Algebraic Geometry II

5. Exercise sheet

Exercise 1 (4 points):

Let A be a ring and let $a \in A^{\times}$ be a unit. Let $n \in \mathbb{Z}$ such that n is invertible in A. Prove that $\operatorname{Spec}(A[X]/(X^n-a)) \to \operatorname{Spec}(A)$ is finite and étale.

Exercise 2 (4 points):

Let k be a field and let $f: X \to \operatorname{Spec}(k)$ be a morphism locally of finite type. Prove that the following assertions are equivalent:

- i) f is étale.
- ii) f is unramified.
- iii) f is smooth and locally quasi-finite.
- iv) X is the disjoint union of schemes $\operatorname{Spec}(l)$ where l/k is a finite separable field extension.

Hint: Let K be an algebraic closure of k. Check that each statement is satisfied for f if and only if it is satisfied for $f_K: X_K := X \times_{\operatorname{Spec}(k)} \operatorname{Spec}(K) \to \operatorname{Spec}(K)$ (e.g., that smoothness of f_K implies smoothness of f was proven in the lecture). If K = k use that $\mathfrak{m}_{X,x}/\mathfrak{m}_{X,x}^2 \cong \Omega^1_{X/k} \otimes k(x)$ for $x \in X$ closed.

Exercise 3 (4 points):

Let K/k be a finitely generated extension of fields. Prove that the following statements are equivalent:

- i) $\operatorname{Spec}(K) \to \operatorname{Spec}(k)$ is formally smooth
- ii) K/k is separable, i.e., K contains a purely transcendental subfield $L = k(x_1, \ldots, x_n)$ such that K/L is a separable algebraic extension.

Hint: For $i) \Rightarrow ii$ pick elements $x_1, \ldots, x_n \in K$ such that the differentials dx_i form a basis of $\Omega^1_{K/k}$. Conclude by formal smoothness that the induced morphism $\operatorname{Spec}(K) \to \operatorname{Spec}(k(x_1, \ldots, x_n))$ is formally étale. Use exercise 2 to deduce that K/L is a finite and separable extension.

Exercise 4 (4 points):

Let $A \to B$ be a morphism of rings such that B is free of finite rank over A. For $b \in B$ let $\operatorname{tr}_{B/A}(b) \in A$ be the trace of the endomorphism

$$b : B \to B, b' \to bb'.$$

Prove that $\operatorname{Spec}(B) \to \operatorname{Spec}(A)$ is (finite) étale if and only if the trace bilinear form

$$\operatorname{Tr}_{B/A} \colon B \otimes_A B \to A, (b, b') \mapsto \operatorname{tr}_{B/A}(bb')$$

is non-degenerate, i.e., it induces an isomorphism $B \cong \operatorname{Hom}_A(B,A)$, $b \mapsto \operatorname{Tr}_{B/A}(b,-)$. Remark/Hint: Reduce to the case that A is an algebraically closed field. The same statement, with an appropriate definition of the trace pairing, also holds if B is only assumed to be locally free of finite rank over A.

To be handed in on: Monday, 22. May 2017.