Algebraic Geometry II

8. Exercise sheet

Exercise 1 (4 points):

Let \mathcal{A} be an abelian category and let

$$A_{1} \xrightarrow{\alpha_{1}} A_{2} \xrightarrow{\alpha_{2}} A_{3} \longrightarrow 0$$

$$\downarrow^{d_{1}} \qquad \downarrow^{d_{2}} \qquad \downarrow^{d_{3}}$$

$$0 \longrightarrow B_{1} \xrightarrow{\beta_{1}} B_{2} \xrightarrow{\beta_{2}} B_{3}$$

be a commutative diagram with exact rows. Prove the snake lemma, i.e., that there exists a natural exact sequence

$$\ker(d_1) \to \ker(d_2) \to \ker(d_3) \xrightarrow{\delta} \operatorname{coker}(d_1) \to \operatorname{coker}(d_2) \to \operatorname{coker}(d_3),$$

and deduce that a short exact sequence of complexes in \mathcal{A} induces a long exact sequence in cohomology.

Hint: To construct δ let $K \subseteq A_2$ be the preimage $\alpha_2^{-1}(\ker(d_3))$. Then d_2 factors over a morphism $d_2' \colon K \to B_1$. Deduce that the composition $K \to B_1 \to \operatorname{coker}(d_1)$ factors over $K/\alpha_1(A_1) \cong \ker(d_3)$.

Exercise 2 (4 points):

i) Let $\mathcal{A} = (\mathrm{Ab})$ be the category of abelian groups. Prove that every bounded above complex $A^{\bullet} \in \mathcal{C}^{-}(\mathcal{A})$ is quasi-isomorphic to the sum of its cohomology groups.

Hint: Take a projective resolution of A^{\bullet} and use that for abelian groups submodules of free modules are again free.

ii) Construct an example of an abelian category \mathcal{A} and two complexes $A^{\bullet}, B^{\bullet} \in \mathcal{C}(\mathcal{A})$ having isomorphic cohomology in each degree, but which are not quasi-isomorphic.

Hint: Set A for example as the category of R-modules with R = k[x,y] or $k[x]/(x^2)$.

Exercise 3 (4 points):

Let \mathcal{A} be an abelian category and let $f: A^{\bullet} \to B^{\bullet}$ be a morphism of complexes of \mathcal{A} . We define the mapping cone C(f) of f as $C(f)^i := B^i \oplus A^{i+1}$ with differential given by

$$C(f)^i \to C(f)^{i+1}, (b,a) \mapsto (d_{B^{\bullet}}(b) + f(a), -d_{A^{\bullet}}(a))$$

i) Prove that there exists a short exact sequence

$$0 \to B^{\bullet} \xrightarrow{\iota} C(f) \to A^{\bullet}[1] \to 0$$

where $A^{\bullet}[1]$ denotes the shifted complex with $(A^{\bullet}[1])^i = A^{i+1}$ and differential $d_{A^{\bullet}[1]} = -d_{A^{\bullet}}$. Prove that the associated connecting morphism $\delta \colon H^i(A^{\bullet}[1]) = H^{i+1}(A^{\bullet}) \to H^{i+1}(B^{\bullet})$ is given by $H^{i+1}(f)$.

ii) Construct a canonical null homotopy h_0 of $\iota \circ f$. Let $g \colon B^{\bullet} \to C^{\bullet}$ be a second morphism of complexes and let h be a null homotopy of the composition $g \circ f$. Construct a canonical morphism $k \colon C(f) \to C^{\bullet}$ such that $k \circ \iota = g$ and $k \circ h_0 = h$.

Exercise 4 (4 points):

Let X be a spectral space, let I be a filtered category and let $\mathcal{F}_i, i \in I$, be a direct system of abelian sheaves on X. For $U \subseteq X$ open let

$$\Psi_U : \varinjlim_I F_i(U) \to (\varinjlim_I F_i)(U)$$

be the canonical morphism.

- i) Assume $U \subseteq X$ is open and quasi-compact. Prove that Ψ_U is injective.
- ii) Assume that $U\subseteq X$ is open and qcqs. Prove that Ψ_U is bijective.
- iii) Prove that for any $n \geq 0$

$$\varinjlim_{I} H^{n}(X, \mathcal{F}_{i}) \cong H^{n}(X, \varinjlim_{I} \mathcal{F}_{i}).$$

Hint: You may assume, or prove, that there exists functorial injective resolutions for abelian sheaves on X. Using this there exists a direct system \mathcal{G}_i , $i \in I$, of complexes of injective abelian sheaves and a quasi-isomorphism $\{\mathcal{F}_i\} \to \{G_i\}$ of direct systems, i.e., each $\mathcal{F}_i \to \mathcal{G}_i$ is a quasi-isomorphism. Prove $H^n(X, \varinjlim_I \mathcal{G}_i) = 0$ for any n > 0 using Cech cohomology and conclude by induction on n.

To be handed in on: Monday, 19. June 2017.