## Algebraic Geometry II

## 12. Exercise sheet

## Exercise 1 (4 points):

Let $f: Y \rightarrow X$ be a morphism of schemes. Let $E \in D(X)$ be a bounded complex of locally free $\mathcal{O}_{X}$-modules of finite rank and let $C \in D^{+}(Y)$ be a complex of $\mathcal{O}_{Y}$-modules.
i) Construct a natural morphism

$$
\Phi_{C, E}: R f_{*}(C) \otimes_{\mathcal{O}_{X}}^{\mathbb{L}} E \rightarrow R f_{*}\left(C \otimes_{\mathcal{O}_{Y}}^{\mathbb{L}} L f^{*}(E)\right)
$$

ii) Prove that $\Phi_{C, E}$ is an isomorphism in $D^{+}(Y)$.

Hint: In i) use that, for sheaves, a local section $e \in E$ defines a morphism

$$
C \rightarrow C \otimes_{\mathcal{O}_{Y}} f^{*}(E), c \mapsto c \otimes f^{*}(e)
$$

You may want to use then that tensoring with locally free sheaves of finite rank preserves injective sheaves. For ii) reduce the statement to a local statement and then to $E \cong \mathcal{O}_{X}$.

## Exercise 2 (4 points):

Let $k$ be a field and let $X, Y$ be two quasi-compact and separated schemes over $k$. Let $\mathcal{F}$ be a locally free $\mathcal{O}_{X}$-module of finite rank and let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_{Y}$-module. Let $p: X \times_{k} Y \rightarrow X$ resp. $q: X \times_{k} Y \rightarrow Y$ be the projections. Prove the Künneth formula

$$
H^{n}\left(X \times_{k} Y, p^{*} \mathcal{F} \otimes_{\mathcal{O}_{X \times_{k} Y}} q^{*} \mathcal{G}\right) \cong \bigoplus_{i+j=n} H^{i}(X, \mathcal{F}) \otimes_{k} H^{j}(Y, \mathcal{G})
$$

for $n \geq 0$.
Hint: Compute $R \Gamma\left(X \times_{k} Y,-\right) \cong R \Gamma\left(X, R p_{*}(-)\right)$ using the projection formula from Exercise 1 and flat base change. Then use or prove that every complex of $k$-vector spaces is quasi-isomorphic to its cohomology groups.

Exercise 3 (4 points):
Let $k$ be an algebraically closed field and let $X$ be an elliptic curve over $k$, i.e., $X$ is a proper smooth curve over $k$ of genus 1 together with a distinguished base point $x_{0} \in X(k)$. Prove that $X$ can be embedded into $\mathbb{P}_{k}^{2}$ as a plane curve defined by the affine Weierstraß equation

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

such that $x_{0}$ maps to the point $(x: y: z)=(0: 1: 0)$.
Hint: Using Riemann-Roch and Serre duality prove that $\operatorname{dim}_{k} H^{0}\left(X, \mathcal{O}_{X}\left(n x_{0}\right)\right)=n$ for $n \geq 1$. Then pick $x \in H^{0}\left(X, \mathcal{O}_{X}\left(2 x_{0}\right)\right) \backslash H^{0}\left(X, \mathcal{O}_{X}\left(x_{0}\right)\right) \subseteq H^{0}\left(X, \mathcal{O}_{X}\left(3 x_{0}\right)\right)$ and $y \in H^{0}\left(X, \mathcal{O}_{X}\left(3 x_{0}\right)\right) \backslash$ $H^{0}\left(X, \mathcal{O}_{X}\left(2 x_{0}\right)\right)$.

## Exercise 4 (4 points):

Let $R$ be a ring. We set

$$
\Omega_{R((t)) / R}^{1, \text { cont }}:=R((t)) \otimes_{R[t]} \Omega_{R[t] / R}^{1}=R((t)) d t .
$$

i) Let $f(t)=a_{1} t+a_{2} t^{2}+\ldots \in R((t))$ such that $a_{1} \in R^{\times}$is a unit. Prove that

$$
\alpha_{f}: R((t)) \rightarrow R((t)), t \mapsto f(t)
$$

is an automorphism of $R((t))$.
ii) Prove that the residue

$$
\text { res: } \Omega_{R((t)) / R}^{1, \text { cong }} \rightarrow R, \sum_{n \gg-\infty} b_{n} t^{n} d t \mapsto b_{-1}
$$

is invariant under the induced automorphisms on $\Omega_{R((t)) / R}^{1, \text { cong }}$ for $\alpha_{f}$ as in $\left.i\right)$.
Hint: For $m \geq 0$ use the known statement for $R=\mathbb{C}$ from the lecture to conclude that ii) holds for the automorphism $\alpha_{f \text { univ }}$ with $f^{\text {univ }}(t)=a_{1} t+a_{2} t^{2}+\ldots$ over $R=\mathbb{Z}\left[a_{1}^{ \pm 1}, a_{2}, \ldots, b_{-m}, b_{-m+1}, \ldots\right]$ and the differential $\sum_{n \geq-m} b_{n} t^{n} d t$. Then conclude the statement in general.

To be handed in on: Monday, 17. Juli 2017.

