . i) Prove that for all m > 0 and $s \in \Gamma(X, \mathcal{L}^{\otimes m})$ the open set $D(s) \subseteq X$ is quasi-affine. *Hint: Use Exercise 2.*

ii) Let $x_1, \ldots, x_n \in X$ be points. Prove that there exists an m > 0 and a section $s \in \Gamma(X, \mathcal{L}^{\otimes m})$ such that D(s) is affine and $x_1, \ldots, x_n \in D(s)$.

Hint: Define prime ideals \mathfrak{p}_i *in the (graded) ring* $R := \bigoplus_{d \ge 0} \Gamma(X, \mathcal{L}^{\otimes d})$ *by*

$$f \in \mathfrak{p}_i \Leftrightarrow f(x_i) = 0$$

and use prime avoidance in the ring R to find $s' \in \Gamma(X, \mathcal{L}^{\otimes m})$ such that $x_1, \ldots, x_n \in D(s')$. Using *i*) reduce to the case that X is quasi-affine.

Exercise 4:

Let X be a scheme admitting an ample line bundle. Prove that X is separated. Hint: Use Exercise 3 and the valuative criterion for separatedness.

To be handed in on: Tuesday, 7. February 2017.