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We prove v-descent for solid quasi-coherent sheaves on perfectoid spaces as a
key technical input for the development of a 6-functor formalism with values in
solid quasi-coherent sheaves on relative Fargues–Fontaine curves.
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1 Introduction

Let p be a prime, and let Perfd be the category of perfectoid spaces over Zp. We equip
Perfd with the v-topology, i.e., the Grothendieck topology generated by surjections of affinoid
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perfectoid spaces. The main result of this paper is the following theorem:

Theorem 1.1 (Theorem 3.7, Theorem 5.6). There exists a unique hypercomplete v-sheaf of
∞-categories

Perfdop → Cat∞, X 7→ Da
�̂
(O+

X),

such that for each +-bounded affinoid perfectoid space X = Spa(A, A+) we have Da
�̂
(O+

X) ∼=
Da

�̂
(A+) compatibly with pullback.

Here, Da
�̂
(A+) refers to a(n almost version of a) slight modification of the category D�(A+)

of solid A+-modules introduced in [23] and [1] (the exact definition is Definition 2.1, Def-
inition 3.2). Roughly the potentially non-complete compact generators of D�(A+) get re-
placed in D�̂(A+) by their π-adic completions for a pseudo-uniformizer π ∈ A. Theorem 1.1
formally implies v-hyperdescent of the functor X 7→ D�̂(OX) on perfectoid spaces because
D�̂(OX) := ModOX

(Da
�̂
(O+

X)).
The notion of +-boundedness (Definition 3.14) is a mild cohomological finiteness condition

on perfectoid spaces, which only depends on the tilt to characteristic p and is satisfied for
affinoid perfectoid spaces of characteristic p that are quasi-pro-étale or weakly of perfectly
finite type over a totally disconnected space (Example 3.16). In particular, this yields the
uniqueness of the v-sheaf X 7→ Da

�̂
(O+

X) in Theorem 1.1.
Theorem 1.1 will be used in [2] as the essential technical ingredient for setting up a 6-

functor formalism with values in (modified) solid quasi-coherent sheaves on the Fargues–
Fontaine curve. This 6-functor formalism implies finiteness and duality results for the pro-
étale cohomology of general pro-étale Qp-local systems on smooth rigid-analytic varieties, and
we refer to [2] for more details and motivation for the study of these assertions (and hence
of Theorem 1.1). We note that our proof of Theorem 1.1 would not simplify if the pro-étale
topology is considered instead of the v-topology. Moreover, the identification of Da

�̂
(O+

X)
for X a +-bounded affinoid perfectoid space (and not merely in the easier case if X totally
disconnected), is critical to establish existence of the 6-functor formalism, e.g., the projection
formula, and some of its properties, e.g., cohomological smoothness for smooth rigid-analytic
varieties over Cp.

We now give a rough sketch of the proof of Theorem 1.1, which at the same time will
summarize the content of the different sections in this paper. First of all, Theorem 1.1 is an
O+-analog of a main theorem of [16], namely [16, Theorem 1.8.3], which we recall due to its
importance for this paper:

Theorem 1.2 ([16, Theorem 1.8.2., Theorem 1.8.3., Theorem 3.5.21]). There exists a unique
hypercomplete v-sheaf of ∞-categories

Perfdop
π → Cat∞, X 7→ Da

�
(O+

X/π),

such that for each +-bounded affinoid perfectoid space X = Spa(A, A+) with uniformizer π
we have Da

�
(O+

X/π) ∼= Da
�
(A+/π) compatibly with pullback.

Here, Perfdπ denotes the category of perfectoid spaces X with a choice of a pseudo-
uniformizer π and morphisms respecting π. We note that here Da

�
(A+/π) is (an almost

version of) the solid category for the discrete ring A+/π introduced in [23].
Theorem 1.1 and Theorem 1.2 are tightly related. On the one hand, Remark 3.5 implies

that
ModO+

X /π(Da
�̂
(O+

X)) ∼= Da
�
(O+

X/π)

for each perfectoid space X with a pseudo-uniformizer π, which shows that Theorem 1.1
implies Theorem 1.2. On the other hand our definition of Da

�̂
(A+) is made to use Theorem 1.2
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in our proof of Theorem 1.1. We note that this reduction does not seem possible for the usual
category Da

�
(A+) instead of Da

�̂
(A+) – we heavily use that the compact generators of the

latter are π-complete.
In Section 2.2 we define the modification D�̂(A) of D�(A) for any adic analytic ring A (in

the general sense of Definition 2.1) by I-completing the compact generators of D�(A) with
respect to some ideal of definition I ⊆ π0(A), and study its basic properties. In particular,
we prove the following comparison statements.

Theorem 1.3 (Proposition 2.17, Lemma 2.9, Lemma 2.18.(i)). Let A be an adic analytic
ring, and α∗ : D�(A)→ D�̂(A) the natural functor.

(i) If A+ is of finite type over Zp, then α∗ is an equivalence.

(ii) The functor α∗ induces an equivalence D�(A)nuc ∼= D�̂(A)nuc on nuclear objects.

(iii) D�(A)nuc ⊆ D�(A) is the full subcategory generated under colimits by I-complete objects
M ∈ D�(A), which are discrete mod I.

In Theorem 2.30 we prove a descent theorem for D�̂(−) as a functor on adic rings, by
reducing the descent question modulo all In:

Theorem 1.4 (Theorem 2.30). Let A→ B be an adic morphism of adic rings, and I ⊆ π0(A)
an ideal of definition. Assume that A/In → B/In, n ≥ 0, is descendable of index independent
of n (in the sense of [16, Definition 2.6.7]). Then A→ B satisfies descent for D�̂(−).

Again, such a statement does not seem possible for D�(−). Morever, following [1] we
globalize D�̂ to stably uniform analytic adic spaces in Section 2.4 with an eye towards our
applications in [2].

Theorem 1.5 (Theorem 2.38). The functor Spa(B, B+) 7→ ModB(D�̂(B◦, B+)) satisfies
analytic (resp. étale) descent on stably uniform (resp. sousperfectoid) affinoid analytic adic
spaces.

In Section 3.1 we move to perfectoid spaces, where we define Da
�̂
(A+) for any affinoid

perfectoid space X = Spa(A, A+) (Definition 3.2). Then we apply the complete descent
results from Section 2.3 to obtain v-descent of Da

�̂
(A+) on totally disconnected perfectoid

spaces (Theorem 3.7). From here, we can define Da
�̂
(O+

X) for any perfectoid space X (or even
small v-stack on Perfd) by v-descent. This proves the existence part of Theorem 1.1, with
the exception of the identification Da

�̂
(O+

X) ∼= Da
�̂
(A+) if X = Spa(A, A+) is a +-bounded

affinoid perfectoid space. This question we adress next.
There exists an evident functor

(̃−) : Da
�̂
(A+)→ Da

�̂
(O+

X ),

and this functor admits a right adjoint, denoted by Γ(X,−). Let π ∈ A be a pseudo-
uniformizer. Using Theorem 1.2 (and in particular the assumption that X is +-bounded),
it is fairly easy to see that (̃−) is an equivalence if (and only if) the abstractly defined cat-
egory Da

�̂
(O+

X) is generated under colimits by (suitably bounded) π-complete objects, and
Γ(X,−) preserves colimits (Lemma 3.22). Both of these properties of Da

�̂
(O+

X) are proven by
a detour through a category Dnuc(X,Zp[[π]]) of (overconvergent) nuclear sheaves of Zp[[π]]-
modules on Xqproet that we discuss in Section 4 following [15] and [9]. The discussion of
Dnuc(X,Zp[[π]]) involves a rather long and detailed analysis of solid, ω1-solid and overcon-
vergent objects in D(Xqproet,Zp[[π]]) for a general p-bounded spatial diamond. The criti-
cial assertion in this section concerns the nuclear objects in the category of ω1-solid objects
D�(X,Zp[[π]])ω1 ⊆ D(Xqproet,Zp[[π]]). We stress that nuclearity here refers to the abstract
notion from [6, Lecture VIII], and not to the more geometric notion introduced in [15].
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Lemma 1.6 (Lemma 4.15, Lemma 4.20). Let ℓ be a prime, and let X be an ℓ-bounded
affinoid perfectoid space, and Λ an adic profinite Zℓ-algebra, e.g., Λ = Zp[[π]] if ℓ = p.
Then the category Dnuc(X, Λ) of nuclear objects in D�(X, Λ)ω1 is generated under colimits by
overconvergent, complete, right-bounded objects.

Especially the generation by complete objects is non-obvious. Together with the good co-
homological properties of ω1-solid Zp[[π]]-sheaves on Xqproet this is the source of the desired
properties of Da

�̂
(O+

X) for a +-bounded affinoid perfectoid space X. The precise implemen-
tation of these properties involves Corollary 5.5, which realizes Da

�̂
(O+

X) as a category of
O+a-modules in the abstract Dnuc(Zp[[π]])-linear category

Dnuc(X, (A+)a
�̂
) := Dnuc(X,Zp[[π]]) ⊗Dnuc(Zp[[π]]) D

a
�̂
(A+).

This latter category is well-behaved thanks to the rigidity of Dnuc(Zp[[π]]) (Remark 4.22) and
dualizability of Da

�̂
(A+) as a Dnuc(Zp[[π]])-module (Lemma 5.2). However, the equivalence

Da
�̂
(O+

X) ∼= ModO+a(Dnuc(X, (A+)a
�̂
)).

of Corollary 5.5 needs as an input the equivalence Da
�̂
(O+

Z
/X ) ∼= Da

�̂
(B+, A+) for the relative

compactification Z
/X

of a strictly totally disconnected space Z = Spa(B, B+), which is quasi-

pro-étale over X. As Z
/X is not necessarily totally disconnected, this does not follow from

the descent of totally disconnected spaces proven in Theorem 3.7, and we supply an argument
in Theorem 3.23 using an analysis of families of Riemann-Zariski spaces (Lemma 3.26).

1.1 Acknowledgements

We thank Arthur-César Le Bras heartily for all his feedback, and for all discussions in an
early stage of this project. For personal, Monadic reasons he unfortunately had to leave
this project in a later stage. We moreover thank Gregory Andreychev, Johan de Jong, Juan
Esteban Rodriguez Camargo and Peter Scholze for discussions related to this paper.

1.2 Notations and conventions

For technical convenience we fix an implicit cut-off cardinal κ (in the sense of [22, Section
4]), and assume all our perfectoid spaces, and condensed sets to be κ-small. In particular,
for a Huber pair (A, A+) its associated category D�(A, A+) ([1, Theorem 3.28]) is generated
by a set of compact objects. Passing to the filtered colimit over all κ’s implies the descent
statement in general.

We work implicitly “condensed” and “animated”. More precisely, a ring R will mean a
condensed animated ring. It is called static if R ∼= π0(R) (as a condensed ring), and discrete
if R ∼= R(∗)disc, where R(∗) is the “underlying animated ring”, or equivalently, R is discrete
if the functor S 7→ R(S) on profinite sets maps cofiltered inverse limits to filtered colimits.

Given a ring R and an ideal I ⊆ π0(R(∗)) generated by elements f1, . . . , fn ∈ I, we set
M/I := Z⊗Z[x1,...,xn] M for any R-module M where the tensor product is implicitly derived.
Here, the map Z[x1, . . . , xn]→ R making M into an Z[x1, . . . , xn]-module is classified by the
elements f1, . . . , fn. In particular, the quotient M/I depends on the choice of elements, and
we will carefully make this clear when this may create confusion. Concretely, the quotient

M/I is calculated by the tensor product of the complexes M
fi−→M , i = 1, . . . , n.

Given a Z[x]-linear category C with sequential limits we call X ∈ C x-complete if the inverse
limit

. . .→ X
x
−→ X

vanishes.
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2 D�̂(A) for adic rings

When proving descent for solid modules over p-complete rings, one of the main challenges
is that in general the compact generators of D�(A) are not p-complete, even if A itself is
so. Indeed, by the very definition the compact generators of D�(A) are colimits over the
category of maps A′ → A with A′ a finitely generated Z-algebra ([1, Definition 3.20]). This
defect breaks the usual strategy of reducing descent questions to the reductions mod pn and
therefore makes it hard to get any good general descent results on p-adically complete rings
and general solid modules. To overcome this issue, we present a slight modification of D�(A),
denoted D�̂(A) in the following (Definition 2.4), where we replace the compact generators
of D�(A) by their p-adic completions. This construction may seem a bit artificial, but the
results in this section show that we do not lose much and still have a very tight relation to
D�(A). With this modified version of solid modules we then explain how descent questions
can indeed be reduced modulo pn (Theorem 2.30).

Of course the construction of D�̂(A) works for any adically complete rings (instead of just
p-complete rings), so we perform it in the natural generality. Hence, we start by discussing
adic analytic rings.

2.1 Adic rings

We fix the following terminology. Note that we adhere to our conventions from Section 1.2.
We let Z� be the solid analytic ring from [23, Definition 5.1] and Z[T ]� the analytic ring

from [23, Theorem 8.2]. If A is any solid ring, and S → π0(A)(∗) a map of sets, then we
denote by (A, S)� the analytic ring over Z� such that an object M ∈ ModA(D(Z�)) is (A, S)�-
complete if and only if M is Z[s]�-complete for any s ∈ S with induced map Z[s] → A of
rings. For (A, S) = (A, A+) a classical complete Huber pair, this analytic ring structure has
been analyzed in [1]. We note that by [24, Appendix to lecture XII] and [1, Proposition 3.32]
(A, S)�

∼= (A, S̃)� if S̃ ⊆ π0(A)(∗) denotes the smallest integrally closed subring containing
each topologically nilpotent element and the image of S.1

Definition 2.1. (a) We say that a ring A is adic if there is some finitely generated ideal
I ⊆ π0(A)(∗) such that A/I is discrete and A is I-adically complete. We call any such
ideal I an ideal of definition of A.

(b) An adic analytic ring is an analytic ring A of the form A = (A, A+)�, where A is an
adic ring and A+ ⊆ π0(A)(∗) is a subring. We denote by

AdicRing ⊆ AnRing

the full subcategory spanned by the adic analytic rings. Given an adic analytic ring A
we usually write A = A[∗] for its underlying adic ring.

(c) A map f : A→ B of adic rings is called adic if for some ideal of definition I of A, f(I)
generates an ideal of definition of B. A map of adic analytic rings is called adic if the
map of underlying adic rings is adic.

Given an adic ring A with ideal of definition I, we denote by D(A) := ModA(D(Cond(Ab))
its (stable ∞-)category of modules in condensed abelian groups, and we let D(A)Î ⊆ D(A)
be the full subcategory of I-adically complete A-modules, i.e., those which are x-complete for
any x ∈ I. This notion does not depend on the choice of I or is generators:

1By definition, an element a ∈ π0(A)(∗) is topologically nilpotent if the associated map Z[T ] → A factors
over Z[[T ]] as a map of rings. As A is solid and Z[[T ]] ⊗(Z[T ],Z)� Z[[T ]] ∼= Z[[T ]] this factorization is unique
if it exists.
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Lemma 2.2. Let A be an adic ring.

(i) For any two ideals of definition I, I ′ of A we have D(A)Î = D(A)Î′ .

(ii) A map f : A → B is adic if and only if for every ideal of definition I of A, f(I) ⊆
π0(B)(∗) generates an ideal of definition of B.

Proof. We first prove (i), so let I and I ′ be given. Without loss of generality we can assume
I ⊆ I ′ because the intersection of two ideals of definition is an ideal of definition. Pick
any a ∈ I ′. Then A/I is a-adically complete (as a finite limit of copies of A’s), and hence
the induced map Z[x] → A/I factors over Z[[x]] → A/I. Since A/I is discrete and in
particular nuclear as a Z�-module, we have HomZ(Z[[x]], A/I) = lim

−→n
HomZ(Z[x]/xn, A/I),

which implies that a is nilpotent in π0(A/I)(∗). But then any I-adically complete A-module
is also a-adically complete. Since a ∈ I ′ was arbitrary, we immediately arrive at the claimed
identity.

We now prove (ii), so let f : A → B be an adic map of adic rings and I some ideal of
definition of A. By assumption there is some ideal of definition I ′ of A such that f(I ′)
generates an ideal of definition of B. If I ′′ is any ideal of definition of A containing I ′ then
by the proof of (i), every element in I ′′ has some power which lies in I ′; hence also f(I ′′)
generates an ideal of definition of B. We apply this to I ′′ = I ′ + I. But by reversing this
argument we also deduce that f(I) generates an ideal of definition of B, as desired. The
converse direction is clear.

Definition 2.3. Let A be an adic ring. We say that an A-module M ∈ D(A) is adically
complete if it is I-adically complete for some (equivalently every) ideal of definition I of A. We
denote by Dcpl(A) ⊆ D(A) the full subcategory spanned by the adically complete A-modules
and by

(−)cpl : D(A)→ Dcpl(A)

the left-adjoint of the inclusion. For an analytic adic ring A we similarly denote Dcpl(A) :=
D(A) ∩ Dcpl(A).

Here, the existence of (−)cpl is guaranteed by the adjoint functor theorem, which applies
here as all categories here are presentable (recall that we have fixed a cut-off cardinal κ in
Section 1.2).

2.2 Definition of D�̂(A)

With a good notion of adic rings and adically complete modules at hand, we can now construct
the promised modification of D(A). The definition is very simple, albeit somewhat artificial:

Definition 2.4. Given A an adic analytic ring, let CA ⊆ Dcpl(A) be the full subcategory
generated under finite (co)limits and retracts from the essential image of the full subcategory
D(A)ω of compact A-modules under (−)cpl. Then we define

D(Â) := Ind(CA).

Writing A = (A, A+)�, we also use the notation D�̂(A, A+) := D(Â).

The following results show that D(Â) is quite close to D(A) and in particular inherits all
of its nice properties:

Lemma 2.5. Let A be an adic analytic ring.

6



(i) D(Â) is a stable ∞-category that can naturally be equipped with a closed symmetric
monoidal structure and a t-structure.

(ii) There is a natural colimit-preserving, symmetric monoidal and right t-exact functor
α∗ : D(A)→ D(Â).

(iii) The functor α∗ has a right adjoint α∗ : D(Â) → D(A) which is t-exact, conservative,
preserves all small limits and colimits and commutes with truncations.

(iv) For every compact A-module P ∈ D(A) we have α∗α∗P = Pcpl.

Proof. Let CA ⊆ Dcpl(A) be as in Definition 2.4. Recall that there is a symmetric monoidal
structure ⊗̂A on Dcpl(A) given by the completed tensor product.2 Since compact objects
in D(A) are stable under ⊗A (here we use that A is an analytic ring over Z�) it follows
that CA is stable under ⊗̂A, so that we naturally get a symmetric monoidal structure on
CA. By [12, Corollary 4.8.1.14] we can uniquely extend this symmetric monoidal structure to
D(Â) = Ind(CA) so that it preserves colimits in each argument.

The functor α∗ is the natural functor colimit D(A) = Ind(D(A)ω) → Ind(CA) = D(Â)
induced by the completion functor D(A)ω → CA. By [12, Corollary 4.8.1.14] α∗ can be
upgraded uniquely to a symmetric monoidal functor. The right adjoint α∗ exists by the
adjoint functor theorem (using that we have fixed a cut-off cardinal). Since α∗ preserves
compact objects (by definition) it follows that α∗ commutes with filtered colimits and hence
with all colimits. It is also easy to see that α∗ is conservative: Given any M ∈ D(Â) with
α∗M = 0, pick any compact P ∈ D(A); then 0 = Hom(P, α∗M) = Hom(α∗P, M), so it is
enough to show that the family of functors Hom(α∗P,−) is conservative (with P ranging over
compact A-modules). But this follows immediately from the fact that the α∗P form compact
generators of D(Â) by construction.

We now prove (iv), so fix any compact A-module P . Note that α∗P is adically complete:
For any ideal of definition I for A and any x ∈ I we need to check that lim←−x

α∗P = 0 with

lim
←−

taken in D(Â), and for this it is enough to check that lim
←−x

Hom(Q, α∗P ) = 0 for every
Q ∈ CA; but this statement depends only on CA, which is a full subcategory of Dcpl(A). Thus,
we have checked that α∗P is adically complete. Since α∗ preserves all small limits, we deduce
that also α∗α∗P is adically complete, i.e. lies in Dcpl(A). Hence the unit P → α∗α∗P induces
a map Pcpl → α∗α∗P . To show that this map is an isomorphism, it is enough to do so after
applying Hom(Q,−) for any compact Q ∈ D(A); we have:

Hom(Q, Pcpl) = Hom(Qcpl, Pcpl) = Hom(α∗Q, α∗P ) = Hom(Q, α∗α∗P ),

where in the second step we used that CA ⊆ D(A) is a full subcategory.
We have now proved everything apart from the claims about the t-structure. We define
D≥0(Â) ⊆ D(Â) to be the full subcategory spanned by those objects M ∈ D(Â) such that
α∗M ∈ D≥0(A). This subcategory is clearly stable under colimits and extensions and by (iv)
it contains α∗A[S] for all profinite sets S. It follows that the α∗A[S] are compact generators
of D≥0(Â), so by [12, Proposition 1.4.4.11.(i)] this subcategory defines a t-structure on D(Â).
Since every M ∈ D≥0(A) is a (sifted) colimit of the free generators A[S] it follows easily
from (iv) that α∗ is right t-exact (because (−)cpl is so). Moreover, α∗ is right t-exact by
construction and it is left t-exact because α∗ is right t-exact. Finally, one checks easily that
α∗ commutes with τ≥0 by passing to left adjoints; from the usual truncation triangle it then
follows that α∗ also commutes with τ≤0.

2This follows from the fact that Hom(M, N) is adically complete whenever N ∈ D(A) is adically complete.
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Remark 2.6. By Lemma 2.5 the adjunction of α∗ and α∗ is monadic and hence identifies
D(Â) with a category of modules over some monad on D(A). Thus one may think of Â
as some form of generalized analytic ring and D(Â) as its category of modules. One may
attempt to formalize this idea in order to get a general theory of generalized analytic rings,
but we will not pursue this further. We note that α∗ : D(Â)→ D(A) is in general not D(A)
linear, or equivalently α∗ does not satisfy the projection formula (otherwise for each compact
object P ∈ A one has P ⊗ α∗(α∗(A) ∼= α∗(α∗P ) ∼= Pcpl). Thus, modules over the monad
α∗(α∗(−)) do in general not identify with modules under some ring object in D(A).

Before we continue, let us make everything more functorial. We have the following straight-
forward result:

Lemma 2.7. The construction A 7→ D(Â) defines a functor AdicRingop → CAlg(Cat∞) and
α∗ : D(A)→ D(Â) defines a natural transformation of such functors.

Proof. The assignment A 7→ D(A) defines a functor AdicRingop → CAlg(Cat∞) (see e.g.
[16, Proposition 2.3.26]). By looking at the associated cocartesian family of ∞-operads and
restricting to a full subcategory of that, we can construct the functor A 7→ Dcpl(A) (see
[16, Lemma 2.2.22] for the general strategy of this argument). By restricting to even small
full subcategories we obtain the functor which associates to each A the full subcategory
CA ⊆ Dcpl(A) from Definition 2.4. By the remark right before [12, Proposition 4.8.1.10] the
assignment C 7→ Ind(C) defines an endofunctor of symmetric monoidal ∞-categories. This
finishes the construction of the functor A 7→ D(Â).

The construction of the natural transformation α∗ works in a very similar fashion, by
making everything relative over ∆1.

Definition 2.8. (a) For every A ∈ AdicRing we denote by − ⊗A Â : D(A) → D(Â) the
functor α∗ from Lemma 2.5.(ii).

(b) For every map A → B in AdicRing we denote by −⊗Â B̂ : D(Â) → D(B̂) the induced
functor from Lemma 2.7.

We will write α∗
A, αA,∗ in case we need to clarify the dependence of α∗, α∗ on A. If A→ B

is a morphism of adic analytic rings, then α∗
B((−)⊗A B) ∼= α∗

A(−)⊗Â B̂ by Lemma 2.7.
We remark that − ⊗A Â and − ⊗Â B̂ are symmetric monodial. While for general adic

analytic rings A, D(Â) differs from D(A), in praxis these two categories are often the same:

Lemma 2.9. Let (A, A+)� be an adic analytic ring. If either A is discrete or A+ is finitely
generated over Z, then D(Â) = D(A).

Proof. We use the notation from Lemma 2.5. Since α∗ is conservative, in order to prove
the desired equivalence of categories it is enough to show that α∗ is fully faithful, i.e. that
for all M ∈ D(A) the unit of the adjunction M

∼
−→ α∗α∗M is an isomorphism. Since α∗

and α∗ preserve colimits, this reduces to the case that M = P is compact, in which case by
Lemma 2.5.(iv) the claim reduces to showing that P is adically complete. This is evident if
A is discrete, so it remains to treat the case where A+ is finitely generated.

We can assume that A+ is a finitely generated polynomial algebra over Z and that there
is a map A+ → A. By choosing generators of an ideal of definition of A we construct a map
A+[x•] := A+[x1, . . . , xn]→ A, which then automatically factors as A+[[x•]]→ A. Note that
for every profinite set S we have

(A, A+)�[S] = A⊗A+
�

A+
�

[S] = A⊗(A+[[x•]],A+)� (A+[[x•]], A+)�[S]
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On the other hand, (A+[[x•]], A+)�[S] ∼=
∏

I A+[[x•]] for some set I (as A+ is finitely generated
over Z), so in particular it is (x1, . . . , xn)-adically complete. It follows from [16, Proposition
2.12.10] that (A, A+)�[S] is (x1, . . . , xn)-adically complete, i.e. adically complete as an A-
module. This proves the claim.

Lemma 2.10. Let A be an adic analytic ring with ideal of definition I. Then −⊗AÂ induces
an equivalence of categories

D(A/I) = ModA/I(D(Â)).

Here, the D(A/I) denotes analytic ring structure on A/I with its induced analytic ring
structure along A → A/I.

Proof. Let us write α∗ := − ⊗A Â. We have D(A/I) = ModA/I(D(A)), so since α∗ is
symmetric monoidal, it induces a functor D(A/I) → ModA/I(D(Â)). Its right adjoint is
given by α∗, which is conservative, so the desired equivalence reduces to showing that α∗ is
fully faithful on A/I-modules, i.e. that id ∼

−→α∗α∗ is an isomorphism. This in turn can be
checked on compact generators, i.e. for P = (A/I)[S]. But such a P is also compact as A-
module (by our conventions Section 1.2), hence by Lemma 2.5.(iv) we have α∗α∗P = Pcpl = P ,
as desired.

Next we study adic completeness in D(Â). Since this category is D(A)-linear via the
symmetric monoidal functor −⊗A Â, there is a good notion of adically complete modules in
D(Â):

Definition 2.11. Let A be an adic analytic ring. An Â-module M ∈ D(Â) is called adically
complete if for some (equivalently every) ideal of definition I of A and every x ∈ I we have
lim
←−x

M = 0. We denote by Dcpl(Â) ⊆ D(Â) the full subcategory spanned by the adically
complete modules. Similarly, we let Dcpl(A) ⊆ D(A) be the full subcategory of adically
complete objects in D(A).3

The following result is a first indicator for why we work with Â in this paper: The complete
objects in D(Â) behave much better with respect to pullbacks and tensor products than those
in D(A).

Lemma 2.12. Let A be an adic analytic ring.

(i) An Â-module is adically complete if and only if the underlying A-module is adically
complete. All the equivalent characterizations from [16, Lemma 2.12.4] apply to adically
complete modules in D(Â), Most notably, an Â-module M is adically complete if and
only if all its homotopy objects πi(M), i ∈ Z, are.

(ii) The t-structure on D(Â) restricts to a t-structure on Dcpl(Â).

(iii) D−
cpl(Â) is stable under the symmetric monoidal structure ⊗Â on D(Â) from Lemma 2.5.

(iv) Let A → B be an adic map of adic analytic rings. Then −⊗Â B̂ restricts to a functor
D−

cpl(Â)→ D−
cpl(B̂).

Proof. We use the notation α∗ and α∗ from Lemma 2.5. Then (i) follows easily from
Lemma 2.5.(iii) and (ii) is just a reformulation of the fact that M is adically complete if
and only if all πiM are adically complete (which is part of (i)).

3We show in Lemma 2.15 that Dcpl(A) and Dcpl(Â) agree.
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We now prove (iv), so let M ∈ D−
cpl(Â) be given. We need to show that M ⊗Â B̂ is adically

complete. For some n ≥ 0 we can find an adic map A0 := (Z[[x1, . . . , xn]],Z)� → A. By using
the bar resolution for the monadic adjunction between base-change and forgetful functor along
A0 = Â0 → Â (using Lemma 2.9) we can write M as a uniformly right-bounded geometric
realizations of modules of the form M0 ⊗A0 Â for some M0 ∈ D(A0). Since adic completion
is bounded and hence commutes with uniformly right-bounded geometric realizations, adic
completeness is stable under uniformly right-bounded geometric realizations. We can thus
reduce the claim to the case A = A0. We can assume that M is connective and thus write
it as a geometric realization of objects of the form

⊕
i∈I A[Si] for some profinite sets Si. By

using again the fact that adic completeness is stable under uniformly right-bounded geometric
realizations, and also under ω1-filtered colimits, we reduce to the case that M =

⊕̂
k∈NA[Sk]

for some profinite sets Sk. Note that it is enough to show that −⊗A B̂ preserves x-complete
objects for all x ∈ I, so from now on we work only with x-completions. Then we can
write M = lim−→α

∏
k xαkA[Sk], where the colimit is taken over all monotonous sequences

α : Z≥0 → Z≥0 converging to ∞. We now claim that the natural map

M ⊗A B̂ = lim
−→

α

((
∏

k

xαkA[Sk])⊗A B̂) ∼
−→ lim
−→

α

∏

k

xαk (A[Sk]⊗A B̂)

is an isomorphism. The argument is similar to the proof of [15, Lemma 3.7.(ii)], where the
crucial input is that the constituents (

∏
k xαkA[Sk]) ⊗A B̂ are x-adically complete – this is

true because
∏

kA[Sk] is compact in D(A) and thus (
∏

k xαkA[Sk])⊗A B̂ is compact in D(B̂)
(as the right adjoint to −⊗A B̂ commutes with colimits). Now compact objects in D(B̂) are
adically complete (by Lemma 2.5.(iv)). To finish the proof of (iv) it remains to see that the
natural map

lim
−→

α

∏

k

xαk(A[Sk]⊗A B̂) ∼
−→
”⊕

k
(A[Sk]⊗A B̂)

is an isomorphism, or equivalently that the left-hand side is x-adically complete. This can
be checked after applying the forgetful functor to D(A) and on homology, where it is a
straightforward computation. This finishes the proof of (iv).

It remains to prove (iii), so let M, N ∈ D−
cpl(Â) be given. By the same bar resolution

argument as in the proof of (iv) we can assume that M and N come via pullback from
adically complete right-bounded A0 := (Z[[x1, . . . , xn]],Z)�-modules for some n ≥ 0. But
then by (iv) the claim reduces to the case A = A0, where it follows from [16, Proposition
2.12.10].

Example 2.13. The boundedness assumption in Lemma 2.12.(iv) is necessary: If M = N =⊕
i∈Z

A[i], then M ⊗Â N is not adically complete (if A is not discrete), even though M, N are

adically complete. Namely, the tensor product contains the direct summand
⊕
i∈Z

A.

Similarly, the preservation of completeness is wrong for the base change − ⊗A B of adic
analytic rings with the usual definition of D�(−).

In the presence of finite Tor dimension, the preservation of adic completeness can be
strengthened to unbounded complexes:

Corollary 2.14. Let A → B be an adic map of adic analytic rings such that for some ideal
of definition I the map A/I → B/I has finite Tor dimension. Then Â → B̂ has finite Tor
dimension and the functor −⊗Â B̂ preserves adic completeness.

Proof. We first prove the claim about Tor dimension, so let M ∈ D♥(Â) be given. Then we
can write M as a filtered colimit of adically complete modules; by truncating we can assume
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that these adically complete modules lie in D♥. We can thus assume that M itself is adically
complete, hence the same is true for N := M ⊗Â B̂ by Lemma 2.12.(iv). But by assumption
N/I is bounded to the left (independent of M), hence so is N .

The second claim follows from the finite Tor dimension by writing any adically complete
module as a filtered colimit over its truncations τ≥n for n→ −∞.

Unsurprisingly, the difference between A and Â vanishes on complete objects; more pre-
cisely we have:

Lemma 2.15. Let A be an adic analytic ring. Then the functor α∗ : D(Â)→ D(A) restricts
to an equivalence Dcpl(Â) ∼= Dcpl(A).

Proof. By Lemma 2.12 the restriction α∗ : Dcpl(Â) → Dcpl(A) is well-defined. By general
theory of completion, it admits as a left adjoint the functor α̂∗ := (−)cpl ◦α∗. As both α∗, α̂∗

commute with the reduction A → A/I for some (finitely generated) ideal of definition I, the
unit/counit of this adjunction are isomorphisms by Lemma 2.10. This finishes the proof.

For any adic analytic ring A, D(Â) is a compactly generated closed symmetric monoidal
category with compact unit object A, hence the definition of nuclear objects from [6, Lecture
VIII] applies:

Definition 2.16. We denote by D(Â)nuc ⊆ D(Â) the full subcategory spanned by the nuclear
objects, as defined in [6, Definition 8.5].

Proposition 2.17. For every adic analytic ring A, the functor −⊗AÂ induces an equivalence
of symmetric monoidal categories

D(A)nuc = D(Â)nuc.

Proof. We use the notation α∗ = (−)⊗A Â and α∗ from Lemma 2.5. We first show that α∗

preserves nuclear modules (for α∗ this follows by symmetric monoidality). Since α∗ preserves
colimits, this boils down to showing that for any compact objects P ′, Q′ ∈ D(Â) and any
trace-class map f : P ′ → Q′ in D(Â), the induced map α∗f : α∗P ′ → α∗Q′ is trace-class.
This follows if we can show that the natural map

(α∗P ′)∨ ⊗ α∗Q′ ∼
−→ α∗((P ′)∨ ⊗Q′)

is an isomorphism in D(A). As this claim is stable under finite colimits and retracts in
P ′, Q′ we may assume that P ′ = α∗P, Q′ = α∗Q for two compact objects P, Q ∈ D(A). By
Lemma 2.5 α∗α∗α∗P ∼= α∗P as P ∈ D(A) is compact. Using adjunctions and α∗α∗A ∼= A
shows (α∗α∗P )∨ ∼= P ∨; in particular this object is right bounded and adically complete.4

Similarly, (α∗P )∨ is right-bounded because α∗((α∗P )∨) ∼= P ∨ by adjunctions and symmet-
ric monoidality of α∗ while P ∨ is right-bounded. It follows from Lemma 2.12.(iii) that
the right-hand side of the above claimed isomorphism is adically complete, and it follows
from [16, Proposition 2.12.10] that the left-hand side is adically complete (here we use that
(α∗α∗P )∨ = P ∨ is discrete modulo any ideal of definition as can be checked directly). Hence
the above isomorphism can be checked modulo any ideal of definition of A, where it follows
from Lemma 2.10.

We have established that α∗ restricts to a functor D(Â)nuc → D(A)nuc, which is automat-
ically conservative. Thus in order to prove the claimed equivalence of categories it is now
enough to show that α∗ is fully faithful on nuclear modules, i.e. for any nuclear M the natural

4Here, we are using that A is living over Z�, and that the compact projective generators for Z� are internally
projective to obtain the right-boundedness of P ∨.
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map M
∼
−→α∗α∗M is an isomorphism. Since α∗α∗ preserves colimits, this reduces to showing

the following: Let (Pn)n be a sequence of compact objects in D(A) with trace-class transition
maps; then lim−→n

Pn = lim−→n
(Pn)cpl. To prove this, it suffices to check that the map Pn → Pn+1

factors as Pn → (Pn)cpl → Pn+1. But this follows easily from the definition of trace-class
maps by observing that (Pn)∨ = ((Pn)cpl)∨ as A is complete.

The following result provides a concrete description of nuclear A-modules. Namely, they
are exactly the ones that can be written as colimits of “Banach” modules:

Lemma 2.18. Let A be an adic analytic ring with ideal of definition I.

(i) If M ∈ D(A) is adically complete and M/I is discrete, then M is nuclear.

(ii) The category Dnuc(Â) = Dnuc(A) is generated under colimits by adically complete objects
M ∈ D(A) with M/I discrete.

Proof. Let M as in (i). Writing M as a colimit of its truncations τ≥nM, n → −∞, we can
reduce to the case that M is right-bounded. Let P ∈ D(A) be compact. We need to see that
the map

P ∨ ⊗M → Hom(P, M)

is an isomorphism. The right hand side is adically complete, because M is, and the left hand
side is adically complete by [16, Proposition 2.12.10.(ii)] as P ∨ = (Pcpl)∨ and M are adically
complete, and M/I is discrete. Hence, it suffices to check the claim modulo I, where the
claim follows from discreteness of M/I as in [15, Proposition 2.9.7.(i)].

Now we show (ii). Let M ∈ D(A) be nuclear. By [6, Theorem 8.6.(2)] we may assume that
M is basic nuclear. Then it is sufficient (by the last part of the proof of Proposition 2.17) to
show the following: If f : P1 → P2 is any trace class morphism between compact objects in
D(A), then fcpl : P1,cpl → P2,cpl factors over the completion Q of P2,cpl(∗). Here, (−) denotes
the functor from A(∗)-modules to D(A), which is left adjoint to the functor N 7→ N(∗). This
last claim follows if we can show

Hom(P1, Q) ∼= (P ∨
1 ⊗Q)(∗) ∼= (P ∨

1 ⊗ P2,cpl)(∗),

with the first isomorphism implied by nuclearity of Q as shown in (i). As the functor (−)(∗)
preserves I-adic completeness both sides are adically complete as A(∗)-modules, by arguments
as in Proposition 2.17. Hence, it suffices to check the statement modulo I. But P ∨

1 is discrete
modulo I, and more generally for any discrete A/I-module D the map

(D ⊗Q)(∗) ∼= (D ⊗ P2,cpl)(∗)

is an isomorphism. Indeed, this statement commutes with colimits in D and is clear in the
case D = A/I. This finishes the proof.

As the full subcategory D(Â)nuc ⊆ D(Â) is stable under all colimits, it admits a right
adjoint (−)nuc : D(Â)→ D(Â)nuc. The next result provides an explicit description of (−)nuc,
similar to [15, Proposition 3.12]. Note that it is not clear to us how to explicitly compute the
analogous nuclearization functor for A in place of Â.

Proposition 2.19. Let A be an adic analytic ring.

(i) (−)nuc : D(Â)→ D(Â)nuc preserves all colimits.

(ii) If P ∈ D(Â) is compact, then Pnuc is naturally isomorphic to the completion of α∗(α∗P (∗)).
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Proof. Sending P ∈ D(Â) compact to the completion α∗(α∗P (∗))∧ extends uniquely to a
colimit preserving functor

F : D(Â)→ D(Â)nuc

(using Lemma 2.18.(i) to see that value is indeed nuclear). Let ι : D(A)nuc → D(A) be the
fully faithful inclusion. As the compact generators of D(Â) are complete (by Lemma 2.12)
there exists a natural transformation, ι◦F → Id. Indeed, it suffices to construct it on compact
objects, and there it suffices to construct a natural map α∗(α∗P (∗)) → P , which exists as
α∗ ◦ (−) is left adjoint to (α∗(−))(∗). Applying (−)nuc to this transformation yields a natural

transformation F → (−)nuc. Let L = lim
−→
i∈J

Li in D(Â) with Li compact, and let M ∈ D(Â).

Then

HomD(Â)(L, ι ◦ F (M)) = lim
←−
i∈J

HomD(Â)(Li, ι ◦ F (M)) = lim
←−
i∈J

(L∨
i ⊗ ι ◦ F (M))(∗)

using nuclearity of ι◦F (M) (and the notations (−)(∗) = HomD(Â)(A,−), (−)∨ = HomD(Â)(−,A)).
On the other hand,

HomD(Â)(L, ι(Mnuc)) = lim←−
i∈J

HomD(Â)(Li,M).

We have to see that both inverse limits agree if L is nuclear, or even basic nuclear, i.e., we
can assume that L = lim−→

n∈N

Ln with Ln compact and the transition maps trace-class. This

assumption implies that each map

HomD(Â)(Ln+1,M)→ HomD(Â)(Ln,M)

factors over the space of trace class maps (L∨
n ⊗M)(∗) from Ln to M ([6, Lemma 8.2.(3)]).

Hence, it suffices to show that, similarly to the last assertion in the proof of Lemma 2.18.(i),
the map

(P ∨ ⊗ ι ◦ F (M))(∗)→ (P ∨ ⊗M)(∗)

is an isomorphism for any P, M ∈ D(Â) with P compact. As both sides commute with
colimits in M we may assume that M is compact. Then both sides are I-adically complete
over A(∗) for some ideal of definition I ⊆ A(∗), which reduces us to the case that I = {0} by
passing to the reduction mod I. In this case α∗, α∗ are inverse equivalences (by Lemma 2.10),
and the assertion follows from the last assertion in the proof of Lemma 2.18.(i).

From Proposition 2.17 and Lemma 2.18 we can produce a weaker form of a projection
formula for α∗.

Corollary 2.20. Let A be an adic analytic ring. Let M ∈ D(A)nuc. Then the natural map

M ⊗ α∗(N)→ α∗(α∗M ⊗N)

is an isomorphism for any N ∈ D(Â).

Proof. Both sides commute with colimits in N . Hence, we may assume that N ∈ D(Â) is
compact (and hence complete by Lemma 2.5). As M ∼= Mnuc and the nuclearization commutes
with colimits, and sends compacts of bounded complete objects, which are discrete modulo
some ideal of definition I, we may assume that M is complete and discrete modulo I. Then
the left hand side is complete by [16, Proposition 2.12.10.(ii)], and it is by reduction to the
discrete case enough to show that the right hand side is complete, too. By Lemma 2.12
it is sufficient to show that α∗M is complete (as N is complete and right bounded). Now,
α∗M ∈ D(Â) is nuclear, which implies α∗(α∗M) ∼= M by Proposition 2.17. In particular,
α∗M is complete by Lemma 2.12.
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We now prove a relative variant of Lemma 2.9. We use the terminology that a morphism
A = (A, A+)� → B = (B, B+)� of adic analytic rings is of +-finite type, if (B, B+)�

∼=
(B, A ∪ {S})� for some finite set S.

Proposition 2.21. Let f : A = (A, A+)� → B = (B, B+)� be an adic morphism of adic
analytic rings of +-finite type.

(i) The diagram

D(Â) D(B̂)

D(A) D(B)

−⊗
Â

B̂

αA,∗

−⊗AB

αB,∗

naturally commutes, i.e., base change holds for α.

(ii) The natural functor
D(Â)⊗D(A) D(B) ∼

−→D(B̂)

is an equivalence.

Proof. For (i) we have to see that the natural morphism

B ⊗A αA,∗(M)→ αB,∗(B̂ ⊗Â M)

is an isomorphism for any M ∈ D(Â). Both sides commute with colimits in M , which reduces
to the case M = α∗

AP for some compact object P ∈ D(A). Then the left hand side equates
to B ⊗A Pcpl by Lemma 2.5 while the right hand side is

αB,∗(B̂ ⊗Â α∗
A(P )) ∼= αB,∗(α∗

B(B ⊗A P ) ∼= (B ⊗A P )cpl

by Lemma 2.7 and Lemma 2.5, and this object is complete. Hence, it is sufficient to show
that B ⊗A Pcpl is complete because then one can check the statement modulo some ideal
of definition, where it is clear. If S = ∅, then the statement follows from [16, Proposition
2.12.10]. Using induction one reduces to the case that S = {s}. Then

B ⊗A N = HomZ[T ](Z((T −1))/Z[T ][−1],B ⊗A N)

for any N ∈ D(A) by the right adjoint assertion to [23, Observation 8.11]. Here, Z[T ] → B
is the map classified by s. Again using [16, Proposition 2.12.10] we can conclude that

B ⊗A Ncpl
∼= HomZ[T ](Z((T −1))/Z[T ][−1],B ⊗A Ncpl)
∼= HomZ[T ](Z((T −1))/Z[T ][−1], (B ⊗A N)cpl)
∼= (B ⊗A N)cpl

for any N ∈ D(A).
Now we prove (ii). The natural functor

Φ: D(Â)⊗D(A) D(B)→ D(B̂)

commutes with colimits (by definition), and hence has a right adjoint Ψ. As the image of
the functor α∗

B : D(B) → D(B̂) generates the target under colimits, the same is true for Φ.
This implies formally that the functor Ψ is conservative. Hence, it is sufficient to show that
Φ is fully faithful. We may reduce to the cases B+ = A+ or B = A as the statement is
stable under composition of +-finite morphisms. We first deal with the case B+ = A+. Then
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D(B) ∼= ModB(D(A), and hence D(Â)⊗D(A)D(B) ∼= Modα∗
AB(D(Â). To get fully faithfulness

of Φ it suffices to see that

HomD(B)((B ⊗A P )cpl, (B ⊗A Q)cpl) ∼= HomD(Â),α∗
A

B(α∗
AB ⊗ α∗P, α∗

AB ⊗ α∗Q)

for any P, Q ∈ D(A) compact. The left hand side simplifies to HomD(A)(P, (B⊗AQ)cpl), while
the right hand side is by adjunctions isomorphic to HomD(A)(P, αA,∗(α∗

AB ⊗ α∗
A(Q))). Now,

(B ⊗A Q)cpl
∼= B ⊗A Qcpl by [16, Proposition 2.12.10.(ii)], which agrees with αA,∗(α∗

AB ⊗
α∗

A(Q)) ∼= B ⊗ αA,∗α∗
A(Q) by Corollary 2.20 and Lemma 2.5. This finishes the proof in

the case that B+ = A+. Hence, assume that B = A. As f : A → B is of +-finite type
this implies that the functor f∗ := B ⊗A (−) → D(A) → D(B) admits a fully faithful left
adjoint f! satisfying the projection formula. Indeed, it is sufficient to treat the case S = {s},
where it follows by base change from the discussion in [23, Lecture 8]. We first check that
f̂∗ := B̂ ⊗Â (−) : D(Â)→ D(B̂) commutes with products, so that f̂∗ admits a left adjoint f̂!.
As αB,∗ is conservative, it is sufficient to show that αB,∗f̂∗ ∼= f∗αA,∗ (by the proven assertion
(i)) commutes with products. This is clear as f∗, αA,∗ are right adjoints. Applying (i) again
shows that f̂!α

∗
A
∼= α∗

Bf!. As the essential image of α∗
B generates D(B̂) under colimits this

implies that the natural transformation

Id→ f̂∗f̂!

is an isomorphism because f∗f!
∼= Id. Similarly, one checks that f̂! satisfies the projection

formula. This implies that f̂∗ is the open localization associated with the idempotent algebra
cone(f̂!(1) → 1) ∈ D(Â) ([6, Proposition 6.5]). However, this algebra is the pullback of the
idempotent algebra cone(f!(1) → 1) because α∗

Bf!
∼= f̂!α

∗
A. By Lemma 2.35 this implies the

claim.

2.3 Complete descent

Next we discuss base-change in the setting of adic rings, in particular with our new modified
version of modules. As we will show below, base-change holds in great generality as long as
the involved maps are adic.

Lemma 2.22. Let (A, A+)� be an adic analytic ring.

(i) For every element a ∈ π0A with induced map Z[x]→ A we have

(A, A+)� ⊗(Z[x],Z)� Z[x]� = (A, A+[a])�.

(ii) We have

(A, A+)� ⊗Z�
Z[x]� = (A〈x〉, A+[x])�.

Proof. Part (i) follows easily from the definitions by using that A is solid over any discrete ring
(because it is a limit of discrete rings). For (ii) we note that on modules the functor−⊗Z�

Z[x]�
preserves limits (see [16, Lemma 2.9.5]), so in particular it preserves adic completeness. Then
the claim reduces to the observations that the right-hand side is an analytic ring and that
the statement is true modulo I.

For adic analytic rings we have the following characterization of steady maps (see [24,
Definition 12.13]) in terms of adicness:

Lemma 2.23. A map of adic analytic rings is steady if and only if it is adic.
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Proof. Let f : (A, A+)� → (B, B+)� be a map of adic analytic rings. First assume that f
is adic. In order to show that f is steady, it is enough to show that (A, A+)� → (B, A+)�

and (B, A+)� → (B, B+) are steady. For the second map this follows from Lemma 2.22.(i)
and [16, Proposition 2.9.7.(ii)] by stability of steadiness under base change. The first map is
an induced analytic ring structure, so the statement reduces to showing that B is nuclear in
D�(A, A+) (see [16, Corollary 2.3.23]), which follows directly from Lemma 2.18.(i) by adicness
of f . We now prove the converse, so assume that f is steady and let I be an ideal of definition
for A. Consider the map g : (A, A+) → (A〈x〉, A+[x]). Then by Lemma 2.22.(ii) the base-
change of g along f is given by the map g′ : (B, B+)→ (B〈x〉, B+[x]). Note that “〈x〉” means
adically completed polynomials with respect to the adic topology on A respectively B. By
steadiness of f we have B〈x〉 = A〈x〉 ⊗(A,A+)� (B, B+)�. Now B is adically complete as
an A-module. Indeed, to see this we may assume that B is discrete, in which case it is an
A/I-module for some ideal of definition I ⊆ π0A(∗) by nuclearity of B as an A-module, and
we have shown the completeness of B as an A-module. Hence by [16, Proposition 2.12.10]
A〈x〉⊗(A,A+)� (B, B+)� computes the I-adic completion of B[x] (note that this tensor product
does not depend on B+ because the I-adic completion of B[x] is solid for any choice of B+).
For this I-adic completion to be the same as the J-adic completion of B[x] for some ideal of
definition J of B we must have that f is adic. Indeed, base change to A/I reduces to the
case I = {0}, and then B[x] ∼=

⊕
n≥0 B · xn can be J-adically complete if and only if J is

nilpotent.5

Lemma 2.24. Let (B, B+)�← (A, A+)� → (C, C+)� be a diagram of adic analytic rings and
adic maps. Then

(B, B+)� ⊗(A,A+)� (C, C+)� = (B⊗̂AC, B+ ⊗A+ C+)�.

In particular this tensor product is still adic.

Proof. We can reduce to the cases A+ = B+ and A = B. The second case follows easily from
Lemma 2.22.(i). The first case follows from [16, Proposition 2.12.10].

Remark 2.25. In general, the single notation Â is not well-defined, but should be seen as a
convenient replacement for the datum (A,D(Â)). As an example, given a diagram B←A → C
of adic analytic rings and adic maps, we denote B̂ ⊗Â Ĉ := (B ⊗A C)̂ , i.e., it denotes the
datum (B ⊗A C,D((B ⊗A C)̂ )).

Corollary 2.26. Let B ←A → C be a diagram of adic analytic rings and adic maps. Then
for every M ∈ D(B̂) the natural morphism

M ⊗Â Ĉ
∼
−→M ⊗B̂ (B̂ ⊗Â Ĉ)

is an isomorphism, i.e. the following base-change diagram commutes:

D(B̂ ⊗Â Ĉ) D(B̂)

D(Ĉ) D(Â)

5Let b ∈ J . Then π0(B[x]) must contain some element x whose coefficient in front of xn is bn as follows by
the universal case of the ring Z[[b]]. This forces b to be nilpotent, and thus J as well because J is finitely
generated.
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Proof. The existence of the natural morphism is formally implied by adjunctions as

(−⊗Â B̂)⊗B̂ (B̂ ⊗Â Ĉ)
∼= (−⊗Â Ĉ)⊗Ĉ (B̂ ⊗Â Ĉ)

by Lemma 2.7. Both sides of the claimed isomorphism commute with all colimits, so we can
w.l.o.g. assume that M is compact. In particular M is right-bounded and adically complete,
hence by Lemma 2.12.(iv) both sides of the claimed isomorphism are adically complete. But
then we can check the claimed isomorphism modulo any ideal of definition, so by Lemma 2.10
we reduce to the well-known claim that maps of discrete Huber pairs are steady (see [16,
Proposition 2.9.7.(ii)]).

We are finally in the position to discuss descent in the setting of Â-modules. As promised
we will see that descendability can be checked modulo all powers of an ideal of definition.

Definition 2.27. A map A → B of adic analytic rings is called adically descendable of index
≤ d if it is adic and for some ideal of definition I and all n ≥ 1 the map A/In → B/In is
descendable of index ≤ d in the sense of [16, Definition 2.6.7].

Remark 2.28. If A → B is a descendable morphism of adic analytic rings then it is in
particular adically descendable because descendability is stable under the base-change along
A → A/In (see [16, Lemma 2.6.9]). The converse seems to be wrong unless the compact
objects in D(A) are adically complete. This is fixed by D(Â), as the following result shows.

Example 2.29. A typical example for an adically descendable map A → B of index ≤ 2 is
an adic I-completely faithfully flat and I-completely finitely presented map, i.e., I is an ideal
of definition of A and A/In → B/In is faithfully flat and finitely presented (on π0), cf. [16,
Lemma 2.10.6] for the static case, and [19, Theorem 4.15] for the general case.

Theorem 2.30. Let A → B be an adically descendable morphism of adic analytic rings.
Then modules descend along Â → B̂, i.e. the functor

D(Â) ∼
−→ lim
←−
n∈∆

D(B̂ ⊗Â . . .⊗Â B̂)

is an equivalence of categories.

Proof. Let EndL(D(Â)) denote the category of D(Â)-enriched colimit-preserving functors
D(Â) → D(Â) (cf. [16, §2.5, §A.4]). It comes equipped with the composition monoidal
structure and there is an embedding η : D(Â) →֒ EndL(D(Â)) via M 7→ −⊗Â M . As in [16,
Lemma 2.5.6] the map f : A → B induces a pair of adjoint functors

f ♮ : EndL(D(Â)) ⇄ EndL(D(B̂)) :f♮,

where f♮ acts on underlying functors as F 7→ f∗ ◦F ◦ f∗; here f∗ denotes the forgetful functor
and f∗ := −⊗Â B̂ is the base-change. Note that f ♮ exists by the adjoint functor theorem in
our case, as we chose a cutoff cardinal κ in the beginning so that EndL(D(Â)) is presentable.
Also, via compatibility with η one sees that f ♮ id = id.

Note that for every x ∈ π0A and every F ∈ EndL(D(Â)), the pointwise multiplication by
x induces an endomorphism of F ; indeed, via the embedding η we can define this endomor-
phism on id and then also on F = id ◦F . It thus makes sense to speak of adically complete
endofunctors in EndL(D(Â)). We now observe:

(a) An endofunctor F ∈ EndL(D(Â)) is adically complete if and only if for every compact
P ∈ D(Â), F (P ) ∈ D(Â) is adically complete.
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Indeed, adic completeness of enriched endofunctors can be checked on the underlying ordi-
nary functors (see [16, Lemma A.4.5.(ii)]), i.e., in the category FunL(D(Â),D(Â)) of colimit-
preserving functors D(Â) → D(Â). If CA ⊆ D(Â) denotes the full subcategory of compact
objects, then by the universal property of Ind-completions we have

FunL(D(Â),D(Â)) = Funex(CA,D(Â)),

where the right-hand side denotes exact functors CA → D(Â). Since limits of exact functors
between stable categories are exact, limits on the right-hand side are computed pointwise.
But this immediately implies (a). From (a) we immediately deduce that id ∈ EndL(D(Â)) is
adically complete; here it is crucial to work with D(Â) instead of D(A)!

Now let

K := fib(id→ f♮ id) ∈ EndL(D(Â)),

where the map id→ f♮ id = f♮f
♮ id comes from the unit of the adjunction. We now claim:

(b) For some d ≥ 0 the natural map Kd → id is zero.

To prove this, let d′ ≥ 0 be such that each map fn : A/In → B/In is descendable of index
≤ d′. We claim that d = 2d′ works. To see this, denote gn : A → A/In the projection, so
that we get adjoint functors

g♮
n : EndL(D(Â)) ⇄ EndL(D(A/In)) :gn♮.

(Here we implicitly use Lemma 2.10). The adic completeness of id implies that the natural
map id ∼

−→ lim←−n
gn♮ id is an isomorphism. We deduce the following identity of spectra:

Hom(Kd′

, id) = lim
←−

n

Hom(Kd′

, gn♮ id) = lim
←−

n

Hom(g♮
nK

d′

, id)

The induced map Hom(Kd′
, id)→ Hom(g♮

nK
d′

, g♮
n id) is the one coming from the functoriality

of g♮
n. By [16, Proposition A.4.17] the functor g♮

n is naturally a monoidal functor, so that if
we denote Kn := fib(id → fn♮ id) ∈ EndL(D(A/In) then g♮

nK
d′

= Kd′

n . We deduce that the
natural map Kd′

→ id gets sent to the natural map Kd′

n → id under g♮
n. The latter map is zero

by choice of d′. Now (b) follows completely analogous to the argument in [16, Proposition
2.7.2].

With (b) at hand, the claimed descent of modules is now formal: By the same procedure
as in [16, Proposition 2.6.5] we deduce from (b) that id can be obtained from f♮ id in a finite
number of steps, each of which consists of a composition, a finite limit or a retract. Using
Lemma 2.24 and Corollary 2.26, we can thus apply the argument from [16, Proposition 2.6.3]
verbatim.

We also need a way to pass to filtered colimits, similar to [16, §2.7]. This is fairly straight-
forward since adic completions are countable limits and therefore commute with ω1-filtered
colimits (in the following result the superscript ω1 refers to ω1-compact objects):

Lemma 2.31. Let (Ai)j∈J be an ω1-filtered diagram of adic analytic rings and adic transition
maps. Then A := lim−→j

Aj is an adic analytic ring and the natural functor

lim
−→

j

D(Âj)ω1 ∼
−→D(Â)ω1

is an equivalence of categories.
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Proof. We can assume that J has some initial element 0 ∈ J . Let I be some ideal of definition
of A0. Then each Aj is I-adically complete and since countable limits commute with ω1-
filtered colimits in D(Cond(Ab)), we deduce that A = lim−→j

Aj is I-adically complete. Clearly,
A is discrete mod I as all transition maps are adic. This shows that A is indeed an adic
analytic ring. By a similar argument we see that for any ω1-compact P ∈ D(Â0)ω1 the natural
map

lim−→
j

(P ⊗Â0
Âj)

∼
−→ P ⊗Â0

Â

is an isomorphism in D(Â0). Indeed, this claim is stable under colimits in P , so by [16, Lemma
A.2.1] we can w.l.o.g. assume that P = A0[S]Î for some profinite set S. Then the claim boils
down to showing that the map lim−→j

Aj[S]Î
∼
−→A[S]Î is an isomorphism. This is true without

I-completions by [16, Proposition 2.3.15.(ii)] and then follows for the I-completed version
because I-completions commute with ω1-filtered colimits. With the above isomorphism at
hand, the rest of the argument works exactly as in [16, Lemma 2.7.4].

Definition 2.32. A map f : A→ B of adic analytic rings is called weakly adically descendable
if it is an iterated ω1-filtered colimit of adically descendable maps of adic analytic rings along
adic maps.6 If all the maps in this ω1-filtered colimit are descendable of index ≤ d, for some
fixed d ≥ 0, then we say that f has index ≤ d.

Proposition 2.33. (i) If A → B is weakly adically descendable then it is adic and modules
descend along Â → B̂.

(ii) Every adically descendable morphism of adic analytic rings is weakly adically descend-
able, and weakly adically descendable morphisms are stable under adic base-change and
ω1-filtered colimits.

(iii) A completed filtered colimit of adically descendable morphisms of index ≤ d along adic
maps of adic analytic rings is weakly adically descendable of index ≤ 2d.

Proof. Part (i) follows from Theorem 2.30 and Lemma 2.31 by the same argument as in
[16, Proposition 2.7.5] (use also Lemma 2.24 in order to reduce to the case that all maps in
the ω1-filtered colimit have the same source). In part (ii) the only non-trivial claim is the
one about base-change, and this follows from Lemma 2.24 and [16, Lemma 2.6.9]. Part (iii)
follows by the same argument as in [16, Theorem 2.7.8.(iii)].

2.4 Globalization for stably uniform adic spaces

We finish our general discussion of the modified category D�̂(A) for an adic analytic ring
A with a globalization to (classical) stably uniform analytic adic spaces. Let (A, A+) be a
classical complete analytic Huber pair, and X := Spa(A, A+). Recall that (A, A+) is called
uniform if A◦ is a ring of definition, and that (A, A+) is called stably uniform if for each
rational open U ⊆ X the analytic Huber pair (OX(U),O+

X (U)) is uniform, in which case
(A, A+) is automatically sheafy ([25, Definition 5.2.4., Theorem 5.2.5.]). In [1, Theorem 4.1]
Andreychev has proven that if (A, A+) is sheafy (not necessarily uniform), then the functor
U 7→ D�(OX(U),O+

X (U)) on rational opens U ⊆ X satisfies descent for the analytic topology
on X.

6I.e., f lies in the smallest subcategory of adic morphisms of adic analytic rings, which contains the adically
descendable maps and is stable under ω1-filtered colimits.
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Definition 2.34. (a) For any classical complete analytic uniform Huber pair (B, B+) set

D�̂(B, B+) := ModB(D�̂(B◦, B+)).

Here, we implicitly view B, B◦ as condensed static rings (although B+ is only treated
as a discrete ring). Note that we need uniformity to achieve that B◦ is an adic ring in
the sense of Definition 2.1.

(b) Given a map f : Y = Spa(B, B+) → X = Spa(A, A+) of stably uniform analytic adic

spaces, we let f∗ := Ÿ�(B◦, B+)
�
⊗Ÿ�(B◦,B+)

�

(−) : D�̂(X) := D�̂(A, A+) → D�̂(Y ) :=

D�̂(B, B+), f∗ : D�̂(Y )→ D�̂(X) be the induced pair of adjoint functors. If we want to
distinguish these functors two functors f∗, f∗ from their counterparts f∗ = (B, B+)�⊗(A,A+)�

(−) : D�(X) := D�(A, A+)→ D�(Y ) := D�(B, B+), we denote them by f̂∗, f̂∗.

(c) We let α∗
X : D�(X) = ModA(D�(A◦, A+)) → D�̂(X) be the functor induced on mod-

ule categories by the symmetric monoidal functor Ÿ�(A◦, A+)� ⊗(A◦,A+)� (−) from Defini-
tion 2.4. We let αX,∗ be the right adjoint of α∗

X .

Let Sym be the ∞-category of cocomplete closed symmetric monoidal stable ∞-categories
with morphisms given by cocontinuous, symmetric monoidal functors, cf. [6, Definition 6.3].
We recall from [6, Proposition 6.5] that a morphism g∗ : C → D in Sym is called an open
(resp. closed) immersion if g∗ has a fully faithful left adjoint g! (resp. colimit preserving fully
faithful right adjoint g∗), which satisfies the projection formula. If g∗ is a closed immersion,
then g∗(1D) ∈ C is an idempotent algebra, and D ∼= Modg∗(1D)(C). If g∗ is an open immersion,
then the cofiber R := [g!(1D)→ 1C ] ∈ C is an idempotent algebra, and D is isomorphic to the
quotient C/ModR(C) (via g∗). We record the following stability of open/closed immersions
under base change with respect to the Lurie tensor product.

Lemma 2.35. Let h∗ : C → C ′, g∗ : C → D be morphisms in Sym. If g∗ is an open (resp.
closed) immersion, the same is true for the base change k∗ : C ′ → D′ := C ′ ⊗C D.

Proof. For closed immersions this is clear as ModR(C)⊗C C ′ ∼= Modh∗(R)(C ′) for any monoid
object R ∈ C, and h∗ preserves idempotent algebras. Thus, assume that g∗ is an open
immersion, and let R := [g!(1D) → 1C ] ∈ C be the associated idempotent algebra. As the
base change C ′ ⊗C (−) preserves adjunctions between colimit preserving, C-linear functors,
the base change k! of g! is a fully left adjoint of k∗. By C ′-linearity one checks that k! satisfies
the projection formula. In particular, k∗ is an open immersion. Moreover, we note that as
in the proof of [6, Proposition 6.5] the projection formula for k∗ implies that the kernel of
the functor k∗ is exactly the category of h∗(R)-modules in C ′ because h∗(R) is the cofiber of
k!(1D′)→ 1C′ by exactness of h∗.

Remark 2.36. The last part of the proof of Lemma 2.35 shows that base change preserves
the “excision sequence” D

g!−→ C → ModR(C) for an open immersion g∗ : C → D.

We now show that rational localizations yield open immersion in Sym for the completed
solid category:

Lemma 2.37. Let X = Spa(A, A+) be a stably uniform analytic adic space, and j : U :=
Spa(B, B+)→ X a rational open. Then ĵ∗ : D�̂(X)→ D�̂(U) is an open immersion in Sym.
In fact, ĵ∗ is the base change of j∗ : D�̂(X)→ D�̂(U) along the functor α∗

X : D�(X)→ D�̂(X).

Lemma 2.35 and the proof below shows that α∗
X ◦ j!

∼= ĵ! ◦ α∗
U for the left adjoints j!, ĵ! of

j∗, ĵ∗.
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Proof. This follows from Proposition 2.21 and Lemma 2.35: the morphism (A◦, A+)� →
(B◦, B+)� is of +-finite type, and therefore

D�̂(A◦, A+)⊗D�(A◦,A+) D�(OX (U)◦,O+
X(U)) ∼

−→D�̂(OX(U)◦,O+
X (U)). (2.37.1)

We claim that the natural morphism A ⊗A◦ B◦ → B is an isomorphism in D�(A◦, A+).
Namely, by [1, Theorem 1.6] the claim is local on X = Spa(A, A+), which reduces to the case
that A is Tate, where the claim is clear. Given this claim, we can conclude

D�̂(X)⊗D�(X) D�(U) ∼
−→D�̂(U)

by tensoring (2.37.1) over D�(A◦, A+) with ModA(D�((A◦, A+)). From here Lemma 2.35
implies the claim.

We now establish the following version of Andreychev’s analytic descent theorem for the
completed solid category:

Theorem 2.38. Let (A, A+) be a classical stably uniform analytic Huber pair, and X :=
Spa(A, A+).

(i) The functor U 7→ D�̂(OX(U),O+
X (U)) on rational open subsets satisfies descent for the

analytic topology.

(ii) If for any rational open U ⊆ X each finite, étale OX(U)-algebra is stably uniform (e.g.,
A is sousperfectoid, [25, Proposition 6.3.3.]), then the functor V 7→ D�̂(OV (V ),O+

V (V ))
on the category of étale maps V → X with V affinoid, satisfies descent for the étale
topology.

Here, a morphism V → X is étale if it is a composition of open immersions and finite étale
maps (in the sense of [21, Definition 7.1], generalized to our situation), and the étale topology
is defined by jointly surjective étale morphisms.

Proof. By definition of the étale topology, it suffices to show (i) and descent along finite
étale maps (A, A+)→ (B, B+). But by definition of the latter, (B, B+)� = (B, A+)�, which
reduces to descent along the map A → B of algebras in D�̂(A, A+). Now, A(∗) → B(∗) is
descendable as a map of classical rings ([18, Corollary 3.33]). As it is moreover finite étale,
this implies B ∼= A ⊗A(∗) B(∗), and thus A → B is descendable in D�̂(A, A+) because the

functor D(A(∗))→ D�̂(A, A+) is symmetric monoidal. Hence, (ii) is implied by (i). In order

to show (i) we first note that if X =
n⋃

i=1
Ui is a finite open cover with ji : Ui → X rational

open, then by Lemma 2.37 the functors ĵ∗
i : D�̂(X) → D�̂(Ui) are open immersions in Sym.

Moreover, the collection ĵ∗
i , i = 1, . . . , n, is jointly conservative. Indeed, this statement is

equivalent to ĵ1,!(1U1)⊗ . . .⊗ ĵn,!(1Un) = 0 and thus is implied by j1(1U1)⊗ . . .⊗ jn(1Un) = 0
([1, Proposition 4.12.(v)]) using that α∗ commutes with the !-functors (Lemma 2.37). Thus,
the assertion follows from the general descent theorem [6, Proposition 5.5] (or [1, Proposition
4.13] resp. [23, Proposition 10.5]).

Theorem 2.38 allows us to give a reasonable definition of completed solid sheaves on every
stably uniform analytic adic space:

Definition 2.39. Let X be a (classical) stably uniform analytic adic space. Then we set
D�̂(X) as the inverse limit of D�̂(A, A+) over all affinoid opens Spa(A, A+) ⊆ X, with (A, A+)
a stably uniform analytic Huber pair.
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2.5 Universal descent

In this section, we show that descent of D(−) along a steady morphism A → B of analytic
rings automatically implies descent after any base change. We discuss variants of this as well,
e.g., for D�̂(−).

If f : A → B is a morphism of analytic rings, we will denote by f∗(−) := B⊗A(−) : D(A)→
D(B) the associated base change functor, and by f∗ its right adjoint. Note that f∗ is always
conservative.

We recall that f is steady if for any morphism g : A → A′ of analytic rings with base change
f ′ : A′ → B′ := A′ ⊗A B, g′ : B → B′, the natural transformation

f∗g∗ → g′
∗f ′,∗

of functors D(A′)→ D(B) is an isomorphism ([24, Proposition 12.14]).

Lemma 2.40. Assume that f : A → B is a steady morphism of analytic rings and that
modules descend along f , i.e., the natural functor D(A) → lim

←−
[n]∈∆

D(Bn/A) is an equivalence,

where B•/A denotes the Čech nerve for f . Then for any morphism g : A → A′ of analytic
rings modules descend along f ′ : A′ → B′ := A′ ⊗A B.

Proof. This follows from [12, Corollary 5.2.2.37.]. We supplement the details using the nota-
tion of [12, Corollary 5.2.2.37]. Thus, we set C = ∆, χ : ∆⊳ → Cat∞, [n] 7→ D((B′)n/A′

) with
(B′)−1/A′

:= A′, and similarly, χ′([n]) := D(Bn/A). To construct the natural transformation
ρ : χ→ χ′, given componentwise by gn,∗ for gn : Bn/A → (B′)n/A′

is the natural map, one can
argue as follows: clearly, the g∗

n yield a natural transformation σ : χ′ → χ (by naturality of
D(−) as a functor on the ∞-category of analytic rings). As for each morphism [n]→ [m] in
∆⊳ the induced morphism Bn/A → Bm/A is steady (using [24, Proposition 12.15]), we can
conclude7 that the gn,∗ assemble to a natural transformation ρ : χ→ χ′. Now condition 1) in
[12, 5.2.2.37] is the assumption that modules descend along f . Condition 2) is automatic as
each gn,∗ is conservative. Condition 3) is clear as D(A′) has all limits and g∗ preserves these.
Condition 4) is again automatic because for each morphism α : [n]→ [m] in ∆⊳ the functors
χ([n]) → χ([m]) resp. χ′([n]) → χ′([m]) admit right adjoints given by ∗-pushforward, and
clearly these right adjoints commute with ρ (which in component [n] is given by gn,∗). Thus,
[12, 5.2.2.37] is applicable, and yields exactly that modules descend along f ′.

Next assume that f : A → B is a morphism of adic analytic rings. By Lemma 2.23 we know
that f is steady if and only if f is adic. We get the following analog of Lemma 2.40 for D(Â).

Lemma 2.41. Let f : A → B be an adic morphism of adic analytic rings, such that the
natural functor D(Â)→ lim←−

[n]∈∆

D( ˆBn/A) is an equivalence. Then the same holds true after any

base change f ′ : A′ → A′ ⊗A B of f along an adic morphism A → A′ of adic analytic rings.

Note that adicness of A → A′ implies by Lemma 2.24 that all terms in the Čech nerves are
adic analytic rings (and thus the assertion is well-defined).

Proof. Replacing D((−)) by D(−̂) we can follow the steps in Lemma 2.40. Using Corol-
lary 2.26 the existence of ρ follows in the same way. The only statement to check is that

7Let E → ∆⊳, E′ → ∆⊳ be the cocartesian fibrations classified by χ, χ′. The natural transformation σ
unstraightens to a functor κ : E′ → E, which preserves cocartesian arrows. Using [12, 7.3.2.6.] the functor
κ admits an adjoint λ : E → E′ (relative to ∆⊳) as this is true over each [n] ∈ ∆⊳. Now, steadiness of
f implies that λ preserves cocartesian arrows, and thus defines a natural transformation ρ : χ → χ′. By
construction of λ, ρ[n] : χ([n]) → χ′([n]) is given by the pushforward gn,∗ as desired.
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f̂∗ : D(B̂) → D(Â) is conservative for any morphism of adic analytic rings f : A → B. As
α∗f̂∗

∼= f∗α∗ (by Lemma 2.7 and passage to right adjoints) this follows from conservativity
of f∗ and α∗ (Lemma 2.5).

Remark 2.42. Let f : Y → X be any morphism of stably uniform analytic adic spaces.
Assume that all terms Y n/X of the Čech nerve of f are again stably uniform (this is a serious
assumption, cf. Example 2.43), and that D�̂ satisfies descent for f . Then for any morphism
X ′ → X of stably uniform analytic adic spaces (such that the terms in the Čech nerve of
f ′ : Y ×X X ′ → X ′ are again stably uniform) the modified quasi-coherent sheaves D�̂ satisfy
descent for f ′ (by reducing to the affinoid case and then using the same argument as in
Lemma 2.40, Lemma 2.41). Note that the steadiness assumption is automatically satisfied in
this case because X is locally Tate.

Example 2.43. Let Qcycl
p be the completion of Qp(µp∞). We mention here the well-known

example that the Huber ring A := Qcycl
p ⊗Qp Q

cycl
p (with ⊗ refering to the solid or equivalently

the Banach space tensor product) is not uniform even though each of the factors is. In
fact, the uniform completion of A is the space B := C(Γ,Qcycl

p ) of continuous functions on
Γ = Z×

p = Gal(Qcycl
p /Qp). The ring A0 := Zcycl

p ⊗Zp Zcycl
p is a ring of definition of A (by

definition of the Banach space tensor product), and the ring B0 := C(Γ,Zcycl
p ) is a ring of

definition of B. Moreover, B0 = B0 because Zcycl
p is the ring of power bounded elements in

Qcycl
p . In particular, B is uniform. There exists the natural map

Φ: A0 → B0, a⊗ b 7→ (γ 7→ aγ(b)).

From the relation
∑

ζ∈µpn

ζx =

®
pn, x ∈ pnZp

0, otherwise

for x ∈ Zp one can conclude that for a ∈ Z×
p the continuous function

Z×
p → Zcycl

p , x 7→
1
ph

∑

ζ∈µpn

ζx−a

is the characteristic function χa,n of the clopen subset a + pnZp of Z×
p = Γ. We can conclude

that Φ is injective with image exactly the closure of the subspace generated by the pnχa,n

for a ∈ Z×
p and n ≥ 0 (cf. [7, Proposition I.3.4]). In particular, Φ extends to an injection

A → B with dense image and this identifies B as the uniform completion of A. Concretely,
for a ∈ Z×

p and n ≥ 0 the elements

1
pn

∑

ζ∈µpn

ζ−a ⊗ ζ ∈ A

generate A0 ⊆ A as an A0-module.

3 Da
�̂
(O+

X) for perfectoid spaces

In this section we will prove the first part of Theorem 1.1, i.e., v-descent of almost O+-sheaves
on perfectoid spaces for our modified version of +-modules from Definition 2.4.
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3.1 Definition of Da
�̂
(A+)

As in [16, Definition 3.1.1] we denote by Perfdaff the category of affinoid perfectoid spaces
over Spf Zp. We note that each object (A, A+) ∈ Perfdaff is classical and static and hence we
will often not distinguish between (A, A+) and the classical Tate-Huber pair (A(∗), A+(∗)).

Lemma 3.1. Let (A, A+) ∈ Perfdaff , and let A◦◦ ⊆ A+ be the ideal of topologically nilpotent
elements. Then A+/A◦◦ is an idempotent algebra in the classical derived category D(A+) =
D(A+(∗)) of A+-modules.

Proof. This follows from the fact that A◦◦ is a filtered colimit of principal ideals generated
by non-zero divisors, and that A◦◦ ·A◦◦ = A◦◦.

Definition 3.2. Let (A, A+) ∈ Perfdaff . Then we define Da
�̂
(A+) := D�̂((A+, A+)) ⊗D(A+)

Da(A+), where D(A+)→ Da(A+) is the open immersion defined by the idempotent algebra
A+/A◦◦ from Lemma 3.1.

Remark 3.3. By Lemma 2.35 we have Da
�̂
(A+) = D�̂((A+, A+))/ModA+/A◦◦(D�̂((A+, A+))).

Remark 3.4. We note that A+ ∼= A◦ in Da
�̂
(A+) as A◦◦ ⊆ A+. Thus, D�̂((A◦, A+)),D�̂((A+, A+)

become isomorphic after (−)⊗D(A) D
a(A). However, in general Da

�̂
(A+) and Da

�̂
(A◦) are dif-

ferent.

Remark 3.5. Assume that π ∈ A∩A+ is a pseudo-uniformizer. Then ModA+/π(Da
�̂
(A+)) ∼=

Da
�
(A+/π) is naturally equivalent to the category defined in [16, Definition 3.1.2] because

ModA+/π(Da
�̂
(A+)) ∼= ModA+/π(D�(A+))⊗D(A+) D

a(A+) ∼= Da
�
(A+/π) using Lemma 2.10 in

the first isomorphism.

The following special property is the basic reason why (almost) v-descent results for +-
modules on perfectoid spaces are possible while they fail drastically for non-perfectoid spaces.

Lemma 3.6. Let

Y ′ Y

X ′ X

be a cartesian diagram in Perfdaff . Write X = Spa(A, A+), X ′ = Spa(A′, A′+), Y =
Spa(B, B+) and Y ′ = Spa(B′, B′+). Then the natural morphism of analytic rings

(A′+)a
�
⊗(A+)a

�
(B+)a

�

∼
−→ (B′+)a

�
.

is an isomorphism.

Here, we view (A+)a
�

etc. as analytic rings over the almost setup (A+, A◦◦) following [16,
Section 2.3]. More concretely, the assertion means that the natural functor D((B′)+

�
) →

D((A′+)� ⊗A+
�

B+
�

) becomes an equivalence after (−)⊗D(A+) D
a(A+).

Proof. Since B′+ is the (completed) integral closure of the image of π0(A′+ ⊗A+ B+) in
π0(A′ ⊗A B), by Lemma 2.24 it is enough to show that the map

A′+a⊗̂A+aB+a ∼
−→B′+a

is an isomorphism of almost rings. But both sides of this claimed isomorphism are π-adically
complete for any pseudouniformizer π of A, hence the claim can be checked modulo π, where
it follows from [16, Lemma 3.1.6].

As a corollary from the proof we see that the derived (completed) tensor product A′+a⊗A+a

B+a is in fact static, i.e., concentrated in degre 0. This statement also holds before passing
to the almost category by reduction to the case of perfect rings.
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3.2 Descent on totally disconnected spaces

In this section, we prove the first part of Theorem 1.1, i.e., the existence of the v-sheaf
X 7→ Da

�̂
(OX) on perfectoid spaces. More precisely, in this section we prove the following

theorem.

Theorem 3.7. There is a unique hypercomplete v-sheaf of categories

(Perfd)op → Cat, X 7→ Da
�̂
(O+

X )

such that for every X = Spa(A, A+) which admits a quasi-pro-étale map to a totally discon-
nected space we have

Da
�̂
(O+

X) = Da
�̂
(A+).

We recall that a qcqs perfectoid space X is totally disconnected if each connected component
of X has the form Spa(K, K+) for some perfectoid field K with open and bounded valuation
subring K+ ⊆ K ([22, Lemma 7.3]), in which case X = Spa(R, R+) is necessarily affinoid,
and for any pseudo-uniformizer π ∈ R we have (|X|,O+

X /π) ∼= Spec(R+/π) as locally ringed
spaces ([16, Lemma 3.6.1]).

Totally disconnected perfectoid spaces enjoy the following surprising flatness property ([16,
Lemma 3.1.7]).

Lemma 3.8. Let X = Spa(A, A+) be a totally disconnected perfectoid space, and π ∈ A a
uniformizer. Let A′ be a π-torsion free A+-algebra of finite type. Then for every connected
component x = Spec((A+/π)x) of Spec(A+/π) the map (A+/π)x → A′ ⊗A+ (A+/π)x is flat
and finitely presented.

Proof. This is [16, Lemma 3.1.7].

This result strengthens [22, Proposition 7.23] and is critical for Theorem 1.2 as it implies
descent for O+/π-modules for a v-cover f : Y → X with X totally disconnected ([16, Lemma
3.1.8]). The proof of loc. cit. uses critically that the (pre)sheaf Spa(R, R+) 7→ R+/π on
affinoid perfectoid spaces sends cofiltered inverse limits to filtered colimits, roughly to reduce
to a single connected component of X where Lemma 3.8 applies. This argument does not
work for the sheaf O+. Instead, we roughly spread out the flatness mod π on a connected
components (provided by Lemma 3.8) to some neighborhood, at least up to replacing Y by
some disjoint union of some finite open cover. For the precise assertion below, we denote by
Y wl ∈ Perfdaff the w-localization of any Y ∈ Perfdaff , as defined in [22, Proposition 7.12].

Proposition 3.9. Let Y = Spa(B, B+) → X = Spa(A, A+) be a surjective map of totally
disconnected spaces in Perfdaff . Then the map Y wl → X is +-weakly adically descendable of
index ≤ 4, i.e., if Y wl = Spa(Bwl, B+

wl) the map (A+)� → (B+
wl)� is weakly adically descendable

of index ≤ 4 in the sense of Definition 2.32.

Proof. We need to show that the map A+ → B+
wl of adic rings is an ω1-filtered colimit of

adically descendable maps of index≤ 4. Let I be the category of factorizations Y wl → Yi → Y ,
where Yi is a finite disjoint union of qcqs open subsets of Y . Then by [22, Lemma 7.13] I is
cofiltered and Y wl = lim

←−i∈I
Yi. We denote Yi = Spa(Bi, B+

i ), so that B+
wl is the completed

filtered colimit of the B+
i .

In the following discussion, all rings and modules will be discrete and static unless stated
otherwise. For some fixed pseudouniformizer π ∈ A we let Jπ be the following category: An
object of Jπ is a factorization A+ → Aj → B+

wl of A+-algebras such that the map A+ → Aj is
a finitely presented map of classical rings which is flat modulo π (here we take the underived
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quotient Aj/π!) and such that the map Aj → B+
wl factors over some B+

i . A morphism in Jπ

is a morphism α : Aj → Aj′ over A+ such that there is some i ∈ I with the property that
both Aj → B+

wl and Aj′ → B+
wl factor over B+

i and these factorizations are compatible with
α. We now claim that Jπ has the following crucial property:

(a) Let Aj ∈ Jπ. Pick some i such that Aj → B+
wl factors over B+

i and some a ∈ Aj which
is sent to 0 via Aj → B+

i . Then there is some morphism α : Aj → Aj′ in Jπ such that
α(a) = 0.

We now prove this claim, so fix Aj , i and a as in the claim. Let A′
j ⊆ B+

i be the im-
age of Aj and fix some connected component x ∈ π0(X). Equivalently x is a connected
component of Spec A+/π, i.e. of the form x = Spec(A+/π)x, as X is totally disconnected.
For any A+-algebra A′ we denote (A′/π)x := A′ ⊗A+ (A+/π)x. Then by Lemma 3.8 the
map (A+/π)x → (A′

j/π)x is flat and finitely presented for A′
j as above and in particular the

map βx,π : (Aj/π)x → (A′
j/π)x is finitely presented ([27, Tag 00F4]). Pick some generators

a1,x, . . . , an,x of ker(βx,π). They automatically extend over some (pullback of some) clopen
neighbourhood of x in Spec A+/π and hence to all of Aj/π by extending them by 0 on the
(pullback of the) clopen complement of that neighbourhood. Moreover, we can guarantee that
these extensions a1, . . . , an ∈ Aj/π lie in the kernel of the map Aj/π → A′

j/π by shrinking
the clopen neighbourhood of x if necessary. Since the map β : Aj → A′

j is surjective, we can
find lifts a1, . . . , an ∈ Aj of a1, . . . , an which lie in the kernel of β. We can assume that a is
one of the ak’s as by assumption a maps to 0 in A′

j ⊆ B+
i . Now denote

A′
j,x := Aj/(a1, . . . , an).

Then A′
j,x is a finitely presented A+-algebra with a map to A′

j such that (A′
j,x/π)x = (A′

j/π)x

and such that a = 0 in A′
j,x. By [27, Tag 00RC] the locus U ⊆ Spec A′

j,x/π which is flat
over A+/π is an open subset and by construction we have Spec(A′

j,x/π)x ⊆ U . We can thus
find elements f1, . . . fm ∈ A′

j,x/π such that each localization (A′
j,x/π)fk

is flat over A+/π and
such that the associated schemes cover Spec(A′

j,x/π)x. By the proof of [16, Lemma 3.6.1] the
elements f1, . . . , fm, more precisely their images in B+

i /π, induce qcqs open, even rational,
subsets V1,x, . . . Vm,x ⊆ Yi such that fk is a unit in O+

Yi
(Vk,x) for k = 1, . . . , m (here we use

that Y and hence Yi is totally disconnected in order to apply [16, Lemma 3.6.1]). Pick any
lifts f1, . . . , fm ∈ A′

j,x and denote

Aj,x :=
m∏

k=1

(A′
j,x)fk

, Yi,x :=
m⊔

k=1

Vk,x.

Writing Yi,x = Spa(Bi,x, B+
i,x) we get a map Aj,x → B+

i,x of A+-algebras which is compatible
with the natural maps Aj → Aj,x and B+

i → B+
i,x. Moreover, by construction the subsets

Yk,x cover the fiber of Yi over x (because the distinguished opens D(f1), . . . , D(fm) cover
Spec(A′

j,x/π)x), and hence their pullbacks cover Spec(B+
i /π)). Since Yi is qcqs, we can find

finitely many connected components x1, . . . , xℓ of X such that the map Yi′ := Yi,x1 ⊔ · · · ⊔
Yi,xℓ

։ Yi is a cover, so that Yi′ ∈ I. Let

Aj′ :=
ℓ∏

k=1

Aj,xk
.

Then Aj′ ∈ Jπ and the natural map α : Aj → Aj′ satisfies the claim (a). This proves (a).
We note that we did not use that Aj/π is flat over A+/π in the proof, only flatness of

A′
j/π, which was supplied by Lemma 3.8 as the A′

j was a finitely generated, π-torsion free
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A+-algebra. Replacing in the argument π by πn, n ≥ 1, we see that we can even guarantee
that Aj′/πn is flat over A+/πn.

From now on, we work with derived condensed rings again. With (a) at hand, we can now
prove the following claim:

(b) The category Jπ is filtered and B+
wl is the (derived) π-adically completed colimit of the

system (Âj)j∈Jπ , where Âj denotes the (derived) π-adic completion of Aj .

Let us first show that Jπ is filtered. Clearly, Jπ is non-empty as A+ ∈ Jπ. Given Aj, Aj′ ∈ Jπ,
pick any i ∈ I such that both Aj → B+

wl and Aj′ → B+
wl factor over B+

i . Then the static,
non-condensed tensor product Aj′′ := Aj ⊗A+ Aj′ lies in Jπ and the map Aj′′ → B+

wl factors
over B+

i . In particular the natural maps Aj → Aj′′ and Aj′ → Aj′′ lie in Jπ. Now suppose
we have two maps α1, α2 : Aj → Aj′ in Jπ. By repeatedly applying (a) to the images of
polynomial generators of Aj under α1 − α2 we can construct some Aj′′ ∈ Jπ with a map
Aj′ → Aj′′ such that α1 and α2 become equal on Aj′′ . This proves that Jπ is indeed filtered.

Now let B′ be the (derived) π-adic completion of lim
−→j∈Jπ

Âj . There is a natural map

B′ → B+
wl of π-adic rings which we need to show to be an isomorphism. This can be checked

modulo π, so we need so show that the natural map

lim
−→

j

Âj/π = lim
−→

j

Aj/π → B+
wl/π = lim

−→
i

B+
i /π

is an isomorphism of discrete rings (here the tensor product Aj/π is a priori derived!). For this
it is enough to show the stronger claim that the natural map lim−→j

Aj → lim−→i
B+

i of classical,
non-condensed rings is an isomorphism of static discrete rings. This map is clearly surjective,
because every b ∈ B+

i is hit by some Aj → B+
i , e.g., for Aj = A+[x] and x 7→ b. The map is

injective by claim (a). This proves the desired isomorphism and thus also claim (b).
We have now shown that the map A+ → B+

wl is the π-completed filtered colimit of π-
complete finitely presented A+-algebras whose underived reduction modulo π (i.e. π0(Aj/π))
is flat over A+/π. Since we only talk about underived reductions modulo π, we cannot
immediately conclude the desired descendability statement: Since we have no control over
the π-torsion of Aj ∈ Jπ, we cannot deduce from the flatness of π0(Aj/π) that also π0(Aj/πn)
is flat. We therefore need the following additional argument.

From now on we denote Jn := Jπn for some fixed pseudouniformizer π ∈ A. Then Jn+1 ⊆ Jn

is a full subcategory for every n ≥ 1 and as we noted after the proof of (a) this subcategory is
even cofinal. Now let J be the following category: The objects of J are the functors j : N→ J1

such that j(n) ∈ Jn for all n ≥ 1. For j, j′ ∈ J we define

HomJ(j, j′) = lim
−→
n∈N

Hom(j|N≥n
, j′|N≥n

).

To every j ∈ J we associate the A+-algebra Aj := lim
−→n

Aj(n). It follows from (a) that J is

ω1-filtered8 and it follows as in (b) that B+
wl is the π-completed colimit of (Âj)j∈J . Thus, to

finish the proof it is now enough to show the following claim:

(c) For every j ∈ J the map (A+)� → (Âj)� is adically descendable of index ≤ 4.

8Given any countable diagram jk, k ∈ K, in J , we can write the category K as a filtered union of finite
subgraphs Kn, n ∈ N, and set j′(n) ∈ Jn as an object with a map from each jk(l), k ∈ Kn and l ≤ n
such that these morphisms to j′(n) equalize all morphisms jk(l) → jk′ (l) induced by a morphism in Kn.
Inductively, we can even construct compatible morphisms j′(n) → j′(n + 1), and set jk → j′ for k ∈ Kn

as the morphism, which for m ≥ n is the chosen morphism jk(m) → j′(m).
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To prove (c), fix j ∈ J and n ≥ 1. We need to show that the map (A+/πn)� → (Aj/πn)�

is descendable of index ≤ 4. This map is the filtered colimit of the maps (A+/πn)� →
(Aj(k)/πn)�, so by [16, Proposition 2.7.2] it is enough to show that for k ≫ 0 the map
(A+/πn)� → (Aj(k)/πn)� is descendable of index ≤ 2. We claim that this works for k ≥ n.
Indeed, we have the factorization

α : (A+/πn)� → (Aj(k)/πn)� → π0(Aj(k)/πn)�,

and by definition of Jn the composed map α is flat and finitely presented. The map α is even
surjective on spectra, and thus an fppf cover, because its composition with π0(Aj(k)/πn) →
B+

wl/πn is A+/πn → B+
wl/πn, which is surjective on spectra (as Y wl → X is a v-cover of

totally disconnected spaces). Thus by [16, Lemma 2.10.6] the map α is descendable of index
≤ 2, so by [16, Lemma 2.6.10.(ii)] the same is true for the first map (A+/πn)� → (Aj(k)/πn)�,
as desired.

Proof of Theorem 3.7. It is sufficient to construct X 7→ Da
�̂
(O+

X ) for X ∈ Perfdaff as it will
formally extend via analytic descent. We define the presheaf X = Spa(A, A+) 7→ F (X) :=
Da

�̂
(A+) on Perfdaff . We first observe that for every v-cover f : Y = Spa(B, B+) → X =

Spa(A, A+) of totally disconnected spaces, the presheaf F satisfies descent along f . Indeed,
by Proposition 3.9 and Lemma 3.6 the presheaf F satisfies descent along the map Y wl → X,
even after any base change X ′ → X with X ′ any affinoid, not necessarily totally discon-
nected, perfectoid space.9 Hence, by [11, Lemma 3.1.2.(3)] the same is true for f : Y → X.
Using Lemma 3.6 we can argue as in [16, Proposition 3.1.9] to show that there is a (neces-
sarily unique) quasi-pro-étale sheaf X 7→ Da

�̂
(O+

X ) on Perfdaff which has the desired form on
those spaces which are quasi-pro-étale over some totally disconnected space. We recall the
argument for the convenience of the reader: first, the presheaf F defines a quasi-pro-étale
sheaf on the pro-étale site10 of strictly totally disconnected perfectoid spaces, i.e., those to-
tally disconnected spaces whose connected components are of the form Spa(C, C+) with C
algebraically closed and C+ ⊆ C an open and bounded valuation subring. Formally, this
quasi-pro-étale sheaf extends to the quasi-pro-étale sheaf X 7→ Da

�̂
(O+

X) on Perfdaff . Assume
that X = Spa(A, A+) is affinoid perfectoid with a quasi-pro-étale map X → Z to a totally
disconnected space Z. If Y → Z is a quasi-pro-étale cover with Y strictly totally disconnected,
then Y → Z satisfies universal descent for F as we have seen above. In particular, F satisfies
descent for the cover Y ′ := Y ×Z X → X. As the terms of the Čech nerve for Y ′ → X are
strictly totally disconnected, we can therefore conclude that F (X) = Da

�̂
(O+

X) as claimed.
It remains to show that the sheaf X 7→ Da

�̂
(O+

X) satisfies v-hyperdescent. This can be
done in the same way as in the proof of [16, Theorem 3.1.27]: One first shows the analog
of [16, Lemma 3.1.23] for adic coefficients, where the two crucial inputs are [16, Lemma
3.1.22] (which can be replaced by Lemma 3.10) and the finite Tor dimension (which can be
lifted to the adic level by Corollary 2.14). Then the adic version of [16, Corollary 3.1.24] is
a formal corollary and consequently we deduce the adic version of [16, Proposition 3.1.25];
here the only non-formal input is the fact that +-modules, i.e., D+

�̂
(A+) for X = Spa(A, A+),

descend along v-covers of totally disconnected spaces, as shown above. In other words, we
have now shown that X 7→ Da

�̂
(O+

X ) is a v-sheaf. To get v-hyperdescent it remains to prove
the adic version of [16, Proposition 3.1.26]. But here the only non-formal input is the finite
Tor dimension, which can again be deduced from the mod-π version via Corollary 2.14.

9More precisely, we as well use that descent of D�̂(−) for (A+)� → (B+)� implies descent of Da
�̂
(−) by

embedding the almost category (via j!) into D�̂(−) and using Remark 2.36 to see that this embedding is
compatible with pullback.

10We note that a qcqs perfectoid space Y with a quasi-pro-étale map Y → X to a strictly totally disconnected
perfectoid space X is itself again strictly totally disconnected. This need not be true if X = Spa(K, K+)
is connected and totally disconnected as the valuation ring K+ need not be henselian.
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The following result was used in the proof of Theorem 3.7 above. It is an interesting
statement on its own, so we extract it here:

Lemma 3.10. Let f : Y → X be an étale cover in Perfdaff . Then +-modules descend along
j, i.e., the functor X = Spa(A, A+) 7→ Da

�̂
(A+) is an étale sheaf on Perfdaff .

Proof. After inverting a pseudo-uniformizer π ∈ A, i.e., for the functor X = Spa(A, A+) 7→
ModA(Da

�̂
(A+)) = ModA(D�̂(A+)) this follows from Theorem 2.38. Using the fiber sequence

A+ → A → A/A+ = lim−→
n

A+/πn reduces therefore to the descent for the functor X =

Spa(A, A+) 7→ ModA+/πn(Da
�̂
(A+)) = ModA+/πn(Da

�
(A+)). Moreover, using induction and

the fiber sequence A+/πn−1 → A+/πn → A+/π reduces to the case n = 1. As π was
arbitrary, we may even assume that p|π, and then (by tilting) that X = Spa(A, A+), Y =
Spa(B, B+) are perfectoid spaces of characteristic p. As f : Y → X is étale, there exists by
[22, Proposition 6.4.(iv)] some étale morphism f0 : Y0 = Spa(B0, B+

0 → X0 = Spa(A0, A+
0 )

of affinoid perfectoid spaces, which are weakly of perfectly finite type over Spa(Fp((π1/p∞
)))

(in the sense of [16, Definition 3.1.13.]), and morphisms g : X → X0, Y → Y0 such that
Y ∼= Y0 ×X0 X. By [16, Theorem 3.1.17] the natural functor

Da
�
(A+

0 /π)→ lim←−
[n]∈∆

Da
�
((Bn/A0

0 )+/π)

is an equivalence (here (Bn/A0

0 )+ denotes the +-ring for the n-th stage of the Čech nerve of
Y0 → X0). Using the arguments from Lemma 2.40, we see that this implies that the functor

Da
�
(A+/π)→ lim

←−
[n]∈∆

Da
�
((Bn/A)+/π)

is an equivalence as well. More precisely, the critical statement to check is that for any
morphism g : X = Spa(A, A+) → X0 = Spa(A0, A+

0 ) of affinoid perfectoid spaces over
Spa(Fp((π1/p∞

))) the pushforward ga
∗ : Da

�
(A+/π) → Da

�
(A+

0 /π) on almost categories is con-
servative. This however follows formally from conservativity of g∗ : D�(A+/π) → D�(A+

0 /π)
by embedding the almost categories via ∗-pushforward, i.e., the functors of almost elements
over A+/π resp. A+

0 /π, into D�(A+/π) resp. D�(A+
0 /π). This finishes the proof.

Remark 3.11. The same argument as in Theorem 3.7 can be used to show the following:
Let X → S be a map in Perfdaff . Then there is a unique hypercomplete v-sheaf

(Perfd/S)op → Cat∞, T 7→ Da
�̂
(O+

XT
)

such that if T admits a quasi-pro-étale map to some totally disconnected space then Da
�̂
(O+

XT
) =

Da
�̂
(B+), where X ×S T = Spa(B, B+). Indeed, Proposition 3.9 implies descent after base

change.

We note that logically we did not use Theorem 1.2 in the proof of Theorem 3.7, only in
its disguise through the key ingredient Lemma 3.8 and the étale descent from [16, Lemma
3.1.22].

Remark 3.12. Let X = Spa(A, A+) ∈ Perfdaff with pseudo-uniformizer π ∈ A. It follows
from Theorem 3.7 and Lemma 2.10 that

ModA+/π(Da
�̂
(O+)) ∼= Da

�
(O+

X/π),

with the right hand side defined in [16, Definition 3.1.3]. Indeed, both sides satisfy v-descent
and if X is totally disconnected we can apply Lemma 2.10.
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Definition 3.13. Let f : Y → X be a map of perfectoid spaces.

(a) We let f∗ : Da
�̂
(O+

X)→ Da
�̂
(O+

Y ) be the restriction map of the sheaf Z 7→ Da
�̂
(O+

Z ) from
Theorem 3.7.

(b) We let f∗ be the right adjoint to f∗.11

(c) If X = Spa(A, A+) is affinoid, we denote by

(̃−) : Da
�̂
(A+)→ Da

�̂
(O+

X)

the natural functor, and by Γ(X,−) its right adjoint.

3.3 Boundedness conditions

Let X = Spa(A, A+) be an affinoid perfectoid space. In the rest of this paper, we will be
concerned with the question whether the functor

(̃−) : Da
�̂
(A+)→ Da

�̂
(O+

X)

from Definition 3.13 is an equivalence. This will turn out to be true under certain finiteness
assumptions. The critical definition of +-boundedness is the following.

Definition 3.14. (a) A map f : Y ′ → Y of affinoid perfectoid spaces in characteristic p is
called +-bounded if it is p-bounded in the sense of [16, Definition 3.5.5.(b)].

(b) Y ∈ Perfdaff
Fp

is called +-bounded if there exists a +-bounded map Y → Z with Z totally
disconnected.

(c) Let ℓ be a prime, e.g., ℓ = p. A spatial diamond Y , e.g., an affinoid perfectoid space in
characteristic p, is called ℓ-bounded if there exists some integer d ≥ 0, such that for all
(static) Fℓ-sheaves M on Yet we have H i(Yet,M) = 0 for k > d. Here, Yet is the étale
site of Y as defined in [22, Definition 14.1.(i)].

(d) An affinoid perfectoid space X ∈ Perfd is +-bounded (resp. ℓ-bounded) if its tilt
X♭ ∈ PerfdFp is +-bounded (resp. ℓ-bounded).

Most notably, X = Spa(A, A+) +-bounded implies by Theorem 1.2 (and Remark 3.12)
that for any pseudo-uniformizer π ∈ A

ModA+/π(Da
�̂
(O+

X)) ∼= Da
�̂
(A+/π) ∼= ModA+/π(Da

�̂
(A+)),

and this will be a critical ingredient in our proof of Theorem 1.1. We note that the property
of being +-bounded (resp. ℓ-bounded) depends only on the tilt. This is crucial for our major
application.

Remark 3.15. Roughly, a morphism f : Y ′ → Y is +-bounded if f∗ has finite “cohomological
dimension on O+/π-modules” and f has dim.trg(f) < ∞. In [16, Definition 3.5.5] the
definition of +-bounded from Definition 3.14 is phrased for all (morphisms of) small v-stacks.
This extra generality is not necessary for this paper. We note that [16, Definition 3.5.5.] uses
the terminology “p-bounded” for what we call “+-bounded” here, while our use of “p-bounded”
refers to the different (but related) notion considered in [15, Definition 2.1].
11It follows by [13, Proposition 5.5.3.13] thatDa

�̂
(O+

Z ) is presentable for any Z ∈ Perfd. By reduction to the
totally disconnected case it follows that f∗ preserves colimits, and hence admits a right adjoint.
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Example 3.16. Let f : Y ′ → Y be a morphism of affinoid perfectoid spaces in characteristic
p. If f is quasi-pro-étale or weakly of perfectly finite type, then f is +-bounded ([16, Lemma
3.5.10.(v)], [16, Lemma 3.5.13]).

Lemma 3.17. Let X be an ℓ-bounded spatial diamond, and f : X ′ → X a qcqs quasi-pro-étale
map. Then X ′ is ℓ-bounded.

Proof. We note that f∗ : D+(X ′
et,Fℓ) → D+(Xet,Fℓ) is t-exact by [22, Remark 21.14] if f

is separated. This implies that the assertion is local on X ′, and thus we may furthermore
assume that f is separated. Then again [22, Remark 21.14] reduces to the ℓ-boundedness of
X.

The notions of +-boundedness and p-boundedness are closely related. The next result
shows that the former implies the latter. We have not investigated to what extend the other
implication is valid.

Theorem 3.18. Let X be a +-bounded affinoid perfectoid space. Then X is p-bounded. In
fact, if f : X → Z is a +-bounded map to a totally disconnected space Z, then H i(Xet,F) = 0
for i > 3 + dim.trg(f) and any (static) Fp-sheaf F on Xet.12

Proof. We may replace X by X♭ and hence assume that X is of characteristic p. We first
deal with the case that X = Z is totally disconnected. Let π : Xet → π0(X)et be the natural
morphism of sites. As π0(X)et has cohomological dimension 0 ([27, Lemma 0A3F]), it suffices
to show that Riπ∗(F) = 0 for i > 2 and any static Fp-sheaf on Xet. This can be checked
on stalks, and hence we may assume that X = Spa(K, K+) is a perfectoid affinoid field
in characteristic p, i.e., K is a perfectoid field of characteristic p and K+ ⊆ K an open
and bounded valuation subring. We may write (K, K+) as a (completed) filtered colimit of
perfectoid affinoid fields (L, L+) and therefore reduce (via [22, Proposition 14.9]) to the case
that K+ has finite Krull dimension. Let j : U → X be the complement of the closed point.
Then U = Spa(K, ‹K+) for some valuation ring K+ ⊆ ‹K+. By [22, Lemma 21.13] the fiber
G := [F → Rj∗j∗F ] lies in D[0,1](Xet,Fp). By [22, Proposition 21.15] we can conclude that
H i(Xet,G) = 0 for i ≥ 3 because Spa(K,OK ) has p-cohomological dimension ≤ 1 (using
Spa(K,OK)et

∼= Spec(K)et and [20, Proposition 6.5.10]). This implies that H i(Xet,F) ∼=
H i(Uet,F|U ) for i ≥ 3. By induction this reduces to the case X = Spa(K,OK), in which case
H i(Xet,F) = 0 for i ≥ 2.

Now assume that X = Spa(A, A+) is a general affinoid perfectoid space with a +-bounded
morphism f : X → Z to a totally disconnected space Z = Spa(R, R+) (it is actually sufficient
to assume that dim.trg(f) <∞). We claim that Rif∗(F) = 0 for any i > dim.trg(f) + 1 and
any static Fp-sheaf F on Xet. We may write f as a cofiltered inverse limits of morphisms
fj : Xj = Spa(A, A+

j ) → Z and A+
j finitely generated over B+. By [16, Lemma 3.5.10.(iv)]

the morphisms fj are +-bounded again as the relative compactifications X
/Z = Xj

/Z agree.
By definition dim.trg(f) = dim.trg(fj) for any j. In particular, we may replace f by fj and

assume that f : X → Z is compactifiable, i.e., X → X
/Z is a (necessarily quasi-compact)

open immersion. Note that X
/Z is an affinoid perfectoid space, and thus in particular a

spatial diamond. Thus, the claim follows from Theorem 3.19.

The next result Theorem 3.19 is a mod p analog of [22, Theorem 22.5]. In [22, Theorem 22.5]
f is assumed to be a compactifiable morphism of general small v-stacks, which is representable
in spatial diamonds. We have to add the stronger assumption that Y ′, Y are diamonds as the
base change results for mod p-coefficients are weaker than in the prime-to-p-case. However,
we follow the strategy of proof of [22, Theorem 22.5] quite closely.

12As the proof shows it is sufficient that f has dim.trg(f) < ∞.
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Theorem 3.19. Let f : Y ′ → Y be a compactifiable morphism of spatial diamonds, with

canonical compactification Y ′ j
−→ Y ′′ := Y ′/Y f

−→ Y . Then Rif∗, Rif∗ vanish on static étale
Fp-sheaves for i > 2dim.trg(f) + 1. If f is representable in spatial diamonds, they vanish for
i > dim.trg(f) + 1.

Proof. We note that j∗ is exact by [22, Lemma 21.13]. Hence, it suffices to prove the assertion
about Rif∗. Let X → Y be a quasi-pro-étale cover with X strictly totally disconnected. Then
by [22, Corollary 16.10.(ii)] we may replace f by its base change Y ′ ×Y X → X, and thus
reduce to the case that Y is strictly totally disconnected. As the statement can be checked
on stalks we may even assume that Y = Spa(C, C+) is an affinoid field. Let s ∈ Y be the

closed point, and U := Y \ {s} with pullback V := f
−1

(U)
j
−→ Y ′′. Using Theorem 3.20 we

see that for every static Fp-sheaf F on Y ′′ we have

RΓ(Y ′′, j!j
∗F) = 0,

which allows us to reduce to the case that F|U = 0. If Y ′′ is a spatial diamond, then [22,
Proposition 21.11] applies and yields the cohomological bound dim.trg(f)+1 (as cdp(y) ≤ 1 for
all maximal points y of Y ′′ and dim.trg(f) = dim.trg(f)). It Y ′′ is not a spatial diamond, then
the arguments of [22, Theorem 22.5] go through without change and yield the cohomological
bound 2dim.trg(f) + 1.

The following is a mod p-analog of [22, Theorem 19.2]. Again the stronger assumption that
Y ′, Y are spatial diamonds avoids the failure of strong base change results mod p.

Theorem 3.20. Let f : Y ′ → Y be a proper morphism of spatial diamonds, and let j : U → Y
be an open immersion with pullback g : U ′ := Y ′ ×Y U → U , j′ : U ′ → Y ′. Then for any
A ∈ D+(U ′,Fp) the natural morphism j!Rg∗(A)→ Rf∗(j′

!A) is an isomorphism.

Proof. The proof of [22, Theorem 19.2] goes through with a minor change: To avoid the
use of [22, Proposition 17.6] take a quasi-pro-étale cover X → Y with X strictly totally
disconnected (this is possible as Y is a diamond) and apply instead [22, Corollary 16.10.(ii)]
to reduce to the case Y strictly totally disconnected. We note that the reduction in [22,

Theorem 19.2] to the case that Y ′ = X ′/Y
for some strictly totally disconnected space X ′

over Y = X does not need [22, Corollary 16.8.(ii)] (or something similar): the v-site of Y ′ is
replete, and RΓ(Y ′

et, B) ∼= RΓ(Y ′
v , ε∗B) by [22, Proposition 14.10] for B ∈ D+(Yet,Fp), where

ε : Y ′
v → Yet is the natural morphism of sites. This implies the desired cohomological descent.

The remaining steps in the proof, e.g., [22, Lemma 19.4], go through without change.

The major goal of this paper is to find a large class of affinoid perfectoid spaces X =
Spa(A, A+) for which we have Da

�̂
(O+

X) = Da
�̂
(A+). The next two results provide useful

abstract criteria for when this identification is valid.

Lemma 3.21. Let X = Spa(A, A+) ∈ Perfdaff . Assume that there exists a quasi-pro-étale
cover Y → X with Y = Spa(B, B+) totally disconnected almost +-modules (in the sense of
Definition 3.2) descent along (A+)� → (B+)�. Then the natural functor

(̃−) : Da
�̂
(A+)→ Da

�̂
(O+

X)

is an equivalence.

Proof. Let Y• → X be the Čech nerve of Y → X and write Yn = Spa(Bn, B+
n ). Note that

each Yn, n ≥ 0, is quasi-pro-étale over the totally disconnected space Y = Y0. Then

Da
�̂
(O+

Y ) ∼= lim
←−

[n]∈∆

Da
�̂
(O+

Yn
) ∼= lim

←−
[n]∈∆

Da
�̂
(B+

n ) ∼= Da
�̂
(A+),
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using Theorem 3.7 in the second isomorphism and that almost +-modules descent along
(A+)� → (B+)� in the third.

Lemma 3.22. Let X = Spa(A, A+) ∈ Perfdaff be +-bounded, and let π ∈ A be a pseudo-
uniformizer. Then the functor (̃−) : Da

�̂
(A+) → Da

�̂
(O+

X) is an equivalence if and only if
Γ(X,−) : Da

�̂
(O+

X)→ Da
�̂
(A+) preserves colimits and Da

�̂
(O+

X) is generated under colimits by
π-complete objects N with Γ(X,N ) bounded to the right.

Proof. The necessity is clear (as Da
�̂
(A+) is generated by π-complete objects), so let us check

the converse. There is the natural adjunction

(̃−) : Da
�̂
(A+) ⇄ Da

�̂
(O+

X) :Γ(X,−)

and we need to show that these functors are inverse to each other. We first show that (̃−) is
fully faithful, i.e. that for every M ∈ Da

�̂
(A+) we have Γ(X, M̃ ) = M . Since Γ(X,−) preserves

colimits, we can assume that M = P a for a compact generator P ∈ D�̂(A+), in particular
M is π-complete and bounded to the right. We claim that M̃ ∈ Da

�̂
(O+

X ) is π-complete.

This can be checked on a v-cover Y → X with Y totally disconnected. By naturality of (̃−)
and Lemma 2.12, this reduces to the case that Y = X, where (̃−) is an equivalence. Thus
Γ(X, M̃ ) and M are π-complete and hence the identity Γ(X, M̃ ) = M can be checked modulo
π. But then it follows from [16, Theorem 3.5.21] (note that it is formal that (̃−), Γ(X,−) are
compatible with passage to A+/π-modules).

To finish the proof, it is now enough to show that (̃−) is essentially surjective. Since
by assumption Da

�̂
(O+

X ) is generated under colimits by π-complete objects, it is enough to

show that every π-complete object lies in the essential image of (̃−). Given a π-complete

N ∈ Da
�̂
(O+

X) we need to see that the counit ‚�Γ(X,N ) ∼
−→N is an isomorphism. By assumption

we may even assume that Γ(X,N ) is bounded to the right. Then by the same argument as
above both sides of the claimed isomorphism are π-complete, so we can check the claimed
isomorphism modulo π. Then it reduces to again [16, Theorem 3.5.21].

3.4 Descent for relative compactifications of totally disconnected spaces

In this section we want to identify Da
�̂
(O+

X) for certain relative compactifications of totally
disconnected spaces. The precise statement is the following.

Theorem 3.23. Let X ∈ Perfdaff whose tilt admits a map f : X♭ → Z to some totally
disconnected space Z with dim.trgf < ∞. Let X ′ → X be a quasi-pro-étale map, where X ′

is a totally disconnected space. Then for Y := X
′/X = Spa(B, B+) the natural functor

Da
�̂
(B+)→ Da

�̂
(O+

Y )

is an equivalence.

Proof. Set Z ′ := (X ′)♭. We let X ′ → Y ′ be the unique map of perfectoid spaces whose tilt is

the map Z ′ → Z ′/Z
(note that O(X ′) = O(Y ′) as this holds for the tilt). We note that there

exists a natural inclusion Y → Y ′ whose tilt is the natural map Z ′/X
→ Z ′/Z

. In fact, Y is an
intersection of rational open subsets in Y ′ as this holds on the tilt. By Proposition 3.24 there
is a pro-étale cover W ′ → Y ′ which is of universal almost +-descent, where W ′ is a totally
disconnected space, i.e., almost +-modules (in the sense of Definition 3.2) descend along
W ′ → Y ′ and all its base changes to affinoid perfectoid spaces. Then W := Y ×Y ′ W → Y
is a pro-étale cover with +-descent for Y , and W is still totally disconnected (as it is an
intersection of rational open subsets in the totally disconnected space W ′). By Lemma 3.21
this finishes the proof.
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In the next proposition, an untilt of a perfectoid space Z of characteristic p is a perfectoid
space X together with an identification X♭ ∼= Z. Proposition 3.24 is similar to [16, Proposition
3.1.11]. Again the essential point is to show that open covers of relative compactifications are
descendable with uniformly bounded index. This will as in [16, Proposition 3.1.11] be reduced
to open covers of (families of) Riemann–Zariski spaces. The necessary results on these kind
of adic spaces will be discussed in Section 3.5.

Proposition 3.24. Let f : Z ′ → Z be a map of totally disconnected spaces in Perfdaff
Fp

with

dim.trgf < ∞. Let X be an untilt of Z
′/Z . Then there is a pro-étale cover Y → X by a

totally disconnected space Y such that almost +-modules descend along Y ×X X ′ → X ′ for
any morphism X ′ → X of affinoid perfectoid spaces.

Proof. Let Y := Xwl be the w-localization of X, which by [22, Lemma 7.13] is a totally
disconnected space of the form Y = lim

←−i
Yi ։ X such that each Yi is a disjoint union of

rational open subsets of X. We will show that the map Y → X has the claimed descent
properties and similarly any base change. Write X = Spa(A, A+), Y = Spa(C, C+). It
suffices to check that the map (A◦, A+)� → (C◦, C+)� is weakly adically descendable of an
index ≤ c(d), where c(d) is a constant only depending on d := dim.trgf . Indeed, then almost
+-modules will descent universally along Y → X because D�̂(A◦, A+) and D�̂(A+) define the
same almost category using (A◦)a = (A+)a (and the similar statement for D�̂(C◦, C+) and
D�̂(C+)). By Proposition 2.33.(iii) it is enough to show that for each map Yi = Spa(Ci, C+

i )→
X the map (A◦, A+)� → (C◦

i , C+
i )� of adic analytic rings is adically descendable with an index

≤ c(d). By definition of adic descendability it is enough to prove this statement modulo π
for every pseudouniformizer π on X. Now we can argue as in [16, Proposition 3.1.11], using
Lemma 3.26 in place of [16, Proposition 2.10.10] in order to get descendability (and not just
fs-descendability) of the covering. In the following we provide the details.

We are given a map U := Yi =
⊔n

j=1 Uj → X for a cover of X by qcqs open subsets Uj ⊆ X.
Write X = Spa(A, A+), Z = Spa(B, B+) and Z ′ = Spa(B′, B′+), where we note that B′ = A♭

and that A♭+ is the completed integral closure of B+ + B′◦◦ in B′+. Let B
′ := B′◦/B′◦◦,

B
+

:= B+/B◦◦ and X := Spa(B
′
, B

+
). Note that B

′
= A♭◦/A♭◦◦, that A♭+/A♭◦◦ is the

integral closure of the image of B
+

in B
′

and that X♭ satisfies the hypothesis of Lemma 3.27.
Hence by Lemma 3.27 we obtain a canonical homeomorphism |X| = |X♭| ∼= |X|. In particular,
the open cover X =

⋃
j Uj corresponds to an open cover X =

⋃
j U j and we define U :=

⊔
j U j.

We now claim that X satisfies the condition of Lemma 3.26. Indeed, the connected com-
ponents of Z ′ are of the form Spa(K ′, K ′+) for a perfectoid field K ′, hence the connected
components of Spec B

′
are of the form Spec(OK ′/mK ′) (we note for later that this implies

that |Spec(B
′
)| is a profinite set). Similarly, if a connected component of Z is of the form

Spa(K, K+) then the corresponding connected component of Spec B
+

is of the form K+/mK ,
which is a valuation ring. This implies that the condition (a) of Lemma 3.26 is satisfied.
Similarly, condition (b) is satisfied using the same d ([4, VI.10.3.Corollaire 1]). Altogether we
deduce that the map U → X is descendable of index bounded by a constant only depending
on d. More precisely, by the proof of Lemma 3.26 there is a reduced projective B

+
-scheme S

together with a dominant map Spec B
′
→ S such that the map U → X comes via base-change

from an open covering of S along the map X → S. Moreover, S can be covered by d+1 open
affine subschemes W i = Spec Ri ⊆ S. As S is separated, the morphism Spec B

′
→ S is affine.

Note that we have a surjective map A◦/π ։ A◦/A◦◦ = A♭◦/A♭◦◦ = B
′ with locally nilpotent

kernel. By [27, Lemma 07RT] we can therefore form the pushout S := Spec(A◦/π)∪
Spec(B

′
)
S

in the category of schemes. By the construction in [27, Lemma 07RT], the scheme S is covered
by the d + 1 open affine subschemes Spec(A′

i)∪Spec(B
′

i)
W i, where Zi = Spec(B

′
i) ⊆ Spec(B

′
)

is the affine open preimage of Wi along Spec(B′) → S, and Spec(A′
i) ⊆ Spec(A◦/π) is the
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unique affine open subscheme with underlying topological space Zi.
The morphism X → S lifts to a morphism Xπ := Spa(A◦/π, A+/π)→ S which is the same

map on underlying topological spaces. Now the given open covering U = Spa(Ci, C+
i ) → X

induces an open covering Uπ := Spa(C◦
i /π, C+

i /π) → Xπ (using that Lemma 3.27 applies to
U as well), and Uπ → Xπ reduces to the covering U → X. Thus the covering Uπ → Xπ is an
open covering of discrete adic spaces which comes via base-change from an open covering of
S (as can be checked after base change to X). Since S is covered by d+ 1 open affine subsets,
the map Uπ → Xπ is therefore descendable of index bounded by a constant only depending
on d ([16, Corollary 2.10.7]). This finishes the proof.

3.5 Families of Riemann–Zariski spaces

In this section we provide the necessary results on families of Riemann–Zariski spaces, which
entered in the proof of Proposition 3.24. Unless stated otherwise, each Huber pair is classical in
this section. A related discussion can be found in [26], but we need to ensure that the relative
Riemann–Zariski space is a cofiltered inverse limits of projective schemes (and not merely of
proper schemes) in order to ensure the uniform bound on descendability in Lemma 3.26.

Lemma 3.25. Let A+ → A be a map of classical, discrete rings such that each connected
component of X := Spa(A, A+) is of the form Spa(K, A+

x ) for some field K and some subring
A+

x ⊆ K. Let I be the category of factorizations Spec A → Yi → Spec A+ such that Yi is a
reduced projective A+-scheme and the map Spec A→ Yi is dominant. Then:

(i) I is cofiltered and for every i ∈ I the map Spec A → Yi factors uniquely over a map
X → Yi over Spec(A+). The induced map |X| → |Yi| is closed.

(ii) The map |X| ∼
−→ lim←−i

|Yi| is a homeomorphism of topological spaces.

We note that under the assumptions of this lemma the natural map Spa(A, A)→ Spec(A)
is an isomorphism of locally ringed spaces, which makes condition (i) well-defined.

Proof. Let us first show that I is cofiltered. Given any i, i′ ∈ I there can be at most one map
Yi → Yi′ in I. Indeed, this follows immediately from the fact that the map Spec A→ Yi is an
epimorphism (in general dominant morphisms are epimorphisms in the category of reduced
separated schemes, as one easily checks by a standard diagonal argument). Thus to prove
that I is cofiltered we only need to check that there is some i′′ ∈ I such that there are maps
Yi′′ → Yi and Yi′′ → Yi′ . But note that we can take Yi′′ to be the scheme-theoretic image of
the natural map Spec A→ Yi ×Spec A+ Yi′ .

Now fix some i ∈ I. Note that X is the relative compactification of the map Spec A →
Spec A+ (see [16, Example 2.9.27]), so since Yi → Spec A+ is proper (and thus its own relative
compactification) we deduce that the map Spec A→ Yi extends canonically to a map X → Yi

over Spec(A+). The uniqueness of the extension can be checked on connected components,
where it follows from the valuative criterion for properness. We now check that the morphism
X → Yi is closed. As A is discrete, the morphism X → Yi is a quasi-compact morphism of
spectral spaces. Because it is as well specializing (by the valuative criterion for properness)
this implies that the morphism X → Yi is closed. Indeed, by quasi-compactness of X → Yi

the image of a closed subsets is pro-constructible and stable under specialization, hence closed
([27, Lemma 0903]). This proves (i).

It remains to prove (ii). By (i) we know that the map |X| → lim←−i
|Yi| is closed and contin-

uous, so it is enough to show that this map is bijective. Let us first check that it is injective,
so let y, y′ ∈ |X| be two given points which get mapped to the same point in each |Yi|. Let
›A+ be the integral closure of the image of A+ in A. Then π0(Spec(›A+)) = π0(Spec(A)) and
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writing ›A+ as a filtered colimit of finite, reduced A+-algebras, we see that y and y′ lie in the
same connected component x = Spa(K, A+

x ) of X and hence correspond to valuation rings
Vy, Vy′ ⊆ K containing A+

x . Assuming y 6= y′ we can w.l.o.g. assume that there is some
a ∈ Vy \ Vy′ . Let a ∈ A be a lift of a, which we can assume to be a unit (note that K is the
filtered colimit of the ring of functions of clopen neighbourhoods of Spec K ⊆ Spec A). Then
the pair {1, a} determines a map f : Spec A → P1

A+ and we let Ya be the scheme theoretic
image of f . Then Ya ∈ I and we claim that the induced map X → Ya separates y and y′.
To see this, we can assume that the map A+ → A is injective, because otherwise the sur-
jection from A+ to its image in A induces a closed immersion on schemes and in particular
an injective map. Now Ya can be described explicitly: It is obtained by gluing Spec A+[a]
and Spec A+[1/a] along Spec A+[a, 1/a]. Moreover, the map X → Ya sends a valuation ring
V ⊆ K to the unique point on Ya such that V dominates the associated local ring. Thus Vy′

is sent to a point in Spec A+[1/a] which does not lie in Spec A+[a, 1/a], whereas Vy is sent to
a point in Spec A+[a].

We now prove surjectivity of the map |X| → lim←−i
|Yi|, so let any (yi)i ∈ lim←−i

|Yi| be given.

Replacing A+ by ›A+ we may assume that π0(Spec(A)) = π0(Spec(A+)). Then all yi live
over the same connected component of X, so by base-changing to this connected component
we can assume that X is connected, i.e. of the form X = Spa(K, A+) for a field K. For
each i the dominant map Spec K → Yi induces an injection OYi,yi ⊆ K. Let R ⊆ K be the
(filtered) union of all OYi,yi . Then R is a local ring and hence dominated by some valuation
ring V ⊆ K. This valuation ring corresponds to a point y ∈ |X| which maps to (yi)i (by
uniqueness), as desired.

The next lemma yields the crucial uniform descendability bound for Proposition 3.24. It
is the analog of [16, Proposition 2.10.10] for families of Riemann–Zariski spaces.

Lemma 3.26. Let A+ → A be a map of classical, discrete rings and X = Spa(A, A+) the
associated discrete adic space. Assume that:

(a) Every connected component of Spec A is of the form Spec K ′ for some field K ′ and every
connected component of Spec A+ is of the form Spec V for some valuation ring V .

(b) There is an integer d ≥ 0 such that for every map of connected components Spec K ′ →
Spec V induced by A+ → A, the associated map V →֒ K ′ is injective and the transcen-
dence degree of K ′ over the fraction field of V is ≤ d.

Let U =
⊔n

j=1 Uj ։ X be an open covering by quasicompact open subsets Uj ⊆ X. Then
U → X is descendable of index bounded by a constant only depending on d.

Proof. Let I be as in Lemma 3.25. Then by Lemma 3.25 we have |X| = lim
←−i
|Yi| and all the

maps |X| → |Yi| are closed, which together implies that there is some i ∈ I and an open
covering Yi =

⋃m
j=1 Wij by qcqs open subsets Wij ⊆ Yi such that U → X is the base-change

of the map Wi :=
⊔m

j=1 Wij ։ Yi along the map X → Yi. By [16, Lemma 2.6.9] it is thus
enough to show that the map Wi → Yi is descendable of bounded index.

To simplify notation let us write Y := Yi and W := Wi. By [16, Corollary 2.10.7] it is
enough to show that Y can be covered by d+1 affine open subschemes. The map π0(Spec A)→
π0(Spec A+) is a map of compact Hausdorff spaces and in particular has closed image. This
image thus corresponds to an affine subscheme Spec A′+ ⊆ Spec A+ (the limit over all clopen
neighbourhoods of the set-theoretic image inside Spec A+) by definition of I we know that Y
is supported over Spec A′+. We can thus replace A+ by A′+ in order to assume that the map
π0(Spec A) → π0(Spec A+) is surjective. Now pick a connected component x = Spec V ∈
π0(Spec A+) and let Yx be the fiber of Y over x. Denote by η and s the open and closed point
of V and let Yx,η and Yx,s be the the generic and special fiber of Yx, respectively. We claim:
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(∗) Yx,s has dimension ≤ d.

To see this, we first claim that there are finitely many connected components y1 = Spec K ′
1,

. . . , yn = Spec K ′
n over x such that the map y1 ⊔ · · · ⊔ yn → Yx is dominant. To see this, fix

any irreducible component Z ⊆ Yx,η. For every (qcqs) open subset W ⊆ Z, let SW ⊆ Spec A
be the preimage of W under the map Spec A → Y . Then SW is a quasicompact open
subset and since the topological space of Spec A is profinite it follows that SW is closed. We
claim that the intersection of all SW , for W ranging through non-empty subsets of Z, is
non-empty. Otherwise, by compactness there would be some W1, . . . , Wm ⊆ Z such that
SW1 ∩ · · · ∩ SWm = ∅. Since Z is irreducible, W := W1 ∩ · · · ∩Wm is still a non-empty open
subset of Z and we deduce SW = ∅; but this contradicts the fact that Spec A→ Y is dominant.
Pick any y in the intersection of all SW ; then the map y → Z is dominant. Repeating this
procedure for all irreducible components of Yx,η, we find y1, . . . , yn ⊆ Spec A such that the
map y∗ := y1 ⊔ · · · ⊔ yn → Yx,η is dominant. By the assumption that the induced maps
V →֒ K ′ are injective (see (b)) we see that every point of Yx that is hit by some y ∈ Spec A
necessarily lies in Yx,η. Consequently, since the map Spec A → Y is dominant, we deduce
that y∗ → Yx must be dominant.

With y1, . . . , yn as in the previous paragraph, let Z1, . . . , Zn ⊆ Yx be the scheme-theoretic
images of these points under the map Spec A → Y . Then Yx = Z1 ∪ · · · ∪ Zn, so to prove
claim (∗) it is enough to show that each Zi,s has dimension ≤ d. Since Zi is integral, by [27,
Lemma 0B2J] it is enough to show that the generic fiber Zi,η has dimension ≤ d. But this
follows immediately from the fact that Zi is a projective K-variety and there is a dominant
map Spec K ′

i → Zi,η such that K ′
i has transcendence degree ≤ d over K. This finishes the

proof of claim (∗).
With claim (∗) proved, we now proceed with the proof that Y is covered by d+1 affine open

subschemes. Let κ = κ(s) be the residue field of s. By the proof of [16, Lemma 2.10.9] we can
find some n ≥ 0 such that Y ⊆ Pn

A+ and homogeneous polynomials f0, . . . , fd ∈ κ[t1, . . . , tn]
such that the intersection of the vanishing loci of the f j ’s in Pn

κ is disjoint from Yx,s. We
can assume that each f j has a coefficient 1 and we can then lift each f j to a homogeneous
polynomial fj ∈ A+[t1, . . . , tn], each of which has one coefficient 1 (first lift the coefficients to V
and then use that V is the colimit of the functions on clopen neighbourhoods of x ⊆ Spec A+).
Let Hj ⊆ Pn

A+ be the zero locus of fj. As in the proof of [16, Lemma 2.10.9] each Pn
A+ \Hj

is affine. Now let Yj := Y ∩ (Pn
A+ \ Hj). This is a closed subscheme of the affine scheme

Pn
A+ \Hj and hence affine. Let Y ′ :=

⋃d
j=0 Yj . This is an open subscheme of Y and by the

argument in [16, Lemma 2.10.9] it contains Yx.
Since the map Y → Spec A+ is closed, the image Z ′ ⊆ Spec A+ of Y \Y ′ under this map is

closed. By construction we have x 6∈ Z ′. By the argument in [22, Lemma 7.5] there exists a
clopen neighborhood U ⊆ Spec A+ of x contained in Spec(A+ \Z ′. Hence YU = Y ×Spec A+ U
is covered by the affine opens (Y0)U , . . . , (Yd)U .

The above proof shows that for every x ∈ π0(X) there is a clopen neighbourhood Ux ⊆
Spec A+ of x such that YU can be covered by d + 1 affine open subsets. By passing to a finite
disjoint cover of Spec A+ by Ux’s we can deduce that Y can be covered be d + 1 affine open
subsets, as desired.

In Proposition 3.24 we used as well the following isomorphism of topological spaces (similar
to [16, Lemma 3.6.1]). Note that for any Tate-Huber pair (A, A+) there exists a natural
specialization map

sp = sp(A,A+) : |Spa(A, A+)| → |Spa(A◦/A◦◦, A+/A◦◦)|,

which is uniquely determined by naturality and the requirement that if (A, A+) = (K, K+)
for a non-archimedean valued field K and an open and bounded valuation subring K+ ⊆ K,
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then sp(K,K+) sends a point x ∈ Spa(K, K+) corresponding to a prime ideal px containing
K◦◦ to the valuation on OK/K◦◦ corresponding to the prime ideal px/K◦◦.

Lemma 3.27. Let Spa(A, A+) be an affinoid Tate adic space such that every connected
component is of the form Spa(K, A+

K), where K is a non-archimedean field and A+
K ⊆ K is

a subring. Then the specialiation map

sp: |Spa(A, A+)| → |Spa(A◦/A◦◦, A+/A◦◦)|

is a homeomorphism.

Proof. Without loss of generality A+ ⊆ A is an open and integrally closed subring in A◦. We
denote X = Spa(A, A+), A = A◦/A◦◦, A

+ = A+/A◦◦ and X = Spa(A, A
+). Then the claim

is that the specialization map induces a homeomorphism |X| ∼= |X |.
First note that there is a canonical homeomorphism π0(X) = π0(X), as both can be derived

from the idempotent elements in A+. Fix a connected component c = Spa(K, A+
K) of X and

let c be the corresponding connected component of X . Let us write c = Spa(K, A
+
K). Then

K◦ is the completed filtered colimit of O◦
X(W ) for clopen neighbourhoods W ⊆ X of c as

the clopen neighborhoods of c are cofinal among all neighborhoods of c (by the argument in
[22, Lemma 7.5]). Similarly, K is the filtered colimit of OX(W ) for clopen neighbourhoods
W ⊆ X of c. By the homeomorphism of spaces of connected components, the W correspond
to W and under this correspondence we have OX(W ) = O◦

X(W )/O◦◦
X (W ). It follows that

K = K◦/K◦◦, which is a discrete field.
With c and c as above, we note that the points of c are precisely the open and bounded

valuation rings V of K such that A+
K ⊆ V . Similarly, the points of c are the valuation rings

V of K such that A
+
K ⊆ V . These two sets agree as each open and bounded valuation ring

V of K must contain K◦◦. As c was arbitrary (and π0(X) = π0(X)) this shows that the
specialization map is bijective, and as well specializing. It remains to show that this bijection
is a homeomorphism. For this it suffices to see that the specialization map is continuous and
quasi-compact, e.g., using [22, Lemma 2.5]. Note that X (and X) satisfy the assumption of
Lemma 3.28. Hence the topology of X has a basis given by Uf ,W = {|f | ≤ 1}∩W for f ∈ A◦

(with reduction f ∈ A◦/A◦◦) and clopen W ⊆ X . Now, sp−1({|f | ≤ 1}) = {|f | ≤ 1} as can
be checked by reducing to the case that (A, A+) is an affinoid field, and sp−1(W ) = W where
W ⊆ X is the clopen subset corresponding to W under the homeomorphism π0(X) ∼= π0(X).
In particular, we can conclude that sp−1(Uf ,W ) is open and quasi-compact. This finishes the
proof.

The proof of Lemma 3.27 made use of the following slightly technical result about the
topology on families of Zariski-Riemann spaces:

Lemma 3.28. Let X = Spa(A, A+) be an affinoid adic space such that every connected
component is of the form Spa(K, A+

K), where K is a field and A+
K ⊆ K is a subring. Then

|X| has a basis of open subsets given by {|f | ≤ 1} ∩W for varying f ∈ A◦ and clopen subsets
W ⊆ X.

Proof. Suppose first that X is connected, so that A is a field. A basis of open subsets of X is
given by the rational subsets, i.e. subsets of the form {|f1| ≤ |g| 6= 0, . . . , |fn| ≤ |g| 6= 0} ⊆ X
for certain f1, . . . , fn, g ∈ A. We can assume that g 6= 0, so that g is invertible. Then the
above subset agrees with {|f1

g | ≤ 1, . . . |fn

g | ≤ 1} and hence is an intersection of subsets of
the form {|f | ≤ 1} for varying f ∈ A. Note that if f is not in A0 (i.e. is not powerbounded)
then {|f | ≤ 1} = ∅. Indeed, A is either discrete or non-archimedean. If A is discrete, then
A = A◦, and if A is non-archimedean, then {|f | ≤ 1} 6= ∅ implies that the point given by the
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non-trivial rank 1 valuation on A lies in {|≤|1}, which in turn yields f ∈ A◦. This finishes
the proof in the case that X is connected.

Let now X be general. We argue as in the proof of [16, Lemma 3.6.1]. Fix some open subset
U ⊆ X. Pick a point x ∈ U and let c = Spa(K, A+

K) ∈ π0(X) denote the connected component
of X containing x. By what we have shown above, there is some f ∈ A+

K such that x ∈ {|f | ≤
1} ⊆ U∩c. Note that c is the cofiltered limit of its clopen neighbourhoods in X, which implies
that A+

K is the completed filtered colimit of O+
X(V ) for the clopen neighbourhoods W ⊆ X

of x. Therefore, after potentially modifying f by some topologically nilpotent element in A+
K

(which does not affect {|f | ≤ 1}) we can extend f to some fW ∈ O+
X(W ) for some W as

before. Then
⋂

c⊆W ′⊆W

(W ′ ∩X \ U ∩ {|fW | ≤ 1}) = ∅,

where W ′ ranges through all clopen neighbourhoods of c contained in W . Each term in the
above intersection is closed in the construcible topology on X, so by compactness of the
constructible topology, already a finite intersection must be empty. This implies that one of
the terms must be empty, i.e. there is some clopen neighbourhood c ⊆ W ′ ⊆ W such that
W ′ ∩ X \ U ∩ {|fW | ≤ 1} = ∅. Now let f ∈ A+ be the element which restricts to fW on
W ′ and to 0 outside of W ′. Let furthermore f ′ ∈ A+ be the elment which is 0 on W ′ and
1 outside of W ′. Then {|f | ≤ 1} ∩ W ′ ⊆ U . Note that the left-hand side contains x by
construction, so we have constructed an open neighbourhood of x inside U which belongs to
the claimed basis for the topology. This finishes the proof.

4 Overconvergent and nuclear sheaves

In the following we discuss a version of the nuclear Zℓ-sheaves defined in [15] in the case
ℓ = p. In fact, the basic definitions and results all work in the same way (similar to the fact
that the basic results on étale Fp-shaeves work the same as for Fℓ), but the theory is lacking
the required base-change result (for solid sheaves) to produce a good 6-functor formalism.13

Nevertheless, nuclear Zp-sheaves will play an important role in the proof of descent for +-
bounded affinoid perfectoid spaces in Theorem 1.1.

4.1 ω1-solid sheaves

In the following we fix a prime ℓ, e.g., ℓ = p, and transport the main definitions and results
from [15] to our situation of interest. As in Definition 3.14 resp. [15, Definition 2.1] we say
that a spatial diamond X is ℓ-bounded if there is some integer d ≥ 0 such that for all static
Fℓ-modules M∈ Det(X,Fℓ) we have Hk(X,M) = 0 for k > d.

From now on we fix a static ring Λ, which is an adic and profinite Zℓ-algebra. Then
Λ ∼= lim

←−n
Λ/In for finite rings Λ/In and a finitely generated ideal of definition I ⊆ Λ containing

ℓ. We will abuse notation and write again Λ for the pro-étale sheaf lim
←−n

Λ/In with inverse
limit formed on the quasi-pro-étale site of a locally spatial diamond.

Before we can define nuclear Λ-sheaves on ℓ-bounded spatial diamonds, we need to study
solid and ω1-solid Λ-sheaves as considered in [9, Section VII.1] and [15, Section 2]. In the
following, a quasi-pro-étale map U → X of spatial diamonds is called basic if it can be
written as a cofiltered inverse limit of étale, quasi-compact and separated maps Ui → X ([15,
Definition 2.2]). We note that by [22, Definition 10.1.(i)] quasi-pro-étale maps of diamonds
are locally separated by definition, and hence the basic quasi-pro-étale maps form a basic for
Xqproet.

13More precisely, [9, Proposition VII.2.1] needs the assumption ℓ 6= p.
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Definition 4.1. Let X be a spatial diamond.

(a) For every basic quasi-pro-étale map U = lim
←−i

Ui → X (see [15, Definition 2.2]) we
denote Λ�[U ] := lim

←−i
Λ[Ui] ∈ D(Xqproet, Λ).14

(b) A quasi-pro-étale sheaf M∈ D(Xqproet, Λ) is called solid if for all basic quasi-pro-étale
U → X the natural map

Hom(Λ�[U ],M) ∼
−→Hom(Λ[U ],M)

is an isomorphism. We denote by D�(X, Λ) ⊆ D(Xqproet, Λ) the full subcategory
spanned by the solid sheaves.

(c) Assume X is ℓ-bounded. A solid sheaf M ∈ D�(X, Λ) is called ω1-solid if for every
ω1-filtered colimit U = lim

←−i
Ui of basic objects in Xqproet the natural map

lim
−→

i

Γ(Ui,M) ∼
−→ Γ(U,M)

is an isomorphism. We denote by D�(X, Λ)ω1 the full subcategory spanned by the
ω1-solid objects.

(d) An object M ∈ D(Xqproet, Λ) is called complete if it is I-adically complete for some
finitely generated ideal of definition I ⊆ Λ.

Proposition 4.2. Let X be a spatial diamond.

(i) The category D�(X, Λ) is stable under limits and colimits in D(Xqproet, Λ) and contains
all étale sheaves.

(ii) D�(X, Λ) is compactly generated and a collection of compact generators is given by
Λ�[U ] for w-contractible basic U ∈ Xqproet. Moreover, for each basic quasi-pro-étale
U → X the object Λ�[U ] is static.

(iii) The t-structure on D(Xqproet, Λ) restricts to a t-structure on D�(X, Λ).

(iv) The composition D�(X, Λ) → D(Xqproet, Λ) → D(Xv , Λ) is fully faithful, and X 7→
D�(X, Λ) is a v-sheaf of ∞-categories.

(v) The inclusion D�(X, Λ)→ D(Xqproet, Λ) admits a left adjoint (−)� such that (Λ[U ])� =
Λ�[U ] for U → X basic quasi-pro-étale.

(vi) There exists a unique closed symmetric monoidal structure −⊗�

Λ− on D�(X, Λ) such that
(−)� is symmetric monoidal. We have Λ�[U ] ⊗�

Λ Λ�[U ′] ∼= Λ�[U ×X U ′] for U, U ′ → X
basic quasi-pro-étale.

(vii) If M, N ∈ D−
�

(X, Λ) are complete, then M ⊗�

Λ N is complete.

(viii) For M ∈ D(Xqproet, Λ) and N ∈ D�(X, Λ) we have HomD(Xqproet,Λ)(M, N) ∈ D�(X, Λ).

(ix) The natural functor D�(X, Λ)→ ModΛ(D�(X,Zℓ)) is an equivalence.

In [9, Defintion VII.1.17], D�(X, Λ) is defined as Λ-modules in D�(X,Zℓ) for any solid Zℓ-
algebra Λ. If Λ is an adic and profinite Zℓ-algebra, then Proposition 4.2 shows that the neat
characterization Definition 4.1 holds.
14The quasi-pro-étale site is defined in [22, Definition 14.1.(ii)].
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Proof. We first assume that Λ = Zℓ. We first note that our (a priori different) definition
Definition 4.1 agrees with [9, Definition VII.1.10]. Indeed, if M ∈ D(Xqproet,Zℓ) has solid
cohomology objects in the sense of [9, Definition VII.1.1] then by [9, VII.1.12] M is solid in
the sense of Definition 4.1. Moreover, the full subcategory C ⊆ D(Xqproet,Zℓ) defined in [9,
Definition VII.1.10] is stable under all colimits and limits in D(Xqproet,Zℓ) (by [9, Theorem
VII.1.3]) and contains Zℓ[U ] for any basic quasi-pro-étale U → X. Let N ∈ D�(X,Zℓ). Then
N = lim

−→i
Λ[Ui] is a colimit in D(X,Zℓ) for basic quasi-pro-étale morphisms Ui → X with Ui

w-contractible, as these form a basis of Xqproet. This implies that N is a retract of lim
−→i

Λ�[Ui],
and thus contained in C. This finishes the claim that C = D�(X,Zℓ). Now, the assertions
follow from [9, Theorem VII.1.3], [9, Proposition VII.1.13] and [9, Proposition VII.1.14], [9,
Proposition VII.1.8], [9, Proposition VII.1.11] and [15, Proposition 2.8] (which does not use
the assumption ℓ 6= p). This finishes the case that Λ = Zℓ.

Let now Λ be a general adic and profinite Zℓ-algebra. We claim that the natural map

Zℓ,�[U ]⊗� Λ→ Λ�[U ]

is an isomorphism for any basic quasi-pro-étale U → X. Now, Λ = U → X is represented
(as a sheaf on Xqproet) by a basic quasi-pro-étale morphism over X because Λ is adic and
profinite. In particular, we see that Λ (being solid) is a retract of Zℓ,�[Λ]. We know that

Zℓ,�[U ]⊗� Zℓ,�[Λ] ∼= Zℓ,�[U ×X Λ],

which implies the claim by the passage to a retract (and it implies that Λ�[U ] is static). From
here it is formal that an object C ∈ D(Xqproet, Λ) is solid if and only if its underlying object
C|Zℓ

∈ D(Xqproet,Zℓ) is solid. Indeed, if C is solid, then by the same argument as before C
is a retract of a colimit of Λ�[U ]’s with U → X basic quasi-pro-étale, and each of the Λ�[U ]
is solid. Conversely, if C|Zℓ

is solid, then

HomΛ(Λ�[U ], C) ∼= HomΛ(Λ⊗� Zℓ,�[U ], C) ∼= HomZℓ
(Zℓ,�[U ], C|Zℓ

) ∼= Γ(U, C)

as desired.
We can conclude that D�(X, Λ) ⊆ D(Xqproet, Λ) is stable under all colimits and limits, and

that it contains all (static) sheaves of Λ-modules, which are pulled back from Xet. Similarly,
the claim on the t-structure on D�(X, Λ) follows as well as the existence of the desired left
adjoint (−)�. To get the symmetric monoidal structure − ⊗�

Λ − it suffices to show that
if C, D ∈ D�(X, Λ) then HomD(Xqproet,Λ)(C, D) is contained in D�(X, Λ). By stability of
D�(X, Λ) under limits it suffices to handle the case that C = Λ⊗�

Zℓ
C ′ for some C ′ ∈ D�(X,Zℓ).

Then it follows from the same assertion for Λ = Zℓ (implicitly proven in [9, Proposition
VII.1.14]).

Assume that M, N ∈ D−
�

(X, Λ) are complete. From the case Λ = Zℓ we can conclude that
for each n ≥ 0 the tensor product M ⊗�

Zℓ
Λ⊗n ⊗Zℓ

N is ℓ-adically complete. This implies
that M ⊗�

Λ N is ℓ-adically complete as the ℓ-adic completion commutes with uniformly right-
bounded geometric realizations. Using a similar argument for preservation of completedness
under geometric realizations, we can reduce first to the case that Λ = Fℓ[[x1, . . . , xr]] for
some r ≥ 0, and then to the case that r = 1. For Λ = Fℓ[[x]] the same argument as in [15,
Proposition 2.8] applies.

The final claim D�(X, Λ) ∼= ModΛ(D�(X,Zℓ)) follows from the observation that both embed
fully faithfully into D(Xqproet, Λ) with generators Zℓ,�[U ]⊗�Λ ∼= Λ�[U ]. Now, we can conclude
that X 7→ D�(X, Λ) is a v-sheaf of∞-categories on spatial diamonds, e.g., using [12, Corollary
5.2.2.37].

We now turn to the better behaved subcategory of ω1-solid sheaves, which was introduced
(for ℓ 6= p) in [15]. We note that the compact generators of D�(X, Λ)ω1 are much simpler
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than the ones of D�(X, Λ). In particular, Λ ∈ D�(X, Λ)ω1 is compact, while in general
Λ ∈ D�(X, Λ) is not.

Proposition 4.3. Let X be an ℓ-bounded spatial diamond.

(i) The category D�(X, Λ)ω1 is stable under colimits and countable limits in D�(X, Λ) and
contains all étale sheaves.

(ii) D�(X, Λ)ω1 is compactly generated and a collection of compact generators is given by
Λ�[U ] for sequential limits U = lim

←−n
Un with all Un → X being étale, quasicompact and

separated.

(iii) The t-structure on D�(X, Λ) restricts to a t-structure on D�(X, Λ)ω1 .

(iv) The tensor product −⊗�

Λ− in D�(X, Λ) restricts to a closed symmetric monoidal struc-
ture on D�(X, Λ)ω1 .

(v) If M ∈ D�(X, Λ)ω1 is ω1-compact, and N ∈ D�(X, Λ)ω1 compact, then HomD�(X,Λ)ω1
(M, N) =

HomD�(X,Λ)(M, N).

(vi) D�(X, Λ)ω1
∼= ModΛ(D�(X,Zℓ)ω1).

Proof. If Λ = Zℓ then this - except for the claim on internal Hom’s - is proven in [15,
Proposition 2.5] (note that the proof of that result uses nowhere that ℓ 6= p). Thus, let
M ∈ D�(X, Λ)ω1 be ω1-compact, and let N ∈ D�(X, Λ)ω1 be compact. Then M is a countable
colimit of compact objects, and by stability of D�(X, Λ)ω1 under countable limits we may
therefore assume that M = Λ�[U ] is compact. As N is compact, we may reduce to the case
that it is a countable inverse limit of étale sheaves, and thus we may assume that N is an
étale sheaf. In this case, one checks directly that HomD�(X,Λ)(M, N) is ω1-solid. This finishes
the case Λ = Zℓ.

Back in the case that Λ is a static adic and profinite Zℓ-algebra we observe that Λ ∈
D�(X,Zℓ)ω1 and that an object C ∈ D�(X, Λ) is ω1-solid if and only if C|Zℓ

∈ D�(X,Zℓ) is
ω1-solid. Moreover, Λ�[U ] = Zℓ,�[U ] ⊗Zℓ,�

Λ by the proof of Proposition 4.2. It follows that
D�(X, Λ)ω1 is the same as the category of Λ-modules in D�(X,Zℓ)ω1 by Proposition 4.2. All
assertions now follow from the case Λ = Zℓ.

We note the following stability of (ω1−)solid sheaves under pullback and pushforward along
maps of spatial diamonds.

Lemma 4.4. Let f : X ′ → X be a morphism spatial diamonds, with associated morphisms
fqproet : X ′

qproet → Xqproet, fv : X ′
v → Xv on sites.

(i) f∗
qproet : D(Xqproet, Λ) → D(X ′

qproet, Λ), f∗
v : D(Xv , Λ) → D(Xv , Λ) restrict to the same

t-exact, symmetric monoidal functor

f∗ : D�(X, Λ)→ D�(X ′, Λ),

which preserves ω1-solid objects (if X ′, X are ℓ-bounded).

(ii) If f is quasi-pro-étale, then fqproet,∗ : D(X ′
qproet, Λ) → D(X, Λ) restricts to a colimit-

preserving functor
f∗ : D�(X ′, Λ)→ D�(X, Λ),

which preserves ω1-solid sheaves (if X ′, X are ℓ-bounded).
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(iii) If ℓ 6= p, then fqproet,∗ : D(X ′
qproet, Λ) → D(Xqproet, Λ), fv,∗ : D(X ′

v , Λ) → D(Xv , Λ)
restrict to the same colimit-preserving functor

fv,∗ : D�(X ′, Λ)→ D�(X, Λ),

which preserves ω1-solid sheaves (if X ′, X are ℓ-bounded).

Proof. The first assertion follows from [9, Proposition VII.1.8] (and the proof of [15, Proposi-
tion 2.6] for the preservation of ω1-solid sheaves). The third assertion (for fv,∗) is [9, Propo-
sition VII.2.1]. Using [22, Corollary 16.8], [22, Corollary 16.9] and [22, Corollary 16.10] the
same argument implies the second assertion and the case fqproet,∗ in the third assertion. The
preservation of ω1-solid sheaves follows as in [15, Proposition 2.6] (replacing the use of [22,
Corollary 16.8.(ii)] by [22, Corollary 16.8.(i)] for the second part).

Corollary 4.5. (i) The functors X 7→ D�(X, Λ)ω1 , X 7→ D�(X, Λ) are hypercomplete
quasi-pro-étale sheaves on the site of ℓ-bounded spatial diamonds.15

(ii) If ℓ 6= p, then X 7→ D�(X, Λ)ω1 , X 7→ D�(X, Λ) are hypercomplete v-sheaves on the site
of ℓ-bounded spatial diamonds.

Proof. The case for D�(X, Λ) is clear by [9, Proposition VII.1.8]. Thanks to Lemma 4.4 the
proof of [15, Corollary 2.7] implies both assertions for ω1-solid sheaves.

4.2 Overconvergent solid sheaves

As in Section 4.1 we fix a prime ℓ and a static adic and profinite Zℓ-algebra Λ.
We now discuss the definition of overconvergent objects in D�(X, Λ) following [15, Section 6],

although with some differences. Most notably, we don’t require that overconvergent sheaves
are nuclear (in the sense of [15, Definition 3.1]). Note that if T is a profinite set, then
we can consider its quasi-pro-étale site Tqproet

16, and the full subcategories D�(T, Λ)ω1 ⊆
D�(T, Λ) ⊆ D(Tqproet, Λ) similarly defined as in Definition 4.1. These categories satisfy the
same properties as in Proposition 4.2 and Proposition 4.3 (this can be checked, e.g., by taking
the product of T with Spa(C,OC) for C a perfectoid algebraically closed field in characteristic
p). In particular, we can call a morphism S → T of profinite sets “basic quasi-pro-étale” if
S = lim←−i

Si → T with Si → T a local isomorphism for Si a profinite set.
We recall that if X is a spatial diamond, then there exists a natural morphism π =

πX : Xqproet → π0(X)qproet of sites such that π−1(T ) = T ×π0(X) X ([17, Definition 5.5]).

Lemma 4.6. Let X be a spatial diamond with morphism of sites π : Xqproet → π0(X)qproet.

(i) The functor π−1 : Â�π0(X)qproet →·�Xqproet commutes with limits, and π∗◦π
−1 = Id Â�π0(X)qproet

.

In fact, if V ∈ Xqproet is qcqs, then π−1(F)(V ) = F(π0(V )) for any sheaf of sets F on
π0(X).

(ii) The functor π−1 : Â�π0(X)qproet →·�Xqproet admits a left adjoint π♮ : ·�Xqproet →Â�π0(X)qproet

such that π♮(V → X) = (π0(V )→ π0(X)) if V ∈ Xqproet is qcqs.

Proof. The first assertion is [17, Lemma 5.7], and the second is implied by [17, Lemma
5.4].

In the strictly totally disconnected case stronger properties hold true (generalizing the
results in [15, Lemma 6.7]).

15By Lemma 3.17 being ℓ-bounded ascents along under quasi-compact, separated quasi-pro-étale maps
16For example, defined as the slice ∗proet/T with ∗proet the pro-étale site of a point, [3, Section 4.3].
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Lemma 4.7. Let X be a strictly totally disconnected perfectoid space.

(i) If X is strictly totally disconnected, then π∗ : D(π0(X)qproet, Λ)→ D(Xqproet, Λ) is fully
faithful, and preserves (ω1-)solid sheaves and all colimits and limits. Its restriction,
D�(π0(X)qproet, Λ)→ D�(Xqproet, Λ) is symmetric monoidal.

(ii) The functor π∗ : D(Xqproet, Λ) → D(π0(X)qproet, Λ) is t-exact and preserves (ω1-)solid
sheaves.

(iii) The functor π∗ : D�(π0(X), Λ)→ D�(X, Λ) admits a left adjoint π♮, which is symmetric
monoidal and preserves ω1-solid sheaves. Moreover, if U → X is basic quasi-pro-étale,
then π♮(Λ�[U ]) ∼= Λ�[π0(U)].

(iv) For M ∈ D�(X, Λ) and N ∈ D�(π0(X), Λ) the natural map

HomD�(X,Λ)(M, π∗N)→ π∗ HomD�(π0(X),Λ)(π♮M, N)

is an isomorphism. Similarly, with D�(−, Λ) replaced by D�(−, Λ)ω1 .

Proof. Note that Lemma 4.6 implies that Λ is pulled back from π0(X)qproet, and thus π∗ =
π−1 (on static sheaves of Λ-modules). Hence, for fully faithfulness in the first assertion it
suffices (by Lemma 4.6) to see that π∗ is exact on static sheaves of Λ-modules. This can
be checked on extremally disconnected profinite sets T over π0(X). For such T the pullback
Z := π−1(T ) = T ×π0(X) X is w-contractible in Xqproet, i.e., each pro-étale cover of Z splits.
Preservation of (ω1-)solid sheaves by π∗ follows from commutation of π−1 with limits and
colimits by checking on the generators of D�(π0(X), Λ) resp. D�(π0(X), Λ)ω1 provided by
Proposition 4.2 resp. Proposition 4.3 (translated to π0(X)).

That π∗ is symmetric monoidal can be checked on generators where it follows by Proposi-
tion 4.2 from the fact that

(T → π0(X)) 7→ T ×π0(X) X

commutes with fiber products. Here, T is assumed to be profinite.
For (ii) we have to check that π∗ preserves (ω1-)solid sheaves. Let N ∈ D�(X, Λ) and

T → π0(X) profinite, written as T = lim
←−i

Ti with Ti profinite and Ti → π0(X) a local
isomorphism. Set Λ�[T ] := lim

←−i
Λ[Ti] on π0(X)qproet. Note that π∗(Λ�[T ]) = Λ�[π−1(T )] as

π−1 preserves limits. Then we can conclude

Hom(Λ�[T ], π∗N)

=π∗(Hom(Λ�[π−1T ]), N))

=π∗(Hom(Λ[π−1T ], N))

=π∗(Hom(π−1(Λ[T ]), N))

= Hom(Λ[T ], π∗(N))

using that N is solid and the formal identity π−1(Λ[T ]) ∼= Λ[π−1T ]. For for any cofiltered
limit of maps Tj → π0(X) with Tj profinite we have

Γ(lim←−
j

Tj, π∗(N)) ∼= Γ(π−1(lim←−
j

Tj), N) ∼= Γ(lim←−
j

π−1Tj , N)

as π−1 preserves limits. From here it follows that π∗ preserves ω1-solid objects.
The existence of π♮ follows as π−1 preserves limits (or from [17, Lemma 5.4]). It follows

formally from the formula π−1F(V ) = F(π0(V )) that π♮(Λ�[U ]) = Λ�[π0(U)] for U → X basic
quasi-pro-étale. Using [15, Lemma 5.8] we can conclude that π0(U ×X V ) = π0(U) ×π0(X)
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π0(V ) for U, V basic quasi-pro-étale over X. This implies that π♮ is symmetric monoidal by
Proposition 4.2. We need to see that π♮ preserves ω1-solid sheaves. The explicit formula
for π♮Λ�[U ] and the fact that π0(lim←−i

Ui) ∼= lim←−i
π0(Ui) for étale, separated maps Ui → X in

a cofiltered system {Ui}i shows that it suffices to show that π♮ maps Λ�[U ] to an ω1-solid
sheaf of U → X is étale quasi-compact and separated. This proven in Lemma 4.8. The
assertion (iv) follows formally from symmetric monoidality of π♮. In fact, the left hand side
is right adjoint as a functor in N to π♮(M ⊗�

Λ (−)) while the right hand side is right adjoint
to π♮(M)⊗�

Λ π♮(−).

The proof of Lemma 4.7 made use of following result about ω1-solidness of π♮Λ[U ]. Be
aware that even if U →֒ X is an open immersion, the map π0(U)→ π0(X) is in general quite
far from being an open immersion itself, which makes the ω1-solidness of π♮Λ[U ] = Λ�[π0(U)]
more subtle than one might think at first.

Lemma 4.8. Let j : U → X be a quasi-compact, separated, étale morphism to a strictly
totally disconnected space X. Then π♮Λ[U ] = Λ�[π0(U)] ∈ D�(π0(X), Λ) is ω1-solid.

Proof. Write X = Spa(A, A+). As X is strictly totally disconnected, each point u ∈ U has
a quasi-compact open neighborhood Vu, such that the map Vu → X is an open immersion.
Indeed, this follows from the definition of an étale morphism ([22, Definition 6.2]) using that
each finite étale map onto some quasi-compact open in X will split. Hence, without loss of
generality j : U → X can be assumed to be a quasi-compact open immersion (using that
ω1-solid sheaves are stable under finite colimits). By [22, Lemma 7.6] U is the intersection of
subsets {|f | ≤ 1} for varying f ∈ A. As U ⊆ X is quasi-compact open, X\U is quasi-compact
in the constructible topology. As any {|f | ≤ 1} for f ∈ A is closed in the constructible
topology, this implies that U is the finite intersection of subsets U1 = {|f1| ≤ 1}, . . . , Ur =
{|fr| ≤ 1} with f1, . . . , fr ∈ A. By [17, Lemma 5.8] π0(U) = π0(U1)×π0(X) . . . ×π0(X) π0(Ur)
and thus Proposition 4.2, Proposition 4.3 imply that we may assume that U = U1 = {|f | ≤ 1}
for f := f1. Let π ∈ A be a pseudo-uniformizer and set

Wn := {|f | < |π−1/pn
|}

for n ∈ N. Each Wn is a spectral space, being closed in the constructible topology ([27, 0902]),
and hence π0(Wn) is a profinite set. We claim:

1) π0(U), π0(Wn), n ∈ N, are subspaces of π0(X),

2)
⋂

n∈N

Wn is the closure of U ,

3) π0(U) =
⋂

n∈N

π0(Wn),

4) for each n ∈ N the subspace π0(U) lies in the interior of π0(Wn) ⊆ π0(X).

The claims imply that Λ�[π0(U)] is ω1-solid. Indeed, we may inductively construct quasi-
compact open subsets Sn ⊆ π0(X) with π0(U) ⊆ Sn ⊆ π0(Wn), and Sn+1 → Sn. Then
Λ�[π0(U)] = lim←−

n∈N

Λ[Sn] is ω1-solid by Proposition 4.3.

To show 1) it suffices (because the π0 are profinite and the maps continuous) to show that
π0(U) → π0(X), π0(Wn) → π0(X) are injective. Now, U is open, and thus stable under
generalization while the Wn are closed, hence stable under specializations. This implies that
if Z ⊆ X is a connected component, then Z∩U , Z∩Wn are connected (if non-empty) because
Z is a linearly ordered chain of points. This in turn implies injectivity.
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As each Wn is closed, and U ⊆ Wn we see U ⊆
⋂

n∈N

Wn. The reverse implication may

be checked after intersection with each connected component Z of X (because U is the set
of specializations of U by [27, 0903]). If Z ∩ U 6=, then U ∩ Z = Z and similarly for the
intersection with the Wn’s. Let z be the generic point of Z and assume that Z ∩ U = ∅ or
equivalently Z ∩ U = ∅. Thus, |f(z)| > 1 and as z is a rank 1 valuation this implies that
z /∈ {|f | ≤ |π−1/pn

|} for some n ∈ N. This implies that Z∩Wn = ∅ as the set {|f | ≤ |π−1/pn
|}

is stable under generalizations. Thus Z ∩
⋂

n∈N

Wn = ∅ as well.

Assertion 3) follows from 2) because π0(U) = π0(U) =
⋂

n∈N

π0(Wn).

We are left with assertion 4). Fix a connected component Z ⊆ X with Z ∩U 6= ∅, i.e., the
point z ∈ π0(X) defined by Z lies in π0(U). We can write Z =

⋂
i∈I

f−1(Ti) with Ti ⊆ π0(X)

running through the quasi-compact open neighborhoods of z and f : |X| → π0(X) the natural
quotient map. Note that the f−1(Ti) are closed and open in X. Moreover, let us fix n ∈ N.
We know that Z ⊆ Wn as U ⊆ Wn and the generic point of Z lies in U . Furthermore,
X \Wn = {|π−1/pn

| ≤ |f |} is a rational open subset of X. In particular, X \Wn is compact in
the constructible topology. As X \Wn∩

⋂
i∈I

f−1(Ti) = X \Wn∩Z = ∅, we can conclude that

there exists some i0 such that X \Wn ∩ f−1(Ti0) = ∅, i.e., f−1(Ti0) ⊆Wn. This implies that
z ∈ Ti0 ⊆ π0(Wn). In particular, z lies in the interior of π0(Wn). This finishes the proof.

With the previous results at hand, we can now introduce a well-behaved (see Lemma 4.10)
notion of overconvergent sheaves on general spatial diamonds:

Definition 4.9. (a) Let X be a strictly totally disconnected space with morphism of sites
π : Xqproet → π0(X)qproet. An object M ∈ D�(X, Λ) is called overconvergent if M ∼=
π∗N for some N ∈ D�(π0(X)proet, Λ).

(b) Let X be a spatial diamond. An object M ∈ D�(X, Λ) is called overconvergent if f∗M
is overconvergent for any quasi-pro-étale morphism f : X ′ → X with X ′ strictly totally
disconnected.

We let D�(X, Λ)oc ⊆ D�(X, Λ) (resp. D�(X, Λ)oc
ω1
⊆ D�(X, Λ)ω1) denote the full subcate-

gories spanned by the overconvergent objects (resp. the overconvergent and ω1-solid objects).

Lemma 4.10. Let f : X ′ → X be a morphism of strictly totally disconnected spaces.

(i) If M ∈ D�(X, Λ) is overconvergent, then so is f∗M .

(ii) Conversely, if f is a quasi-pro-étale cover and f∗M is overconvergent, then so is M .

Proof. The first claim follows by naturality in X of the morphism of sites π : Xqproet →
π0(X)qproet. For the converse we note that (using [17, Lemma 5.8]) it suffices to see that
X 7→ D�(π0(X), Λ) is a hypercomplete quasi-pro-étale sheaf on strictly totally disconnected
spaces. Now Corollary 4.5 implies that T 7→ D�(T, Λ) is a quasi-pro-étale sheaf on profinite
sets, in other words a condensed sheaf of ∞-categories on ∗qproet. As X 7→ π0(X) sends
quasi-pro-étle covers, even v-covers, to quasi-pro-étale covers the claim follows.

The next result summarizes the very good properties of the full subcategory of overconver-
gent objects.

Lemma 4.11. Let X be an ℓ-bounded spatial diamond.

(i) Overconvergent objects satisfy quasi-pro-étale hyperdescent on the big site of ℓ-bounded
spatial diamonds.
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(ii) The inclusion D�(X, Λ)oc ⊆ D�(X, Λ) admits a symmetric monoidal left adjoint M 7→
Moc and a right adjoint M 7→Moc. In particular, D�(X, Λ)oc is stable under all colimits
and limits in D�(X, Λ).

(iii) The inclusion D�(X, Λ)oc
ω1
⊆ D�(X, Λ)ω1 admits a symmetric monoidal left adjoint M 7→

Moc and a right adjoint M 7→Moc. In particular, D�(X, Λ)oc
ω1

is stable under all colimits
and limits in D�(X, Λ)ω1 .

(iv) If M, N ∈ D�(X, Λ) and N is overconvergent, then HomD�(X,Λ)(M, N) is overconvergent
and naturally isomorphic to HomD�(X,Λ)(Moc, N). Similarly, with D�(X, Λ) replaced by
D�(X, Λ)ω1 .

(v) If U = lim←−
i∈I

Ui → X with Ui → X étale, quasi-compact and separated, then the natural

map Λ�[U ] → Λ�[U
/X

] induces an isomorphism Λ�[U ]oc
∼= Λ�[U

/X
]. In particular, the

functor D�(X, Λ)→ D�(X, Λ), M 7→Moc preserves compact objects.

(vi) The functor D�(X, Λ) → D�(X, Λ), M 7→ Moc preserves colimits and right bounded
objects.

Proof. Assertion (i) follows from Lemma 4.10 and Corollary 4.5. For assertion (ii) it suffices
by the adjoint functor theorem to show that D�(X, Λ)oc is stable under all colimits and limits
in D�(X, Λ). By Proposition 4.2 and (i) we may then assume that X is a strictly totally
disconnected perfectoid space. Then the assertion follows from Lemma 4.7. We note that in
this case we have Moc = π∗π♮(M) and Moc = π∗π∗(M) for M ∈ D�(X, Λ). As in Lemma 4.7
symmetric monoidality of (−)oc implies assertion (iv).

For assertion (iii) we may again reduce to the case that X is strictly totally disconnected.
Indeed, for the existence of (−)oc this follows by stability of overconvergent sheaves under
colimits (which can be checked on a strictly totally disconnected cover), and the existence of
(−)oc can be descended from the strictly totally disconnected case as there (−)oc commutes
with pullback as will be proved in Lemma 4.12. Then the assertion follows again from
Lemma 4.7 as π♮, π∗, π∗ all preserve ω1-solid sheaves.

Let us note that if U → X is quasi-pro-étale, then U
/X
→ X = X

/X is quasi-pro-étale
by [22, Corollary 18.8.(vii)]. If X is strictly totally disconnected and U qcqs, then the nat-

ural map U
/X
→ π0(U) ×π0(X) X is an isomorphism as it is qcqs and bijective if X is

connected. To check (v) we may (by Lemma 4.12 below) reduce to the case that X is strictly

totally disconnected. Indeed, in this case Λ�[U /X ] ∼= Λ�[π0(U) ×π0(X) X] is overconvergent,
which implies the same for a general ℓ-bounded spatial diamond. This produces the natu-
ral map Λ�[U ]oc → Λ[U

/X
], which then can be checked to be an isomorphism again under

the assumption that X is strictly totally disconnected. Here, it follows from Lemma 4.7 as
(−)oc

∼= π∗π♮(−). It follows from the explicit description that the functor (−)oc maps compact
objects in D�(X, Λ) (resp. D�(X, Λ)ω1 ) to compact objects in D�(X, Λ) (resp. D�(X, Λ)ω1).
This implies that the inclusion of overconvergent into solid sheaves preserves compact objects,
which implies that the right adjoint (−)oc (for solid or ω1-solid objects) preserves colimits.
Now pick a right bounded object M ∈ D�(X, Λ)ω1 . As X is ℓ-bounded can conclude that
there exists some a ∈ Z such that for each compact object N ∈ D�(X, Λ)ω1 , which is sup-
ported to the right of a and has terms given by Λ�[U ] for U = lim←−

n

Un → X with Un étale

quasi-compact and separated, we have Hom(N, M) = 0. This implies

Hom(Noc, M) = Hom(Noc, Moc) = 0

for any such N by the explict description of (−)oc in (v). This shows that Moc is again right
bounded.
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The left adjoint (−)oc commutes with base change (while the right adjoint (−)oc does not,
even on strictly totally disconnected spaces).

Lemma 4.12. Let f : X ′ → X be a morphism of ℓ-bounded spatial diamonds.

(i) For M ∈ D�(X, Λ) the natural map

(f∗M)oc → f∗(Moc)

is an isomorphism.

(ii) If f is quasi-pro-étale, then f∗(D�(X ′, Λ)oc) ⊆ D�(X, Λ)oc and f∗(D�(X ′, Λ)oc
ω1

) ⊆
D�(X, Λ)oc

ω1

Proof. By quasi-pro-étale hyperdescent it suffices to treat the case that X, X ′ are strictly
totally disconnected. Let πX : Xqproet → π0(X)qproet, πX′ : X ′

qproet → π0(X ′)qproet be the
morphisms of sites. It suffices to check that the natural map πX′,♮f

∗M → π0(f)∗πX,♮(M)
is an isomorphism for M ∈ D�(X, Λ). Passing to right adjoints, it suffices to see that for
N ∈ D�(π0(X ′), Λ)

f∗π∗
X′N ∼= π∗

Xπ0(f)∗(N)

via the natural map. This follows from [17, Corollary 5.9]. This formula (together with
Lemma 4.4) imply the second assertion as well if X is strictly totally disconnected. The
case for general X follows by quasi-pro-étale descent (for which f∗ satisfies base change by
Lemma 4.4).

4.3 Nuclear sheaves

In this section we will study nuclear objects in D�(X, Λ)ω1 and show that they are overcon-
vergent. Critically, we will moreover show in Lemma 4.20 that the full subcategory of nuclear
objects is generated under colimits by right bounded complete objects. In order to achieve
this, we need a better understanding of the compact objects of D�(X, Λ)oc

ω1
.

Let us recall from [6, Lecture VIII] that a morphism f : P → Q in a closed symmetric
monoidal∞-category C with compact unit, is called of trace class if it lies in the image of the
natural morphism

π0((Hom(P, 1) ⊗Q)(∗))→ π0(Hom(P, Q)).

Here, ⊗, Hom, 1 refer to the tensor product, internal Hom, unit in C, while (−)(∗) := Hom(1,−).
We will use critically the following property of trace class maps: If P0 → P1 → . . . is a sequen-
tial diagram with all morphisms Pn → Pn+1 of trace class, then for any Q ∈ C the natural
map

lim
←−

n

(Hom(Pn, 1) ⊗Q)(∗))→ lim
←−

n

Hom(Pn, Q)

is an isomorphism. Indeed, each witness in (Hom(Pn, 1) ⊗ Pn+1)(∗) for Pn → Pn+1 being
trace class yields a factorization

Hom(Pn+1, Q)→ (Hom(Pn, 1)⊗Q)(∗)→ Hom(Pn, Q).

Similarly, if . . . → P1 → P0 is a sequential diagram with all Pn+1 → Pn of trace class, then
the natural map

lim−→
n

(Hom(Pn, 1) ⊗Q)(∗))→ lim−→
n

Hom(Pn, Q) (4.12.1)

is an isomorphism.
Following [6, Definition 8.5] we make the following definition.
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Definition 4.13. Let X be an ℓ-bounded spatial diamond and M ∈ D�(X, Λ)ω1 .

(a) M is called basic nuclear if M = lim−→(M0 → M1 → . . .) with all Mn → Mn+1 of trace
class.

(b) M is called basic conuclear if M = lim←−(. . .→M1 →M0) with all Mn+1 →Mn of trace
class.

(c) M is called nuclear if for all compact objects P ∈ D�(X, Λ)ω1 , the map

(HomD�(X,Λ)ω1
(P, Λ) ⊗�

Λ M)(∗)→ HomD�(X,Λ)ω1
(P, M)

is an equivalence.

We let Dnuc(X, Λ) ⊆ D�(X, Λ)ω1 be the full subcategory of nuclear objects.

Remark 4.14. We warn the reader that the abstract notion of nuclearity from [6, Lecture
VIII] that we employ here is different from the more subtle “geometric nuclearity” in [15,
Definition 3.1] as noted in [15, Warning 3.3]. In Lemma 4.17 below we will prove that
the abstract notion of nuclearity singles out the overconvergent nuclear sheaves from [15,
Definition 6.8] (thereby providing details to [15, Warning 3.3]).

The basic observation for the overconvergence of the nuclear objects in D�(X, Λ)ω1 is the
overconvergence of HomD�(X,Λ)ω1

(Λ�[U ], Λ).

Lemma 4.15. Let X be an ℓ-bounded spatial diamond.

(i) Each trace class map P → Q in D�(X, Λ)ω1 factors as P → Poc → Q with Poc → Q of
trace class.

(ii) Each nuclear object in D�(X, Λ)ω1 is overconvergent.

(iii) Each basic conuclear object M ∈ D�(X, Λ)ω1 is overconvergent and complete. In fact,
M ∼= lim←−

n

Mn with Mn étale and compact, and Mn+1 → Mn trace class for each n ≥ 0.

If the Mn are uniformly bounded, then M is compact.

(iv) Basic conuclear objects are stable under countable limits.

In particular, Dnuc(X, Λ)ω1 is equivalent to the category Nuc(D�(X, Λ)oc
ω1

) of nuclear objects
in D�(X, Λ)oc

ω1
.

Proof. By [6, Theorem 8.6] each nuclear object is a colimit of basic nuclear object. By
Lemma 4.11 the subcategory of overconvergent objects is stable under limits and colimits.
Hence, it suffices to prove the first assertion to show overconvergence. Let P → Q be a trace
class morphism in D�(X, Λ)ω1 . As Λ is overconvergent, we can conclude from Lemma 4.11
that

Hom(P, Λ) ∼= Hom(Poc, Λ)

as (−)oc is symmetric monoidal. This implies the desired factorization.
In order to see that each basic conuclear object M = lim←−

n∈N

Mn is complete it suffices to note

that each of the trace class morphisms Mn+1 →Mn factors over a compact object ([6, Lemma
8.4]), and that compact objects in D�(X, Λ)ω1 are complete (Proposition 4.3) as is therefore
their limit M . To prove the final assertion, we may assume that the Mn are compact. Let
I ⊆ Λ by an ideal of definition. Then by completeness of M we get M ∼= lim←−

n

Mn/Ikn for each

sequence kn going to ∞ if n→∞. Moreover, the Mn/Ikn are compact, while all morphisms
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Mn+1/Ikn+1 → Mn/Ikn are still of trace class, at least after reindexing the n. Indeed, this
follows from the fact that a composition of two cones of trace class morphism is again trace
class ([24, Lecture XIII.Proposition 13.13]). Moreover, we may write each Mn/Ikn as a
countable limit of compact, étale sheaves Mn,i (this follows from the proof of [15, Proposition
2.5], which works for general Λ). By étaleness and compactness of the Mn,i each morphism
Mn+1/Ikn+1 →Mn/Ikn arises from a compatible system of morphisms Mn+1,i →Mn,i (up to
reindexing). Then M ∼= lim

←−
n

Mn,n using that the diagonal N → N × N is cofinal. If the Mn,n

can be chosen to be uniformly bounded, then it follows from [22, Theorem VII.1.3] that M
is compact, even in D�(X, Λ). Moreover, after potentially reindexing the n, the morphisms
Mn+1,n+1 →Mn,n can be assumed to be of trace class by the same argument as above. With
this presentation for basic conuclear objects, the proof of [24, Proposition 13.13], [6, Theorem
8.6] dualizes and shows that basic conuclear objects are stable under countable limits.

In the strictly totally disconnected case, we can be more explicit and identify nuclear sheaves
with nuclear modules over the ring of continuous functions:

Lemma 4.16. Let X be a strictly totally disconnected perfectoid space and let T be a profinite
set.

(i) The functors π∗, π∗ induce a symmetric monoidal equivalence Dnuc(X, Λ) ∼= Dnuc(π0(X), Λ).

(ii) Let α : Tqproet → ∗qproet be the natural morphism of sites. Then α∗ induces an equiva-
lence

Dnuc(Tqproet, Λ) ∼= Dnuc(C(T, Λ)),

where C(T, Λ) ∼= α∗(Λ) is the nuclear Λ-algebra of continuous functions T → Λ.

In particular, Dnuc(X, Λ) ∼= Dnuc(C(X, Λ)).

We recall that here “nuclear” refers to Definition 4.13 (and not [15, Definition 3.1]). How-
ever, for π0(X) both notions agree (by Lemma 4.16 and [15, Lemma 6.7.(iv)] or by [15, Remark
3.10] if Λ = Zℓ).

Proof. As π∗ is symmetric monoidal, π∗ preserves nuclear objects. Moreover, the unit M →
π∗π∗M is an isomorphism for any M ∈ Dnuc(π0(X), Λ) by Lemma 4.6. Let N ∈ Dnuc(X, Λ)
be nuclear. We need to see that the counit π∗π∗N → N is an isomorphism. This follows
from Lemma 4.15.

Let us proof the second assertion. Set A := C(T, Λ). As A is a nuclear Λ-algebra, e.g.,
by Lemma 2.18.(i), Dnuc(A) is equivalent to ModA(Dnuc(Λ)), cf. [6, Corollary 8.20]. The
existence of a left adjoint α∗ : D�(∗qproet, Λ)ω1 → D�(T, Λ)ω1 to α∗ follows as in the proof of
[15, Lemma 6.7.(iv)]. Similarly, it follows (using Lemma 2.18.(i)) that α∗ preserves nuclearity,
and that α∗α∗M → M is an isomorphism for M ∈ Dnuc(A). It remains to see that α∗ is
essentially surjective. Here, we a priori have to offer a different proof as in [15, Lemma
6.7.(iv)] as we use a different notion of nuclearity. However, [15, Remark 3.10] shows that
both notions agree in this case as T is profinite. Thus, the assertion follows from [15, Lemma
6.7].

We note that α∗ : D�(T, Λ) → ModC(T,Λ)D�(Λ) is in general not an equivalence (if T is
not finite), even if Λ = Fℓ. Indeed, for each t ∈ T the morphism {t} → T is pro-étale, and
thus Λ[{t}] ∈ D�(T, Λ) is compact. But if Λ is discrete, then α∗(Λ[{t}]) ∼= Λ viewed as a
C(T, Λ)-module via evaluation at t. If t ∈ T is not an open point, then this implies that
α∗(Λ[{t}]) is not a (discrete) finitely presented C(T, Λ)-module, and hence not compact in
ModC(T,Λ)D�(Λ). Nuclear objects satisfy quasi-pro-étale descent:
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Lemma 4.17. The functor X 7→ Dnuc(X, Λ) is a hypercomplete quasi-pro-étale sheaf on the
big quasi-pro-étale site of ℓ-bounded spatial diamonds.

Proof. This is formally implied by Corollary 4.5: Pullback of nuclear objects are nuclear (by
symmetric monoidality of pullbacks) and if f• : X• → X is a quasi-pro-étale hypercover and
M ∈ D�(X, Λ)ω1 with f∗

nM nuclear for each n ∈ ∆, then for P ∈ D�(X, Λ)ω1 compact we
have

HomD�(X,Λ)ω1
(P, M) = lim

←−
n∈∆

HomD�(Xn,Λ)ω1
(f∗

nP, f∗
nM)

= lim←−
n∈∆

HomD�(Xn,Λ)ω1
(Λ, HomX′

n
(f∗

nP, Λ)⊗�

Λ f∗
nM)

= lim←−
n∈∆

HomD�(Xn,Λ)ω1
(Λ, f∗

n(HomX(P, Λ) ⊗�

Λ M))

= HomD�(X,Λ)ω1
(Λ, Hom(P, Λ)⊗�

Λ M)

using (in this order) the description of Hom-spaces in limits of categories, nuclearity of all
the f∗

nM , the fact that f∗
n is the restriction for some slice (plus Proposition 4.3 to control

the Hom using that f∗
nP is compact), and again the description of Hom-spaces in limits of

categories.

We now analyze complete objects in Dnuc(X, Λ). More precisely, fix an ideal of definition
I ⊆ Λ. In the following, we adhere to the conventions in Section 1.2 (and in particular
implicitly fix a finite set of generators of I). Morever, we use the terminology “complete”
instead of “I-adically complete”, whenever convenient.

Lemma 4.18. Let X be an ℓ-bounded spatial diamond and M ∈ D�(X, Λ)ω1 with I-adic
completion M̂ ∈ D�(X, Λ)ω1 .

(i) If M is nuclear, then M̂ is nuclear.

(ii) If M ∈ Dnuc(X, Λ) is I-adically complete in Dnuc(X, Λ), then the natural map M → M̂
is an isomorphism.

We note that a priori completeness in Dnuc(X, Λ) and D�(X, Λ)ω1 are different.

Proof. We start with (i). By Lemma 4.17 and Lemma 4.4, specifically the commutation of
pullbacks with limits, the claim is quasi-pro-étale local on X and hence we may assume that
X is strictly totally disconnected. By Lemma 4.6 and Lemma 4.16 the claim reduces to the
case that X is a profinite set (realized as a qcqs perfectoid space over some Spa(C,OC ) with
C algebraically closed and perfectoid). More precisely, we use that π∗ : D�(π0(X), Λ)ω1 →

D�(X, Λ)ω1 commutes with limits to see that M̂ = π∗π∗(M̂ ) is the pullback along π∗ of the
completion of π∗(M). Using that Dnuc(X, Λ) = Dnuc(C(X, Λ)) by Lemma 4.6, it suffices by
Lemma 2.18.(i) to see that M̂ is discrete modulo I. But M/I ∼= M̂/I, and the claim follows.

Now, (ii) is a consequence of (i): By (i) M → M̂ is a morphism of nuclear objects and
both are I-adically complete in Dnuc(X, Λ). Indeed, for M̂ this follows as the nuclearization
D�(X, Λ)ω1 → Dnuc(X, Λ), i.e., the right adjoint to the inclusion, preserves limits. Now,
M/I ∼= M̂/I is an isomorphism, which implies the claim.

In the next lemma we will use the notation Met for the “étalification” of an object M ∈
D(Xqproet, Λ) if X is an ℓ-bounded spatial diamond, i.e., Met := ε∗ε∗M for ε : Xqproet → Xet

the natural morphism of sites.
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Lemma 4.19. Let X be an ℓ-bounded spatial diamond. Assume that D�(X, Λ)oc
ω1

is generated
under colimits by basic conuclear objects, which are compact.

(i) The right adjoint (−)nuc : D�(X, Λ)ω1 → Dnuc(X, Λ) commutes with colimits.

(ii) If Q ∈ D�(X, Λ)oc
ω1

is compact, then the natural morphism (Qet)oc → Q induces an

isomorphism ÿ�((Qet)oc) → Qnuc with (̂−) refering to I-adic completion for an ideal of
definition in Λ.

(iii) Dnuc(X, Λ) is generated under colimits by right bounded, complete objects.

Proof. Statements (1), (2) imply (3): Indeed, if Q ∈ D�(X, Λ)ω1 is compact, then (2) with
Lemma 4.11 and the assumption that X is ℓ-bounded imply that Qnuc is complete and right
bounded (note that by Lemma 4.18 the notion of completedness for nuclear objects is unam-
biguous). Given now any nuclear object N ∈ Dnuc(X, Λ)ω1 , we can write N as a colimit of a
diagram of compact objects Qi, i ∈ I. Then N ∼= Nnuc is the colimit of the Qi,nuc, i ∈ I, by
(1).

To show (1),(2) we follow the proof of [15, Proposition 3.12.]. We consider the colimit
preserving functor

F : D�(X, Λ)ω1 → D�(X, Λ)oc
ω1

,

which sends a compact object Q to F (Q) :=◊�(Qet)oc ∈ D�(X, Λ)oc
ω1

. We first check that F (Q)
is a nuclear object in D�(X, Λ)oc

ω1
for each compact object Q ∈ D�(X, Λ)ω1 . By assumption it

suffices to check that
(Hom(P, Λ)⊗ F (Q))(∗) ∼= Hom(P, F (Q))

for each compact, basic conuclear object P . Note that by Proposition 4.2 the left hand side
is complete. As the same holds true for the right hand side, we may assume that Q is an
étale sheaf by replacing Q with Q/I for some ideal of definition I ⊆ Λ). Then we may in fact
assume that Λ is discrete. Let us write P = lim←−

n∈N

Pn with all morphism Pn+1 → Pn of trace

class and (without loss of generality) Pn compact. Now we can calculate

Hom(P, F (Q))

= Hom(P, (Qet)oc) (by definition of F )

= Hom(P, Qet) (as P is overconvergent by Lemma 4.15)

= lim−→
n

Hom(Pn, Qet) (as Qet is étale and the Pn compact)

= lim
−→

n

Hom(Pn,oc, Qet) (using Lemma 4.15)

= lim
−→

n

Hom(Pn, Qoc
et ) (using adjunction for (−)oc and (−)oc)

= lim
−→

n

(Hom(Pn, Λ)⊗Qoc
et )(∗) (by (Eq. (4.12.1)))

=(Hom(P, Λ)⊗Qoc
et )(∗) (using that Λ is discrete)

=(Hom(P, Λ)⊗ F (Q))(∗) (by definition).

We now have established that F (M) is nuclear for any M ∈ D�(X, Λ)ω1 . The natural
transformation F (−) → (−) induces therefore a natural transformation F (−) → (−)nuc,
which we want to show to be an isomorphism. For this we fix M ∈ D�(X, Λ)ω1 and a basic
nuclear object N written as a sequential colimit N1 → N2 → . . . along trace class maps.
Define the colimit preserving functor

F ′ : D�(X, Λ)ω1 → D�(X, Λ)ω1
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sending a compact object Q to Q̂et (this agrees if Λ = Zℓ for ℓ 6= p with the nuclearization
considered in [15, Proposition 3.12]). By Lemma 4.11 we can conclude that F (−) ∼= (F ′(−))oc

as (−)oc commutes with colimits. Moreover, we know

Hom(N, F (M)) = Hom(N, F ′(M))

as N is overconvergent, and we have to see that this agrees with

Hom(N, Mnuc) = Hom(N, M).

We can now follow the proof of [15, Proposition 3.12]. More precisely,

a) The definition of Homtr(−,−) with its natural transformation Homtr(−,−)→ Hom(−,−)
from [15, Definition 3.4] literally adapts from Zℓ, ℓ 6= p to general Λ. [15, Lemma 3.6]
remains valid as well.

b) There exists a natural transformation (Hom(P, Λ) ⊗ (−))(∗) → Homtr(P,−) for each
compact object P ∈ D�(X, Λ)ω1 . In particular, any trace class map in the sense of [6,
Definition 8.1] is trace class in the sense of [15, Definition 3.4].

c) With N = lim−→
n

Nn basic nuclear and M as above the natural morphisms

lim
←−

n

(Hom(Nn, Λ)⊗M)(∗)→ lim
←−

n

Homtr(Nn, M)→ lim
←−

n

Hom(Nn, M)

are isomorphisms.

We these adjustments the proof in [15, Proposition 3.12] goes through. Let us write Nn =
lim
←−

j

Nn,j with Nn,j compact and étale (this is possible by [15, Proposition 2.5.(ii)] whose prove

works for Zℓ, ℓ 6= p replaced by Λ as well), and M = lim
−→

i

Mi with Mi compact. Then:

Hom(N, F ′(M))

= lim
←−

n

Hom(Nn, F ′(M)) (by pulling out the colimit))

= lim←−
n

lim−→
i

Hom(Nn,÷(Mi)et) (using the definition of F and compactness of Nn)

= lim←−
n

lim−→
i

(Hom(Nn, (Mi)et)∧) (by pulling out the completion)

= lim←−
n

lim−→
i

(lim−→
j

Hom(Nn,j, (Mi)et)∧) (using that (Mi)et is étale and the Nn,j compact)

= lim←−
n

lim−→
i

(lim−→
j

Hom(Nn,j, Mi)∧) (using that the Nn,j are étale)

= lim←−
n

lim−→
i

Homtr(Nn, Mi) (the definition of Homtr(−,−))

= lim←−
n

Homtr(Nn, M) (again the definition of Homtr(−,−))

= lim
←−

n

Hom(Nn, M) (using that the above properties of Homtr(−,−))

= Hom(N, M) (by pulling in the inverse limit)

This finished the proof that F (−) ∼= (−)nuc. By construction, (1) and (2) follow.
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We now provide examples for ℓ-bounded spatial diamonds X satisfying the assumptions of
Lemma 4.19.

Lemma 4.20. Let X be an ℓ-bounded affinoid perfectoid space. Then:

(i) D�(X, Λ)oc
ω1

is generated by basic conuclear objects, which are compact.

(ii) Dnuc(X, Λ) is generated by right bounded, complete objects.

Proof. By Lemma 4.19 the first assertion implies the second. To prove the first, we claim
that for each U → X étale, quasi-compact and separated, the object

Λ�[U ]oc = Λ�[U/X ]

is basic conuclear (and compact). This implies the first claim by stability of basic conuclear
objects under countable limits (Definition 4.13). Let I ⊆ Λ be an ideal of definition. Then
a trace class map over Λ/I is a trace class map over Λ. 17 Hence, we may assume that Λ is
discrete (again using Definition 4.13), but potentially derived. By stability of basic conuclear
objects under finite colimits we may shrink U . Hence, we may assume that there exists a
commutative diagram

U U
/X

W̃

V V
/X

W X

f f g

j

with cartesian squares, and g finite étale, while V → X, W → X are the inclusions of rational
open subspaces. Indeed, we can first construct f : U → V finite étale over some rational open
subspace V ⊆ X. Then f : U

/X
→ V

/X
is finite étale, and spreads out to some rational

open neighborhood W of V
/X

(by [22, Proposition 6.4.(i)]). Write X = Spa(A, A+) and
V = {|f1|, . . . , |fr| ≤ |g| 6= 0} for f1, . . . , fr, g ∈ A generating A. Let π ∈ A be a uniformizer.
We can set

Vn := {|f1|, . . . , |fr| ≤ |gπ−1/pn
| 6= 0}.

Then V
/X =

⋂
n∈N

Vn as can be checked as in Lemma 4.8. There exists an n0 such that Vn ⊆W

for every n ≥ n0. For n ≥ n0 set Un := Vn ×W W̃ . Note that Un+1 ⊆ Un+1
/X
⊆ Un for

n ≥ n0. By Lemma 4.21 we can conclude that Λ�[Un+1] → Λ�[Un] is trace class. Hence, it
suffices to show that the natural map

(Λ�[U ])oc → lim←−
n≥n0

Λ�[Un]

is an isomorphism. This can be checked after pullback to a strictly totally disconnected
X ′ → X covering X. Hence, without loss of generality X is strictly totally disconnected. In
this case, (Λ�[U ])oc = Λ�[π0(U)×π0(X) X] by Lemma 4.7. The same holds for the right hand
side as

π0(U)×π0(X) X = π0(U
/X

)×π0(X) X = lim←−
n

Un
/X

= lim←−
n

Un

using that Un+1 ⊆ Un
/X
⊆ Un.

17This follows by an easy diagram chase from the fact that the morphism HomΛ(M, Λ) ⊗Λ Λ/I →

HomΛ(M, Λ/I) is an isomorphism as Λ/I denotes the derived quotient for an implicit choice of genera-
tors of I . For underived quotients this statement is not true: If Λ = Fℓ[x]/x2, then the identity on Fℓ is
trace class over Fℓ, but not over Λ as Fℓ is not a perfect complex over Λ.
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In the proof of the previous result we made use of the following geometric source of trace
class maps:

Lemma 4.21. Let X be an ℓ-bounded spatial diamond and f : U → V, g : V → X étale,
quasi-compact and separated maps. Assume that Λ is discrete (but potentially derived). If

f : U → V extends to a map h : U
/X
→ V , then Λ[U ]→ Λ[V ] is trace class in D�(X, Λ)ω1 .

Proof. As symmetric monoidal functors map trace class maps to trace class maps we may
assume that Λ = Zℓ/ℓm for some m ≥ 0. We can calculate Hom(Λ[U ], Λ) ⊗ Λ[V ] = (g ◦
f)∗(ΛU ) ⊗ g!(ΛV ) ∼= g!(f∗(ΛU )) (here g! denotes the usual étale exceptional pushforward for
an étale morphism). The existence of h implies that the natural map g!(f∗(ΛU ))→ (g◦f)∗(ΛU )
is an isomorphism. Indeed, one can check this on stalks over X, i.e., if X = Spa(C, C+) for
C an algebraically closed perfectoid field, and C+ an open and bounded valuation subring.
In this case the existence of h implies that U → V factors over some V0 ⊆ V , which is finite
étale over X. Then the statement is clear. Thus,

(Hom(Λ[U ], Λ) ⊗ Λ[V ])(∗) ∼= (g ◦ f)∗(ΛU )(∗)

admits the canonical element 1 ∈ Γ(U, Λ) = Γ(X, (g ◦ f)∗(ΛU )), which can be checked to
witness that the morphism Λ[U ] → Λ[V ] is trace class. Indeed, this statement only in-
volves morphisms between static sheaves and hence can again be checked after pullback to
Spa(C, C+) for C an algebraically closed perfectoid field over X. This reduces the assertion
easily to the cases U = ∅ or V = X, where it is clear.

4.4 C-valued nuclear sheaves

In order to prove strong descent results for O+-modules on perfectoid spaces, we need a
slightly exotic version of nuclear Λ-modules, where we introduce an additional “algebraic”
solid structure. In fact, the following definitions and results work more generally for certain
Dnuc(Λ)-linear categories C.

We continue with the notation from Section 4.2, in particular Λ is an adic and profinite
Zℓ-algebra.

Remark 4.22. The category PrL
Dnuc(Λ) of presentable Dnuc(Λ)-linear categories has some

favourable properties due to the rigidity of Dnuc(Λ) as a presentably, symmetric monoidal
∞-category.18 These properties are the following:

1. A Dnuc(Λ)-module C in PrL
Sp, i.e., an object of PrL

Dnuc(Λ), is dualizable in the symmetric

monoidal category (PrL
Dnuc(Λ),−⊗Dnuc(Λ)−) if and only it is dualizable in (PrL

Sp,−⊗−)
([10, Proposition 9.4.4]).

2. Let F : M→N be a morphism in PrL
Dnuc(Λ), and assume that the right adjoint G : N →

M commutes with colimits. Then for A ∈ Dnuc(Λ) and N ∈ N the natural morphism19

A⊗G(N)→ G(A⊗N),

is an isomorphism ([10, Lemma 9.3.6]). In other words, G is Dnuc(Λ)-linear.

Moreover, any morphism Dnuc(Λ) → R in CAlg(PrL
Sp), where the symmetric monoidal unit

1R ∈ R is compact, automatically has a colimit-preserving right adjoint, i.e., is strongly
continuous.
18This result is announced by Efimov, and follows from [8, Theorem 3.5] and the general theory of rigid

categories as, e.g., presented in [5].
19This morphism is adjoint to F (A ⊗ G(N)) ∼= A ⊗ F ◦ G(N) → A ⊗ N , with the first isomorphism using

Dnuc(Λ)-linearity of F .
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The Dnuc(Λ)-modules that we will interested in have particular properties. In the following
we use the short hand notation “complete” instead of “I-adically complete for some ideal of
definition I ⊆ Λ”.

Definition 4.23. We say that a Dnuc(Λ)-linear presentable category C is nicely generated if
there is a small family of objects (Pi)i∈I in C satisfying the following properties:

(a) For every bounded complete M ∈ Dnuc(Λ) and all i ∈ I the object M ⊗ Pi ∈ C is
complete.

(b) For every i ∈ I the functor HomDnuc(Λ)(Pi,−) : C → Dnuc(Λ) preserves all small colimits.

(c) The family of functors HomDnuc(Λ)(Pi,−) from (ii) is conservative.

Here, HomDnuc(Λ)(X,−) for X ∈ C is the functor right adjoint to the functor (−) ⊗Λ

X : Dnuc(Λ)→ C, M 7→M ⊗Λ X. In particular,

HomDnuc(Λ)(Λ, HomDnuc(Λ)(X, Y )) ∼= HomC(X, Y ) (4.23.1)

for X, Y ∈ C.

Lemma 4.24. Let C be a nicely generated Dnuc(Λ)-linear presentable category.

(i) The category C is compactly generated, and dualizable as an object in PrL
Dnuc(Λ).

(ii) For every compact P ∈ C the functor HomDnuc(Λ)(P,−) : C → Dnuc(Λ) is Dnuc(Λ)-linear.

Proof. As Λ ∈ Dnuc(Λ) is compact, each Pi from Definition 4.23 is compact, hence C is com-
pactly generated. By [14, Proposition D.7.2.3] the category C is therefore dualizable in PrL

Sp,
and hence in PrL

Dnuc(Λ) by Remark 4.22. If P ∈ C is compact, then the Dnuc(Λ)-linear functor

Dnuc(Λ) → C, A 7→ A ⊗ P has the colimit-preserving right adjoint HomDnuc(Λ)(P,−) : C →
Dnuc(Λ), which is therefore Dnuc(Λ)-linear by Remark 4.22.

Recall that in Definition 4.13 we have introduced the Dnuc(Λ)-linear category Dnuc(X, Λ)
for an ℓ-bounded spatial diamond X. Using this category, we now give the following definition.

Definition 4.25. Let C be a nicely generated Dnuc(Λ)-linear presentable category. Then for
every ℓ-bounded spatial diamond X we denote

Dnuc(X, C) := Dnuc(X, Λ) ⊗Dnuc(Λ) C

and call it the category of C-valued nuclear (or nuclear overconvergent) sheaves on X.

Proposition 4.26. Let C be a nicely generated Dnuc(Λ)-linear presentable category. Then:

(i) The assignment X 7→ Dnuc(X, C) defines a hypercomplete sheaf on the big quasi-pro-étale
site of ℓ-bounded spatial diamonds.

(ii) For every ℓ-bounded affinoid perfectoid space X the category Dnuc(X, C) is generated
under colimits by π-adically complete objects.

(iii) If X is a strictly totally disconnected space then Dnuc(X, C) naturally identifies with the
category of C(π0(X), Λ)-modules in C.
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Proof. Using [12, Theorem 4.8.4.6] claim (iii) follows from the fact that

Dnuc(X, Λ) ∼= Dnuc(C(π0(X), Λ)) ∼= ModC(π0(X),Λ)(Dnuc(Λ))

if X is strictly totally disconnected (see Lemma 4.16 and its proof).
Let us prove claim (i) and take a quasi-pro-étale hypercover X• → X of ℓ-bounded spatial

diamonds. We need to see that the natural functor

F : Dnuc(X, C)→ lim
←−
n∈∆

Dnuc(Xn, C)

is an equivalence. By Lemma 4.17 this holds if C = Dnuc(Λ), and then in PrL
Dnuc(Λ), i.e., all

transition functors areDnuc(Λ)-linear (as they are induced by pullback functors forDnuc(−, Λ)).
Therefore the claim follows by dualizability of C in PrL

Dnuc(Λ) as established in Lemma 4.24.

Indeed, dualizability implies that C ⊗Dnuc(Λ) − commutes with limits in PrL
Dnuc(Λ).

It remains to prove (ii), so let X be a given ℓ-bounded affinoid perfectoid space. Then
Dnuc(X, C) is generated under colimits by objectsM⊠P , whereM∈ Dnuc(X, Λ) and P ∈ C
is compact (and hence also complete by our assumption that C is nicely generated). By
Lemma 4.20 we may assume that M is complete, and additionally bounded above.

It is therefore enough to show that each of these M⊠ P is complete. By (i) we can check
this after pullback to any quasi-pro-étale hypercover (using that limits of complete objects
are again complete), so we can assume that X is strictly totally disconnected. Then the
claim follows from (iii) and the fact that complete objects in C are stable under the action
of complete objects in Dnuc(Λ) by assumption. More precisely, completeness of M ⊠ P can
be checked after applying the forgetful functor to C, and there M ⊠ P is given by |M | ⊗ P
with |M | ∈ Dnuc(Λ) the underlying object of M ∈ Dnuc(X, Λ) ∼= Dnuc(C(π0(X), Λ)) and ⊗
the given Dnuc(Λ)-action on C.

5 Main theorem: Da
�̂
(O+

X) on +-bounded affinoid perfectoid spaces

In this section we will prove the remaining assertion of Theorem 1.1, i.e., that for X =
Spa(A, A+) ∈ Perfdaff +-bounded the natural map

Da
�̂
(A+)→ Da

�̂
(O+

X)

is an equivalence. For this we will use the criterion of Lemma 3.22 by using the (overconver-
gent) nuclear C-valued sheaves from Section 4.4. The strategy can roughly be described as
realizing the category Da

�̂
(O+

X) as a category of O+-modules in Dnuc(X, Λ), where Λ = Zp[[π]]
with π mapping to a pseudo-uniformizer in A+.

In order to make this precise, we need to first introduce the following variant for nuclear
C-valued sheaves.

Definition 5.1. Let X = Spa(A, A+) be an affinoid perfectoid space with pseudouniformizer
π. Then for every p-bounded spatial diamond Y we denote

Dnuc(Y, (A+)a
�̂
) := Dnuc(Y,Zp[[π]]) ⊗Dnuc(Zp[[π]]) D

a
�̂
(A+),

with Dnuc(Y,Zp[[π]]) as defined in Definition 4.13.

Note that the category Da
�̂
(A+) is not compactly generated, and hence not a nicely gener-

atedDnuc(Zp[[π]])-linear category in the sense of Definition 4.23. Nevertheless we get following
assertions analogous to Proposition 4.26
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Lemma 5.2. Let X = Spa(A, A+) be an affinoid perfectoid space with pseudouniformizer π.
Then:

(i) The assignment Y 7→ Dnuc(Y, (A+)a
�̂
) defines a hypercomplete sheaf of categories on the

big quasi-pro-étale site of p-bounded spatial diamonds.

(ii) For every p-bounded affinoid perfectoid space Y the category Dnuc(Y, (A+)a
�̂
) is generated

under colimits by complete objects.

(iii) If Y is a strictly totally disconnected space then Dnuc(Y, (A+)a
�̂
) = Da

�̂
(C(π0(Y ), A+)).

Proof. Note that D�̂(A+) is a nicely generated Dnuc(Zp[[π]])-linear category. To prove this,
let (Xi)i∈I be the family of compact generators A+

�̂
[S] for profinite sets S, i.e., A+

�̂
[S] =

α∗(A+[S]) with α∗ as in Lemma 2.5. We show that they satisfy properties (i), (ii) and (iii)
from Definition 4.23. Part (iii) is obvious by (Eq. (4.23.1)). For (ii) we note that the functor
Hom(A+

�̂
[S],−) : D�̂(A+)→ Dnuc(Zp[[π]]) factors as the composition of functors

D�̂(A+)
Hom(A+

�̂
[S],−)

−−−−−−−−−→D�̂(A+)
forget
−−−→D�(Zp[[π]])

(−)nuc
−−−−→Dnuc(Zp[[π]]).

The first functor preserves colimits because compact objects in D�̂(A+) are stable under tensor
products. The second functor obviously preserves colimits, while Proposition 2.19 shows that
the third functor preserves colimits. This proves that property (ii) from Definition 4.23 is sat-
isfied. For property (i) we note that for every right bounded and complete M ∈ Dnuc(Zp[[π]])
we have

M ⊗A+
�̂

[S] = (M ⊗Zp[[π]]� Zp[[π]]�[S]) ⊗Zp[[π]]� A+
�̂

,

so we conclude by Lemma 2.12.(iv). We have finally shown that D�̂(A+) is a nicely generated
Dnuc(Zp[[π]])-linear category. Thus by Proposition 4.26 all claims are true for Dnuc(−, A+

�̂
) :=

Dnuc(−,Zp[[π]])⊗Dnuc(Zp[[π]])D�̂(A+) in place of Dnuc(−, (A+)a
�̂
). The almostification functor

(−)a : D�̂(A+) → Da
�̂
(A+) (with left adjoint (−)!) realizes Da

�̂
(A+) as a retract of D�̂(A+),

which shows that Da
�̂
(A+) is dualizable as a Dnuc(Zp[[π]])-linear category (by Remark 4.22).

This implies (i) by the argument in Proposition 4.26. Furthermore, part (ii) and (iii) follow
from Proposition 4.26 by Lemma 2.35.

We note thatDnuc(Y, (A+)a
�̂
) is naturally a symmetric monoidal∞-category for a p-bounded

spatial diamond. Indeed, [6, Theorem 8.6] implies that the category Dnuc(Y,Zp[[π]]) is stable
under tensor products in D�(Y,Zp[[π]])ω1 .

Definition 5.3. Let X = Spa(A, A+) be an affinoid perfectoid space and Y a p-bounded
spatial diamond over X♭. By Lemma 5.2 and Theorem 3.7 there is a unique algebra object
O+a ∈ Dnuc(Y, (A+)a

�̂
) such that for every strictly totally disconnected space Z over Y with

untilt Z♯ = Spa(B, B+) over X, the pullback of O+a to Z is the object

B+a ∈ Da
�̂
(C(π0(Z), A+)) ∼= Dnuc(Z, (A+)a

�̂
)

with the last isomorphism supplied by Lemma 5.2.(iii). We denote

Dnuc(Y, (O+, A+)a
�̂
) := ModO+a(Dnuc(Y, (A+)a

�̂
)).

The category Dnuc(Y, (O+, A+)a
�̂
) is a precise version of the heuristic category of “O+-

modules in Dnuc(Y,Zp[[π]])”. The extra factor Da
�̂
(A+) accomodates the almost mathematics.

Lemma 5.4. Let X = Spa(A, A+) be a p-bounded affinoid perfectoid space with pseudouni-
formizer π. Then:
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(i) The assignment Y 7→ Dnuc(Y, (O+, A+)a
�̂
) defines a hypercomplete sheaf of categories on

X♭
qproet.

(ii) For every affinoid perfectoid space Y ∈ X♭
qproet the category Dnuc(Y, (O+, A+)a

�̂
) is gen-

erated under colimits by complete objects.

(iii) If Y = Spa(B, B+) ∈ Xqproet is strictly totally disconnected, then

Dnuc(Y ♭, (O+, A+)a
�̂
) = Da

�̂
(B+, A+).

(iv) For every Y ∈ X♭
qproet we have

Dnuc(Y
/X♭

, (O+, A+)a
�̂
) = Dnuc(Y, (O+, A+)a

�̂
).

Proof. First note that the p-boundedness of X implies that every Y ∈ X♭
qproet is p-bounded

by Lemma 3.17. Part (i) follows from Lemma 5.2.(i) as in the proof of Lemma 2.40; we note
that the pullback functors for Dnuc(−, (O+, A+)a

�̂
) along quasi-pro-étale maps are the same as

before on underlying objects in Dnuc(−, (A+)a
�̂
) (because O+a is preserved under these pull-

backs by definition). Part (ii) follows from Lemma 5.2.(ii) by noting that Dnuc(Y, (O+, A+)a
�̂
)

is generated under colimits by objects of the form O+a⊗M forM∈ Dnuc(Y, (A+)a
�̂
) running

through a set of generator. Part (iii) follows from Lemma 5.2.(iii) and the definition of O+a.
Indeed,

ModB+a(Da
�̂
(C(π0(Z), A+))) ∼= ModB+a(ModC(π0(Z),A+)(D

a
�̂
(A+))) ∼= ModB+a(Da

�̂
(A+))

∼= Da
�̂
(B+, A+)

using in the first isomorphism that A+ → C(π0(Z), A+) is integral mod π (and hence induces

the analytic ring structure). Part (iv) follows from Dnuc(Y
/X♭

,Zp[[π]]) = Dnuc(Y,Zp[[π]])
(and the overconvergence of O+a). Indeed, the claim can (by Lemma 4.17 be checked in the

case that X is strictly totally disconnected. Then Y
/X♭

, Y are strictly totally disconnected

as they are quasi-pro-étale over X. Then the claim follows from Lemma 4.16 as π0(Y
/X♭

) =
π0(Y ).

Corollary 5.5. Let X = Spa(A, A+) be a p-bounded affinoid perfectoid space with pseudouni-
formizer π such that X♭ admits a map of finite dim.trg to some totally disconnected space.
Then there is a natural equivalence

Da
�̂
(O+

X ) = Dnuc(X, (O+, A+)a
�̂
).

In particular, the following is true:

(i) Da
�̂
(O+

X) is generated under colimits by right bounded, complete objects.

(ii) The natural functor Γ(X,−) : Da
�̂
(O+

X)→ Da
�̂
(A+) preserves all small colimits.

Proof. We first construct a natural map of hypercomplete quasi-pro-étale sheaves

α(−) : Dnuc(−, (O+, A+)a
�̂
)→ Da

�̂
(O+

(−)♯ )

on X♭
qproet, where (−)♯ : X♭

qproet → Xqproet is inverse to (−)♭. It is enough to construct this
map on strictly totally disconnected spaces Y with until Y ♯ = Spa(B, B+) over X, where by
Theorem 3.7 and Lemma 5.4.(iii) it boils down to the natural map α(Y ) : Da

�̂
(B+, A+) →

Da
�̂
(B+) (which is is compatible with pullback in Y ).
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In the following, we will identify Xqproet
∼= X♭

qproet and view both sides as sheaves on Xqproet.

Now fix a strictly totally disconnected space Y = Spa(B, B+) ∈ Xqproet and let Z := Y
/X

.
We claim that α(Z) is an equivalence. By Lemmas 5.4.(iii) and 5.4.(iv) we have

Dnuc(Z, (O+, A+)a
�̂
) ∼= Dnuc(Y, (O+, A+)a

�̂
) ∼= Da

�̂
(B+, A+).

On the other hand, writing Z = Spa(C, C+) we obtain from Theorem 3.23 that

Da
�̂
(O+

Z ) = Da
�̂
(C+) = Da

�̂
(B+, A+).

By going through the natural identifications one checks that α(Z) is the obvious equivalence.
Now pick a hypercover Y• → X by strictly totally disconnected spaces Yn ∈ Xqproet and let

Z• = Y
/X
• . Then Z• → X is a hypercover in Xqproet and by the above we know that α(Zn) is

an equivalence for all n. By descent we deduce that α(X) is an isomorphism, i.e. we obtain
the desired identity Da

�̂
(O+

X) = Dnuc(X, (O+, A+)a
�
).

It remains to prove the “in particular” claims. Part (i) is an immediate consequence
of Lemma 5.4.(ii) (noting that the right boundedness holds for the constructed complete
generators). It remains to prove (ii). We first observe that Γ(X,−) is the right adjoint of
the natural functor Da

�̂
(A+)→ Da

�̂
(O+

X) obtained from sheafification. Under the equivalence
α(Z) the latter functor can be written as the composition

Da
�̂
(A+)→ Dnuc(X, (A+)a

�̂
) −⊗O+a

−−−−−→Dnuc(X, (O+, A+)a
�̂
),

where the first functor is induced (by tensoring over Dnuc(Zp[[π]]) with Da
�̂
(A+)) from the

pullback ρ∗ : Dnuc(Zp[[π]])→ Dnuc(X,Zp[[π]]) for the morphism of sites ρ : Xqproet → ∗qproet.
Thus Γ(X,−) can be written as the composition of the right adjoints of the above two functors,
so it is enough to show that each of these right adjoints preserves all small colimits. The
right adjoint of − ⊗ O+a is the forgetful functor, which clearly preserves all small colimits.
The right adjoint G of the first functor can be obtained from the global sections functor
ρ∗ : Dnuc(X,Zp[[π]]) → Dnuc(Zp[[π]]) by tensoring with Da

�̂
(A+). Indeed, ρ∗ commutes with

colimits and is Dnuc(Zp[[π]])-linear as Dnuc(Zp[[π]]) is rigid, its left adjoint ρ∗ is symmetric
monoidal and the unit in Dnuc(X),Zp[[π]]) is compact (Remark 4.22). This implies that
ρ∗⊗Dnuc(Zp[[π]])D

a
�̂
(A+) defines the right adjoint G ofDa

�̂
(A+) by functoriality in the 2-category

of Dnuc(Zp[[π]])-linear presentable categories.20 This proves the claim.

We can finally show the main descent result of this paper, generalizing [16, Theorem 3.5.21]
and finishing the proof of Theorem 1.1.

Theorem 5.6. Let X = Spa(A, A+) ∈ Perfdaff be +-bounded. Then

Da
�̂
(O+

X) = Da
�̂
(A+).

Proof. By Theorem 3.18 X is p-bounded. Hence, we may apply Lemma 3.22 thanks to
Corollary 5.5 (and its proof to see the right boundedness of Γ(X,N ) for the constructed
complete generators in Corollary 5.5).
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