Dr. J. Anschütz

Algebraic Geometry II

10. Exercise sheet

Exercise 1 (4 points):

Let k be a field and let $j: \mathbb{A}_{k}^{2} \backslash\{0\} \rightarrow \mathbb{A}_{k}^{2}$ be the natural open immersion. For $i \geq 0$ compute

$$
R^{i} j_{*} \mathcal{O}_{\mathbb{A}_{k}^{2} \backslash\{0\}}
$$

Exercise 2 (4 points):

Let k be a field and let X be a proper scheme over k. For a coherent sheaf \mathcal{F} on X we define the Euler characteristic

$$
\chi(X, \mathcal{F}):=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{k} H^{i}(X, \mathcal{F})
$$

i) Let $0 \rightarrow \mathcal{F} \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F}^{\prime \prime} \rightarrow 0$ be a short exact sequence. Prove that

$$
\chi\left(X, \mathcal{F}^{\prime}\right)=\chi(X, \mathcal{F})+\chi\left(X, \mathcal{F}^{\prime \prime}\right)
$$

ii) Prove that for $d \in \mathbb{Z}$

$$
\chi\left(\mathbb{P}_{k}^{n}, \mathcal{O}_{\mathbb{P}_{k}^{n}}(d)\right)=\binom{n+d}{n}:=\prod_{i=1}^{n} \frac{d+i}{i}
$$

iii) Assume that X is geometrically integral and $X=V(f) \subseteq \mathbb{P}_{k}^{2}$ for some non-zero $f \in$ $H^{0}\left(\mathbb{P}_{k}^{2}, \mathcal{O}_{\mathbb{P}_{k}^{2}}(d)\right), d>0$. Prove that

$$
\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)=\frac{(d-1)(d-2)}{2}
$$

Exercise 3 (4 points):

Let k be a field and let X be a geometrically integral proper curve over k. Assume that X is a complete intersection in \mathbb{P}_{k}^{3}, i.e., $X=V\left(f_{1}, f_{2}\right)$ for sections $f_{i} \in H^{0}\left(\mathbb{P}_{k}^{3}, \mathcal{O}_{\mathbb{P}_{k}^{3}}\left(d_{i}\right)\right)$ such that the multiplication $\mathcal{O}_{V\left(f_{2}\right)} \xrightarrow{f_{1}} \mathcal{O}_{V\left(f_{2}\right)} \otimes_{\mathcal{O}_{k}^{3}} \mathcal{O}_{\mathbb{P}_{k}^{3}}\left(d_{1}\right)$ is injective.
ii) Prove that the following sequence is exact:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}_{k}^{3}}\left(-d_{1}-d_{2}\right) \xrightarrow{\left(f_{2},-f_{1}\right)} \mathcal{O}_{\mathbb{P}_{k}^{3}}\left(-d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}_{k}^{3}}\left(-d_{2}\right) \xrightarrow{\left(f_{1}, f_{2}\right)} \mathcal{O}_{\mathbb{P}_{k}^{3}} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

iii) Prove that

$$
\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)=\binom{3-d_{1}}{3}+\binom{3-d_{2}}{3}-\binom{3-d_{1}-d_{2}}{3}
$$

and conclude that there exist proper curves which can not be embedded into the plane \mathbb{P}_{k}^{2}.

Exercise 4 (4 points):

Let k be an algebraically closed field and let X be a connected proper smooth curve over k. Recall that for $x \in X(k)$ the line bundle $\mathcal{O}_{X}(x)$ is defined as the dual of the ideal sheaf $\mathcal{O}_{X}(-x) \subseteq \mathcal{O}_{X}$ of the closed subscheme $\{x\} \subseteq X$. Prove that the following are equivalent:
i) $X \cong \mathbb{P}_{k}^{1}$
ii) $H^{1}\left(X, \mathcal{O}_{X}\right)=0$
iii) $\mathcal{O}_{X}(x) \cong \mathcal{O}_{X}(y)$ for all closed points $x, y \in X(k)$.
iv) There exist two distinct closed points $x, y \in X(k)$ such that $\mathcal{O}_{X}(x) \cong \mathcal{O}_{X}(y)$.

Hint: For "ii) \Rightarrow iii)" prove that $H^{1}\left(X, \mathcal{O}_{X}(-x)\right)=0$ for every $x \in X(k)$. Then use the exact sequence $0 \rightarrow \mathcal{O}_{X}(-y) \rightarrow \mathcal{O}_{X}(x) \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(-y) \rightarrow k(x) \rightarrow 0$. For "iv) $\Rightarrow i$ " find two generating sections $s_{1}, s_{2} \in H^{0}\left(X, \mathcal{O}_{X}(x)\right)$ and prove that the corresponding morphism $X \xrightarrow{\left(s_{1}, s_{2}\right)} \mathbb{P}_{k}^{1}$ is an isomorphism.

To be handed in on: Monday, 03. Juli 2017.

