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6. Exercise sheet

Exercise 1 (4 points):

Let X be scheme. For a line bundle L ∈ Pic(X) define Isom(OX ,L) to be the sheaf of sets

V ⊆ X 7→ Isom(OV ,L|V ).

i) Prove that Isom(OX ,L) is a O×X -torsor, where O×X ⊆ OX denotes the sheaf of units.
ii) Prove that sending L to Isom(OX ,L) defines a bijection Pic(X) ∼= H1(X,O×X).

Exercise 2 (4 points):

Let X be a topological space and let 1 → N → G → Q → 1 be a short exact sequence of sheaves
of groups on X, i.e., for every x ∈ X the morphism Gx → Qx is surjective with kernel Nx. Prove
that there is a natural short exact sequence (of pointed sets)

1→ N(X)→ G(X)→ Q(X)→ H1(X,N)→ H1(X,G)→ H1(X,Q).

Exercise 3 (4 points):

Let f : Z → S, g : X → S be smooth morphisms of schemes and let i : Z → X be a closed
immersion over S. Prove that for all z ∈ Z there exists a neighborhood U ⊆ X of i(z) and sections
f1, . . . , fn ∈ OX(U) such that Z ∩ U = V (f1, . . . , fd) for some d ≤ n and the induced diagram

Z ∩ U //

(f̄d+1,...,f̄n)
��

U

(f1,...,fn)

��
An−dS

α // AnS
with α((xd+1, . . . , xn)) = (0, . . . , 0, xd+1, . . . , xn) is cartesian with both vertical arrows étale.
Hint: Let I be the ideal sheaf of Z in X. Prove that the sequence 0→ I/I2 → i∗Ω1

X/S → Ω1
Z/S → 0

is an exact sequence of vector bundles and choose, locally around z, sections f1, . . . , fn ∈ OX such
that the differentials df1, . . . , dfn form an adabted basis of i∗Ω1

X/S.

Exercise 4 (4 points):

Let k be an algebraically closed field. Prove that every finite étale morphism f : X → Y := P1
k is

trivial, i.e., X is isomorphic to a disjoint union of copies of Y .
Hint: Consider the quasi-coherent OY -algebra A := f∗(OX) with its multiplication A ⊗OY

A →
A. Use exercise 4 from Algebraic geometry I, exercise sheet 8 to write A =

⊕
Ai with Ai ∼=

OY (i)⊕ki , ki ≥ 0. Use your knowledge about the global sections OY (i)(Y ) to prove that each
element in Ai is nilpotent for i > 0. Use exercise 4 from exercise sheet 5 to construct a canonical
isomorphism A−i ∼= Ai, i ∈ Z, and deduce A = A0, i.e., A ∼= OY ⊗k H0(X,OX) with H0(X,OX)
a finite dimensional étale k-algebra.
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