Algebraic Geometry II

4. Exercise sheet

For a ring A we set $A[\varepsilon]:=A[t] / t^{2}$.
Exercise 1 (4 points):
Let $A \rightarrow B \rightarrow C$ be morphisms of rings.
i) Show that there exists an exact sequence

$$
C \otimes_{B} \Omega_{B / A}^{1} \rightarrow \Omega_{C / A}^{1} \rightarrow \Omega_{C / B}^{1} \rightarrow 0
$$

of C-modules.
ii) Assume that $B \rightarrow C$ is surjective with kernel $I:=\operatorname{ker}(B \rightarrow C)$. Prove that there exists an exact sequence (of C-modules)

$$
C \otimes_{B} I \cong I / I^{2} \xrightarrow{\alpha} C \otimes_{B} \Omega_{B / A}^{1} \rightarrow \Omega_{C / A}^{1} \rightarrow 0
$$

where $\alpha(g):=d g$ for $g \in I$.
Exercise 2 (4 points):
Compute $\Omega_{B / A}^{1}$ for
i) $B=A[X] /(f(X))$ with $f(X) \in A[X]$ a polynomial.
ii) $B=\mathbb{Z}[i], A=\mathbb{Z}$.
iii) $B=k[x, y] /\left(y^{2}-x^{3}-x\right)$ with $A=k$ not of characteristic 2 .
iv) $B=k[x, y] /(x y), A=k$.

Hint: Use exercise 2.ii).

Exercise 3 (4 points):

Let A be a perfect \mathbb{F}_{p}-algebra, i.e., the Frobenius $\operatorname{Fr}_{A}: A \rightarrow A, x \mapsto x^{p}$ of A is bijective. Prove that $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ is formally étale.
Hint: If R is a ring of characteristic $p, I \subseteq R$ an ideal with $I^{2}=0$ and $R_{0}=R / I$, then for $x \in R$ the element x^{p} only depends on the image $x_{0} \in R_{0}$ of x.

Exercise 4 (4 points):

Let $X \rightarrow S$ be a morphism of schemes. We define a functor, the "tangent bundle" $\mathcal{T}_{X / S}$ of X / S, by sending an affine scheme $\operatorname{Spec}(A)$ over S to the set $X(A[\varepsilon])$. Prove that $\mathcal{T}_{X / S}$ is representable by the relative spectrum $\underline{\operatorname{Spec}}_{\mathcal{O}_{X}}\left(\operatorname{Sym}^{\bullet}\left(\Omega_{X / S}^{1}\right)\right)$.
Hint: Note that there is a natural morphism $X(A[\varepsilon]) \rightarrow X(A)$. Use this to reduce to the case that $X=\operatorname{Spec}(R)$ and S are affine.

To be handed in on: Monday, 15. May 2017.

