SS 2017

Algebraic Geometry II

2. Exercise sheet

Exercise 1 (4 points):

Let A be a Dedekind domain and set S := Spec(A). Let X be an integral scheme. Prove that a morphism $f: X \to S$ is flat if and only if it maps the generic point of X to the generic point of S. *Hint: Use Exercise 1.iii) from Exercise sheet 1.*

Exercise 2 (4 points):

i) Let $A \to B$ be a flat, local morphism of local rings. Prove that the morphism

$$\operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

is surjective.

ii) Let $f: X \to S$ be a flat morphism of schemes. Prove that f is universally generalising. Remark: A morphism $g: Y \to Z$ of topological spaces is called generalising if for all $y \in Y, z \in Z$ such that z specializes to g(y), i.e. $g(y) \in \overline{\{z\}}$, there exists $y' \in Y$ specializing to y such that z = g(y').

Exercise 3 (4 points):

Let $f: X \to S$ be a closed immersion. Then f is flat and locally of finite presentation if and only if f is an open immersion.

Hint: Use that a flat and finitely presented module over a local ring is free.

Exercise 4 (4 points):

i) Let $f: X \to S$ be a morphism, which is locally of finite presentation, flat and finite. Prove that the function

 $s \in S \mapsto \dim_{k(s)} \Gamma(X \times_S \operatorname{Spec}(k(s)), \mathcal{O}_{X \times_S \operatorname{Spec}(k(s))})$

is locally constant.

Hint: You may use that, in this situation, if S = Spec(A) is affine, then X = Spec(B) is affine and B a finitely presented A-module.

ii) Let X be an integral scheme of finite type over a field k. Prove that the normalization $f: \tilde{X} \to X$ is flat if and only if it is an isomorphism.

Hint: Use the finiteness of the normalization and part i).

To be handed in on: Tuesday, 2. May 2017 till 12h (in the prepared box in front of room 4.027).