Algebraic Geometry II

11. Exercise sheet

Exercise 1 (4 points):

Let A be a discrete valuation ring with residue field k and fraction field K. Let $s=\operatorname{Spec}(k)$ resp. $\eta=\operatorname{Spec}(K)$ be the special resp. generic point of $S:=\operatorname{Spec}(A)$. Let $f: X \rightarrow S$ be a proper, smooth morphism whose fibers X_{s}, X_{η} are irreducible curves of genus $g \geq 1$. Let $\sigma_{1}, \sigma_{2}: \operatorname{Spec}(R) \rightarrow X$ be two sections of f and assume that $\sigma_{1 \mid s}=\sigma_{2 \mid s}$ while $\sigma_{1 \mid \eta} \neq \sigma_{2 \mid \eta}$. Let $\Gamma_{i}=\sigma_{i}(X) \subseteq X=X \times_{S} S$ be the graph of σ_{i}. Finally, define the line bundle $\mathcal{L}:=\mathcal{O}_{X}\left(\Gamma_{1}-\Gamma_{2}\right)$ on X.
i) Prove that the base change morphism $f_{*}(\mathcal{L}) \otimes_{A} K \rightarrow H^{0}\left(X_{\eta}, \mathcal{L}_{\eta}\right)$ is an isomorphism, but the base change morphism $f_{*}(\mathcal{L}) \otimes_{A} k \rightarrow H^{0}\left(X_{s}, \mathcal{L}_{s}\right)$ not.
Hint: Use Exercise 4 from Exercise sheet 10.
ii) Construct an example for A, X, σ_{i}.

Hint: Find X inside \mathbb{P}_{A}^{2}.

Exercise 2 (4 points):

Let $X \xrightarrow{f} Y \xrightarrow{g} S$ be morphisms of schemes with f a closed immersion with ideal sheaf $\mathcal{I} \subseteq \mathcal{O}_{Y}$ and $g, g \circ f$ smooth of relative dimension n resp. m. Let $\omega_{X / S}:=\Lambda^{n} \Omega_{X / S}^{1}$ and $\omega_{Y / S}:=\Lambda^{m} \Omega_{Y / S}^{1}$ be the canonical bundles. Define the normal bundle of f as $\mathcal{N}_{X / Y}:=f^{*}(\mathcal{I})^{\vee}=\left(\mathcal{I} / \mathcal{I}^{2}\right)^{\vee}$. Prove the adjunction formula

$$
\omega_{X / S} \cong f^{*}\left(\omega_{Y / S}\right) \otimes_{\mathcal{O}_{X}} \Lambda^{m-n} \mathcal{N}_{X / Y}
$$

Exercise 3 (4 points):

Let k be a field and let $X \subseteq \mathbb{P}_{k}^{n}$ be a projective, geometrically connected smooth curve with $\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)=g \geq 2$ which is a complete intersection, i.e., X is the vanishing locus of $n-1$ polynomials $f_{i} \in H^{0}\left(\mathbb{P}_{k}^{n}, \mathcal{O}_{\mathbb{P}_{k}^{n}}\left(d_{i}\right)\right)$. Prove that $\Omega_{X / \operatorname{Spec}(k)}^{1}$ is very ample. Using $\operatorname{dim}_{k} H^{0}\left(X, \Omega_{X / k}^{1}\right)=g$ (to be proven in the lecture) conclude that X has genus $g>2$.
Hint: Use Exercise sheet 7, Exercise 1, the adjunction formula from Exercise 2 and perhaps Exercise sheet 10, Exercise 3.

Exercise 4 (4 points):

i) Let A be a ring and let $C \in D(A)$ be a perfect complex. Prove that the function

$$
\mathfrak{p} \in \operatorname{Spec}(A) \mapsto \sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim}_{k(\mathfrak{p})} H^{i}\left(C \otimes_{A}^{\mathbb{L}} k(s)\right)
$$

is locally constant on $\operatorname{Spec}(A)$.
ii) Let $f: X \rightarrow S$ be a proper, flat morphism of schemes. Prove that the map

$$
s \in S \mapsto \chi_{a}\left(X_{s}\right):=\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{k(s)} H^{i}\left(X_{s}, \mathcal{O}_{X_{s}}\right)
$$

is locally constant, where $X_{s}:=X \times_{S} \operatorname{Spec}(k(s))$ for $s \in S$.
To be handed in on: Monday, 10. Juli 2017.

