ERRATUM TO THE PAPER "BREUIL-KISIN-FARGUES MODULES WITH COMPLEX MULTIPLICATION"

JOHANNES ANSCHÜTZ

As noted in [2, Remark 1.2.2] the statement of 1, Lemma 3.25] is false. A counterexample is presented in [2, Example 4.3.4]. In this erratum we present this counterexample, discuss the failure of [1, Lemma 3.25] and its effects on the results of [1.

We use the notation from [1, Section 3], i.e., C / \mathbb{Q}_{p} is a non-archimedean, algebraically closed field, A_{inf} Fontaine's period ring for \mathcal{O}_{C}, and $\epsilon=\left(1, \zeta_{p}, \ldots\right) \in C^{b}$, $\mu=[\epsilon]-1, \tilde{\xi}:=\frac{\varphi(\mu)}{\mu}, t=\log ([\epsilon])$.
Example 0.1 ([1, Example 3.3]). For $d \in \mathbb{Z}$, the pair $A_{\mathrm{inf}}\{d\}:=\mu^{-d} A_{\mathrm{inf}} \otimes_{\mathbb{Z}_{p}} \mathbb{Z}_{p}(d)$ with Frobenius $\varphi_{A_{\mathrm{inf}}\{d\}}=\tilde{\xi}^{d} \varphi_{A_{\text {inf }}}$ is a Breuil-Kisin-Fargues module, and in fact each Breuil-Kisin-Fargues module of rank 1 is isomorphic to some $A_{\mathrm{inf}}\{d\}$ (1) Lemma 3.12]). The corresponding B_{dR}^{+}-latticed \mathbb{Q}_{p}-vector space (in the terminology of [2, Definition 4.2.1]) is $\left(\mathbb{Q}_{p}, t^{-d} B_{\mathrm{dR}}^{+}\right)$. Each $A_{\mathrm{inf}}\{d\}$ admits a canonical rigidification because $\tilde{x}=u \cdot p$ in $A_{\text {crys }}$ for some unit (alternatively one can use [1, Lemma 4.3]).

According to 1, Lemma 3.28]

$$
\operatorname{Ext}_{\mathrm{BKF}_{\mathrm{rig}}^{\circ}}^{1}\left(A_{\mathrm{inf}}, A_{\mathrm{inf}}\{d\}\right) \cong B_{\mathrm{dR}} / t^{d} B_{\mathrm{dR}}^{+}
$$

Now, a counterexample to [1, Lemma 3.25] will be provided by the case $d=0$ with extension corresponding to $1 / t$. Explicitly the corresponding extension of B_{dR}^{+}-latticed \mathbb{Q}_{p}-vector spaces is given by
$0 \rightarrow\left(\mathbb{Q}_{p} \cdot e_{1}, B_{\mathrm{dR}}^{+} \cdot e_{1}\right) \rightarrow\left(\mathbb{Q}_{p} \cdot e_{1} \oplus \mathbb{Q}_{p} \cdot e_{2}, B_{\mathrm{dR}}^{+} \cdot e_{1} \oplus B_{\mathrm{dR}}^{+}\left(1 / t \cdot e_{1} \oplus e_{2}\right)\right) \rightarrow\left(\mathbb{Q}_{p} \cdot e_{2}, B_{\mathrm{dR}}^{+} \cdot e_{2}\right) \rightarrow 0$
as presented in [2, Example 3.1.4]. Now, the fiber functor $\omega_{\text {ét }} \otimes C$ in [1, Lemma $3.25]$ from rigidifed Breuil-Kisin-Fargues modules to C-vector spaces factors over the functor to B_{dR}^{+}-latticed \mathbb{Q}_{p}-vector spaces, and this functor is not exact as a filtered functor as noted in [2, Example 3.1.4]: The above exact sequence maps in gr^{0} to

$$
0 \rightarrow C \rightarrow 0 \rightarrow C \rightarrow 0 .
$$

Indeed, the lattice $B_{\mathrm{dR}}^{+} e_{1} \oplus B_{\mathrm{dR}}^{+}\left(1 / t \cdot e_{1}+e_{2}\right)$ induces on $V_{C}:=C \cdot e_{1} \oplus C \cdot e_{2}$ the filtration

$$
0 \subseteq \mathrm{Fil}^{1}=C \cdot e_{1} \subseteq \mathrm{Fil}^{0}=V_{C} .
$$

This example shows that the mistake in the "proof" of [1, 3.25] lies in the last five lines: Even though the element $v \otimes 1$ is part of some basis (e.g., $v \otimes 1=e_{1}$ in the above example), it need not be part of an adapted bases. As far as I can tell this is the only mistake made.

We now discuss the effect of this mistake to the rest of the paper.

[^0](1) In [1, Section 2] we fix a filtered fiber functor $\omega_{0} \otimes C: \mathcal{T} \rightarrow \mathrm{Vec}_{C}$ stating that later we can apply the discussion to rigidified Breuil-Kisin-Fargues modules. This is not true, however, restricting to CM rigidified Breuil-Kisin-Fargues modules the fiber functor $\omega_{e ́ t}$ with its functorial filtration over C is a filtered fiber functor. Indeed, any fiber functor on a semisimple Tannakian category, which is equipped with a functorial filtration compatible with tensor products is necessary a filtered fiber functor as each exact sequence splits. Hence, the general theory of this section can be applied on the full Tannakian subcategory of CM-objects. We note that the type of a CM-object ([1, Definition 2.9]) only requires a functorial filtration on a fiber functor compatible with tensor products (and in characteristic 0 this data will automatically yield a filtered fiber functor on the CM-objects as explained above).
(2) The proof of [1, Lemma 3.27] cites [1, Lemma 3.25], however the claimed exactness is not used in the argument. Indeed, the claimed triviality of the filtration follows by correct compatibility of the filtration with tensor products. A similar argument occurs in [2, Theorem 4.3.5].
(3) With the above adjustements, the results in [1, Section 4, Section 5] are not effected.

References

[1] Johannes Anschütz. Breuil-Kisin-Fargues modules with complex multiplication. Journal of the Institute of Mathematics of Jussieu, 20(6):1855-1904, 2021.
[2] Sean Howe and Christian Klevdal. Admissible pairs and p-adic hodge structures i: Transcendence of the de rham lattice, 2023.
Email address: ja@math.uni-bonn.de

[^0]: Date: December 22, 2023.

